Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях. Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включает измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. При этом в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента. Затем учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи. Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций. 8 ил.

 

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях.

Известен способ определения сопротивления теплопередачи ограждающих конструкций ГОСТ 26254-84 «Здания и сооружения».

Недостатком способа является то, что по этой методике предполагается, что стационарный процесс теплопередачи может наступить через 1,5-7,5 суток. Однако на практике при проведении длительных теплофизических экспериментальных исследований результаты эксперимента показывают, что добиться стационарных условий теплопередачи в реальных климатических условиях практически невозможно. Например, разница tн в дневное и ночное время может достигать более 20 градусов. Это создает нестационарные условия теплопередачи и полученные теплофизические характеристики не могут считаться объективными.

Известен способ, которым определяют локальные термические сопротивления обследуемых участков при нестационарном режиме теплопередачи (см. патент №2219534, МПК G01N 25/72, от 12.09.02). Согласно известному способу определяют временной интервал, необходимый и достаточный для получения достоверного результата. В течение всего временного интервала измеряют периодически температуру и плотность теплового потока на наружной и внутренней поверхностях объекта. Задают произвольно и многократно значение теплопроводности нужного слоя. Используя разработанную обобщенную физико-математическую модель теплового неразрушающего контроля многослойных объектов с неоднородностями и заданное значение теплопроводности, рассчитывают для каждого заданного значения теплопроводности теоретически возможную температуру и плотность теплового потока соответственно наружной и внутренней поверхностей, проводят мгновенное тепловизионное обследование и измеряют температуры и плотности тепловых потоков соответственно на внутренней и наружной поверхностях. Сравнивают теоретически возможные значения с измеренными. Выбирают для дальнейших расчетов то значение теплопроводности из числа заданных, которое смогло обеспечить условия сравнения.

Известен способ, в котором определяют термическое сопротивление при нестационарном режиме теплопередачи (см. патент РФ №2316760, МПК G01N 25/72, от 22.08.05).

Согласно известному способу выделяют не менее двух термически однородных зон на термограмме внутренней поверхности объекта. На выделенных участках измеряют и рассчитывают температуры их наружной и внутренней поверхностей при задаваемых значениях теплопроводности (λ). Сравнивают эти температуры в одной системе координат. Задают погрешность между сравниваемыми температурами δ±8,5%. Определяют временные интервалы и на выбранных временных интервалах вычисляют коэффициент теплоотдачи (α). Выбирают значения теплопроводности (λ), при которых α=α+Δα. Определяют термическое сопротивление всех участков с аномалиями температурного поля и соответственно сопротивление теплопередаче этих участков и приведенное сопротивление теплопередаче многослойного объекта.

Прототипом является патент РФ №2383008, МПК G01N 25/18, от 19.12.08, позволяющий определить состояние конструкций и их теплопотери при исследовании нестационарных процессов. Известный способ включает измерение средних значений температуры и теплового потока на наружной и внутренней поверхностях в течение нескольких интервалов времени, последовательное изменение величины и начальных значений временных интервалов, фиксацию тех временных интервалов и измеренных средних значений температуры и теплового потока, в которых данные величины отличаются на величину, не превышающую величину заранее заданной погрешности, и определение сопротивления теплопередачи контролируемого участка и определение термического сопротивления по всей поверхности исследуемого объекта.

Известные способы универсальны, однако широкое применение на практике сдерживается рядом обстоятельств, которые заключаются в следующем:

- имеется существенная нелинейная зависимость точности получаемых результатов от погрешности входных данных - результатов первичных измерений. Также для измерений требуется соблюдение специальных климатических условий.

Недостатком прототипа является тот факт, что в изобретении производят моделирование нестационарной теплопередачи путем изменения температур на внутренней и наружной поверхности исследуемой ограждающей конструкции, что не может отразить всех реальных теплофизических процессов, происходящих в толще исследуемого ограждения, с учетом реальных погодных условий, и не позволяет объективно провести оценку теплозащитных качеств ограждающей конструкции.

Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций.

Технический результат достигается тем, что способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. Согласно изобретению в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи.

Предлагаемый способ поясняется чертежами:

На фиг. 1. приведен суточный график изменения температур по толщине наружной стены здания 3 корпуса ПГТУ, расположенного по адресу г. Йошкар-Ола, ул. Панфилова д. 17, с квазистационарными условиями теплопередачи.

Квазистационарными являются такие изменения характеристик среды, при которых параметры объекта можно описать стационарными уравнениями, например

где: ΔΤ=ΤBH - разность температур на соответствующих поверхностях участка;

q - плотность теплового потока;

R - термическое сопротивление участка.

В предельном случае малости изменений характеристик среды возникает стационарность - неизменность теплового состояния объекта. Их слабые изменения - это квазистационарность.

Определяя границы зон с квазистационарными условиями теплопередачи, температуры на границах, тепловой поток. Определим R0 по формуле (1).

По фигурам 1-8 видно, как в течение суток зона смещается от наружной поверхности к внутренней поверхности ограждения. Это обусловлено характером изменения tн в дневное, ночное время от 4°С до 16°С. Физический эффект возникновения в толще стены зон с квазистационарными условиями теплопередачи позволяет решить задачу определения Roфакт. Выбор наиболее продолжительных временных зон с квазистационарными условиями теплопередачи снизит погрешность и даст более объективные значение Roфакт, что видно в формуле (2) и на фигуре 2.

На фиг. 2. Расположение термопар по толщине наружной стены здания 3 корпуса ПГТУ, расположенного по адресу г. Йошкар-Ола, ул. Панфилова д. 17, с квазистационарными условиями теплопередачи.

t3, t5 - постоянные значения температуры в течение промежутка времени ΔT;

Q - величина теплового потока;

Значения Rофакт находятся в прямопропорциональной зависимости от δ толщины ограждения. Если принять допущение, что величина Q теплового потока при прохождении через стену не меняет своего значения, то, определив процентное соотношение δ толщины зоны с квазистационарными условиями теплопередачи по всей толщине, можем определить Rофакт всей стены.

На фиг. 3 показано сечение 1-1. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 0:30 до 2:00.

На фиг. 4 показано сечение 2-2. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 3:00 до 4:00.

На фиг. 5 показано сечение 3-3. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 4:00 до 6:00.

На фиг. 6 показано сечение 4-4. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 7:00 до 9:00.

На фиг. 7 показано сечение 5-5. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 9:30 до 10:00.

На фиг. 8 показано сечение 6-6. Расположение термопар по толщине стены и распределение зон, обеспечивающих квазистационарные условия теплопередачи в промежутке времени с 10:30 до 12:00.

Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения, отличающийся тем, что в течение суток при наличии градиента наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи.



 

Похожие патенты:

Изобретение относится к области обогащения полезных ископаемых, а именно к способам обогащения различных пород полезных ископаемых по их теплофизическим свойствам, и может быть использовано при сепарации минеральных частиц, в том числе алмазосодержащей породы, на различных этапах.

Изобретение относится к области исследования и анализа технологических сыпучих материалов, в т.ч. пищевых, характеризующихся насыпной плотностью.

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов. Способ определения удельной теплоемкости сыпучих материалов заключается в том, что герметизируют объем с образцом известной массы, образец приводят в тепловой контакт по плоскости с источниками тепла, подводят тепло к образцу, измеряют температуру источников тепла и их удельную мощность, вычисляют тепловые потоки через образец.

Изобретение относится к области исследования теплофизических характеристик анизотропных материалов. Заявлен способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты, заключающийся в том, что образец исследуемого материала изготавливают в виде двух массивных пластин, между которыми размещают линейный электронагреватель и измеритель температуры.

Изобретение относится к области измерительной техники и может быть использовано для определения пожароопасных свойств материалов и веществ. Предлагается установка по определению критического значения лучистого теплового потока.

Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и теплоэнергетике для исследования теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий на поверхностях плоских источников теплоты.

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов. Согласно заявленному способу исследуемый образец известной толщины через источник теплоты с заданной плотностью теплового потока приводят в тепловой контакт с эталонным образцом, термостатируют при заданной температуре исследуемый и эталонный образец и измеряют температуру.

Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и промышленной теплоэнергетике для исследования в натурных условиях теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий.

Изобретение относится к области исследования теплофизических характеристик теплоизоляционных материалов. Предложенный способ измерения теплофизических свойств теплоизоляционных материалов методом плоского импульсного источника теплоты заключается в том, что образец исследуемого материала изготавливают в виде трех пластин, причем тонкую пластину размещают между двумя массивными.

Изобретение относится к области строительной теплотехники и может быть использовано для измерения теплового потока, проходящего через конструкцию. Конструкция имеет толщину (D), по которой в поперечном направлении формируется разность (ΔT) температур.

Изобретение относится к области энергетики и предназначено для определения темпов изменения температуры пород недр при извлечении или аккумулировании тепловой энергии. Предложена установка для определения темпов изменения температуры пород недр, которая содержит первый образец 1, включающий первую модель пород недр 2, выполненную в форме цилиндра радиусом R1 и покрытую теплоизоляцией 3. На внешней поверхности первой модели пород недр 2 расположен первый электрический нагреватель 4, а внутри соосно установлена первая трубка 5 радиусом r1. В среднем сечении первой модели пород недр 2 радиально установлены первая термопара 6, расположенная на ее внешней поверхности, вторая термопара 7, расположенная на поверхности первой трубки 5, а также третья 8, четвертая 9 и пятая 10 термопары, расположенные между первой 6 и второй 7 термопарами. На поверхности первой трубки 5 симметрично второй термопаре 7 расположена шестая термопара 11. Вход первой трубки 5 соединен подающим трубопроводом 12 с емкостью 13 для теплоносителя 14, покрытой тепловой изоляцией 15 и соединенной заполняющим трубопроводом 16, на котором установлен первый кран 17, с системой холодного водоснабжения. В емкости 13 расположены электрический нагреватель 18, нижний датчик уровня 19, верхний датчик уровня 20 и датчик температуры емкости 21. На подающем трубопроводе 12 последовательно по направлению движения теплоносителя 14 установлены насос 22, первый тройник 23, второй кран 24 и входной датчик температуры 25. Свободный отвод первого тройника 23 соединен байпасным трубопроводом 26, на котором установлен третий кран 27, с емкостью 13. Установка для определения темпов изменения температуры пород недр содержит по меньшей мере один дополнительный образец 28, выполненный идентично первому образцу 1 и содержащий вторую модель пород недр 29, выполненную в форме цилиндра радиусом R2 и покрытую теплоизоляцией 30. На внешней поверхности второй модели пород недр 29 расположен второй электрический нагреватель 31, а внутри соосно установлена вторая трубка 32 радиусом r2, причем вход второй трубки 32 соединен промежуточным трубопроводом 33, на котором установлен промежуточный датчик температуры 34, с выходом первой трубки 5. В среднем сечении второй модели пород недр 29 радиально установлены седьмая термопара 35, расположенная на ее внешней поверхности, восьмая термопара 36, расположенная на поверхности второй трубки 32, а также девятая 37, десятая 38 и одиннадцатая 39 термопары, расположенные между седьмой 35 и восьмой 36 термопарами. На поверхности второй трубки 32 симметрично восьмой термопаре 36 расположена двенадцатая термопара 40. Выход второй трубки 32 соединен с емкостью 13 обратным трубопроводом 41 с установленными на нем последовательно по направлению движения теплоносителя 14 выходным датчиком температуры 42, вторым тройником 43 и четвертым краном 44, причем к свободному отводу второго тройника 43 подсоединен трубопровод дренажа 45, на котором установлен пятый кран 46. При этом на обратном трубопроводе 41 между выходом второй трубки 32 и выходным датчиком температуры 42 последовательно по направлению движения теплоносителя 14 установлены третий тройник 47, шестой кран 48 и четвертый тройник 49. К свободному отводу третьего тройника 47 подсоединен соединительно-подающий трубопровод 50, на котором установлен седьмой кран 51, к свободному отводу четвертого тройника 49 подсоединен соединительно-обратный трубопровод 52, на котором установлен восьмой кран 53. Технический результат - расширение области применения известной установки за счет увеличения диапазона измерений температуры пород недр и повышение точности определения темпов изменения температуры в породах недр. 1 ил.

Изобретение относится к теплофизическим измерениям в области материаловедения и может быть использовано для определения теплопроводности твердых тел. В заявленном способе исследуемый образец приводят в тепловой контакт по плоскости с нагревателем с одной стороны, а с другой стороны приводят в тепловой контакт по плоскости с теплоприемником. При постоянной мощности нагрева, с учетом скорости изменения температуры, перепада температуры на образце определяют теплопроводность твердого тела. Потери тепла учитывают за счет поправочного коэффициента, определяемого по измерениям на эталонных образцах, размеры исследуемого и эталонных образцов одинаковые. Технический результат - повышение точности определения теплопроводности твердых тел. 6 ил.
Настоящее изобретение относится к теплофизике и предназначено для определения теплопроводности снега в условиях естественного залегания снежного покрова и может быть использовано при изучении термических свойств снега разной структуры и плотности. Сущность способа заключается в измерении плотности и твердости снега и определении коэффициента теплопроводности снега по эмпирическим зависимостям. Способ определения теплопроводности, включающий измерение плотности и вычисления теплопроводности по эмпирической зависимости, отличающийся тем, что дополнительно измеряется твердость снега и производится определение коэффициента теплопроводности снега по эмпирическим зависимостям:при 0,15≤ρ≤0,45 ипри 390<Р≤715, λ=0,4219ρ+0,1922;при 175<Р≤390, λ=0,3824ρ+0,1362;при 50<Р≤175, λ=0,4021ρ+0,0674;при 0<Р≤50 ипри 0,2≤ρ≤0,4, λ=0,7398ρ-0,0907;при 0,15≤ρ<0,2, λ=0,146ρ+0,0281,где Р - твердость снега, Н;λ - коэффициента теплопроводности снега, Вт/(м⋅К);ρ - плотность снега, г/см3.Технический результат - повышение точности определения коэффициента теплопроводности снега в условиях естественного залегания снежного покрова.

Изобретение относится к теплофизическому приборостроению, а именно к приборам для измерения коэффициента теплопроводности волокнистых пищевых продуктов животного происхождения. Устройство для определения коэффициента теплопроводности волокнистых пищевых продуктов животного происхождения состоит из разъемного корпуса, выполненного из теплоизолирующего материала, в нижней части которого установлен теплонагреватель, а на его верхней части установлен холодильник, между которыми в контакте расположены три тепломеры, выполненные в виде плоских медных пластин, между которыми зафиксированы две ампулы. При этом ампула, расположенная между верхней и средней пластинами, предназначена для исследуемого продукта, а ампула, расположенная между средней и нижней пластинами, - для эталонного продукта. На медных пластинах установлены термодатчики, а в ампуле с исследуемым продуктом установлен виброинициатор кристаллизации. В качестве холодильника используют холодильник Пельтье. Технический результат - повышение быстроты и точности определения коэффициента теплопроводности волокнистых пищевых продуктов животного происхождения. 1 з.п. ф-лы, 1 ил.

Использование: для качественного определения по меньшей мере одного физического и/или химического свойства ламинатной панели. Сущность изобретения заключается в том, что с помощью устройства мобильной радиосвязи выполняют следующие шаги: а) расположение устройства мобильной радиосвязи на поверхности ламинатной панели, б) измерение по меньшей мере одной физической и/или химической измеряемой величины посредством интегрированного в устройстве мобильной радиосвязи измерительного инструмента и в) по меньшей мере, качественное определение по меньшей мере одного физического и/или химического свойства из измеренной по меньшей мере одной физической и/или химической измеряемой величины. Технический результат: обеспечение возможности быстро и просто определять самим покупателем характеристики ламинатной панели в месте ее продажи. 2 н. и 12 з.п. ф-лы, 1 ил.

Устройство для измерений теплопроводности относится к устройствам для измерений высоких значений теплопроводности стационарным методом, предусматривающим использование продольного теплового потока в образце исследуемого материала. Предложено устройство для измерений высоких значений теплопроводности методом стационарного теплового потока в образце, содержащее термостат, охлаждающий один конец исследуемого образца и обеспечивающий постоянство заданного значения его температуры; нагреватель, размещенный на другом конце образца; датчики, измеряющие разность температур на образце и подключенные к измерителю их сигналов. Причем устройство также содержит подключенную к источнику питания и выполняющую функцию термостата первую батарею Пельтье, на поверхности которой последовательно расположены и плотно прижаты друг к другу датчик теплового потока, пластина-концентратор теплового потока с первым датчиком температуры, образец с окружающей его теплоизоляцией, контактная пластина со вторым датчиком температуры, вторая батарея Пельтье, также подключенная к источнику питания и выполняющая функцию нагревателя. Технический результат - повышение точности измерения высоких значений теплопроводности твердых тел с гарантированной достоверностью полученных результатов без привлечения к процессу измерений образцов с известными значениями теплопроводности. 1 ил.

Изобретение относится к технологии измерения тепловых потоков между твердой поверхностью и текучей средой и может быть использовано в теплофизическом эксперименте при исследовании теплоотдачи. Способ заключается в том, что для экспериментального определения коэффициента теплоотдачи на границе текучая среда - твердая поверхность выполняется предварительный нагрев теплообменной поверхности (1), выполненной из неэлектропроводного материала, при пропускании тока большой величины через электропроводный слой (2) - тонкую металлическую фольгу с высоким температурным коэффициентом сопротивления, наклеенную на эту поверхность. В потоке охлаждающей среды измеряется темп охлаждения теплообменной поверхности (1), для чего через фольгу (2) пропускается ток минимальной величины, достаточной для измерения ее электрического сопротивления, по величине которого определяется температура фольги методом термометра сопротивления. Коэффициент теплоотдачи определяется по темпу охлаждения теплообменной поверхности (1) методом регулярного режима. Предлагаемый способ и устройство для его реализации позволяет снизить погрешность определения коэффициента теплоотдачи за счет использования одних и тех же элементов для нагрева теплообменной поверхности и измерения ее температуры, а также трудоемкость проведения опытов, т.к. нагрев осуществляется без переустановки объекта. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий. В способе оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий, заключающемся в измерении в помещении температуры воздуха, относительной влажности, подвижности воздуха, температуры окружающих поверхностей, предварительно определяют преимущественный тип и характеристики выполняемой работы, а также сопротивление теплопроводности преимущественного типа одежды людей, дополнительно измеряют температуру поверхности одежды человека, концентрацию диоксида углерода в воздухе обследуемого помещения и в наружном воздухе, вычисляют составляющие уравнения теплового баланса человека, определяют коэффициент комфортности теплового состояния человека k1, коэффициент радиационного охлаждения k2, коэффициент асимметрии радиационных потоков k3, коэффициент качества воздушной среды k4. Вычисляют уровень комфортности микроклимата по формуле: W=k1⋅k2⋅k3⋅k4, и оценивают уровень комфортности микроклимата по следующей шкале: <-0,5 - холодно, дискомфорт, -0,3÷-0,5 - прохладно, легкий дискомфорт, 0÷-0,3 - прохладно, но комфортно, 0 - комфорт, 0÷0,3 - тепло, но комфортно, 0,30÷0,5 - тепло, легкий дискомфорт. Технический результат - повышение точности определения уровня комфортности помещений жилых, общественных и административных зданий.

Изобретение относится к термометрии, а именно к области измерения теплофизических свойств ограждающих конструкций зданий, строительных сооружений и других инженерно строительных объектов, где необходимо определение количественных теплофизических характеристик. Переносной автоматизированный комплекс для определения теплофизических свойств содержит источник тепла, соединенный с программируемым реле, подключенным к персональному компьютеру и аналоговым датчикам температуры, равномерно расположенным по периметру внутренней стороны исследуемого объекта. Беспроводные датчики температуры равномерно расположены по периметру внешней стороны исследуемого объекта с возможностью передачи данных на персональный компьютер. Технический результат – повышение информативности получаемых результатов измерений за счет того, что комплекс позволяет установить фактические коэффициенты сопротивления теплопередачи и теплосопротивления для всего исследуемого объекта в целом с учетом всех неоднородностей строительных материалов оградительных конструкций с высокой достоверностью результата за счет получения реальных значений в ходе эксперимента для каждого отдельного объекта с учетом его специфических особенностей, уменьшение длительности и увеличение скорости проведения исследования за счет упрощения конструкции и мобильности комплекса. 1 ил.

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формулеm=ρ vк (λсм1+λсм2-λсм12)/λсм2,где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.
Наверх