Способ и устройство взятия проб вещества с поверхности астрономического объекта


G01N1/22 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2618608:

Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" (RU)

Группа изобретений относится к активным исследованиям астрономического объекта (АО), например астероида или кометы. Способ включает воздействие на поверхность АО направленным электронным лучом с борта космического аппарата, зависшего над поверхностью этого АО. Продукты испарения грунта АО улавливаются сборником вещества (подложкой с блендой), установленным на аппарате перед источником электронного луча. Техническим результатом группы изобретений является повышение надежности и безопасности взятия проб вещества с поверхности астрономических объектов. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к космическим технологиям, а именно к способам и средствам взятия проб вещества с поверхности астрономического объекта (АО), например астероида или кометы, что является ближнеперспективной задачей современной космонавтики.

Известен японский космический аппарат (КА) «Хаябуса» («Сокол»), целью создания и полета которого была доставка на Землю образца грунта с астероида «Итокава» [1]. Научная аппаратура «Хаябусы» включала: грунтозаборное устройство, многодиапазонную камеру для картографии и навигации, многолучевой инфракрасный лазерный дальномер, спектрометр ближнего инфракрасного диапазона для определения минерального состава поверхности, флуоресцентный рентгеновский спектрометр для изучения элементного состава поверхности. Забор грунта планировалось выполнить следующим образом: при контакте с поверхностью выстрелить в нее танталовой пулей, собрать разлетающиеся песчинки в небольшую капсулу и сразу уйти вверх. В действительности, когда труба грунтозаборника коснулась поверхности, выстрела, который должен был образовать облачко пыли, не произошло. Вследствие потери устойчивости аппарат упал на поверхность.

На базе опыта полета «Хаябусы» в Японии разрабатывается зонд «Хаябуса-2», принципиально не отличающийся от «Хаябусы». Планируется около 2020 г. доставить образцы, взятые не с поверхности астрономического объекта (АО), а с некоторой глубины. Для этого специальный 30-сантиметровый импактор произведет на поверхности взрыв, образуя метровую воронку. На дне ее станет доступен внутренний материал астероида. Для надежности аппарат оснастят двумя системами сбора астероидного вещества - механической и на основе особой липкой субстанции.

Необходимо отметить, что «Хаябуса» как зонд для первых контактов с астероидами избыточно усложнен. Нерациональная технология контакта грунтозаборного устройства с поверхностью стала причиной потери устойчивости аппарата «Хаябуса» и падения его на поверхность. Разрабатываемый аппарат «Хаябуса-2» страдает недостатками, присущими его предшественнику.

Известен проект "Розетта" по доставке к комете Чурюмова-Герасименко аппарата Philae для посадки на комету и проведения ряда исследований [2]. Было осуществлено три попытки осуществить посадку, при этом не срабатывали гарпуны, которыми аппарат Philae должен был закрепиться на поверхности кометы. Грунт оказался каменистым, а не «пушистым», как предполагалось, и посадочный аппарат отскакивал от поверхности. Из-за непрочного закрепления на поверхности не удалось осуществить бурение и взятие пробы грунта, что являлось одной из основных задач полета. Переход на усиленные режимы бурения - 1, 2, 3 и 4 (с увеличением мощности) положительных результатов не дал, так как это не увеличило прочности закрепления гарпунов на поверхности кометы. Предварительный анализ технологии посадки и ее конструктивного обеспечения, а именно: отсутствие данных о характере поверхности, микрорельефе в местах предполагаемой стыковки с кометой, отсутствие надежных средств внедрения гарпунов в грунт, позволяет сделать вывод о низкой надежности решения этой задачи, что и было подтверждено реальным ходом событий.

Из рассмотрения приведенных выше аналогов следует вывод, что попытки ввести КА в механический контакт с АО приводят к авариям или, по крайней мере, снижают надежность выполнения задачи взятия пробы.

По близости технического решения предлагаемому способу прототип не выявлен. Для заявляемого устройства прототипом является [2].

Задачей изобретений является повышение надежности и безопасности взятия проб вещества с поверхности астрономических объектов, например астероидов и комет.

Задача решается тем, что способ взятия проб вещества с поверхности астрономического объекта заключается в том, что космический аппарат вводят в режим зависания над поверхностью астрономического объекта, осуществляют воздействие на поверхность астрономического объекта направленным электронным лучом, частично локализуют и конденсируют паровой поток, образованный в результате термического испарения вещества поверхности астрономического объекта данным лучом.

Задача решается также тем, что устройство взятия проб вещества с поверхности АО содержит средство воздействия на поверхность АО и элемент сбора пробы вещества поверхности АО, при этом средство воздействия на поверхность АО установлено на торце КА и выполнено в виде источника направленного электронного луча с блендой, элемент сбора вещества установлен перед источником направленного электронного луча и выполнен в виде подложки с центральным осевым отверстием, закрепленной на торце КА, причем источник, бленда и отверстие подложки соосны.

На фиг. 1 показано устройство взятия проб вещества с поверхности астрономического объекта.

На чертеже:

1 - космический аппарат;

2 - источник направленного электронного луча;

3 - подложка;

4 - бленда;

5 - паровой поток;

6 - поверхность астрономического объекта.

Реализация способа и эксплуатация устройства заключаются в следующем: космический аппарат 1 приводят в режим зависания над поверхностью АО 6, осуществляют воздействие электронным лучом источника направленного электронного луча на поверхность АО 6. При этом происходит термическое испарение вещества поверхности АО 6 от нагрева за счет электронной бомбардировки. Давление пучка электронов вытесняет пары из образовавшейся воронки и способствует стабилизации парового потока 5 с определенной диаграммой направленности. Паровой поток 5, частично локализованный блендой 4, конденсируется на подложке 3, при этом осаждающийся на ней твердый осадок является материалом для многопараметрического анализа при возвращении на Землю или на борту КА.

Использование электронно-лучевого нагрева для испарения вещества с поверхности астрономического объекта с последующей конденсацией на подложке обеспечивает взятие пробы вещества без механического контакта. Это не нарушает устойчивость космического аппарата, обеспечивает надежность и безопасность взятия пробы вещества исследуемого астрономического объекта, например астероида или кометы.

Таким образом, совокупность отличительных признаков изобретения обеспечивает надежное решение поставленной задачи.

Литература

1. Журнал "Вокруг Света": Соколиная охота, №1 (2844) январь 2011.

2. INERFAX.RU. 13 ноября 2014 г. //NEW Sru. Com // В мире // 13 ноября 2014 г.

1. Способ взятия проб вещества с поверхности астрономического объекта, отличающийся тем, что космический аппарат вводят в режим зависания над поверхностью астрономического объекта, осуществляют воздействие на поверхность астрономического объекта направленным электронным лучом, частично локализуют и конденсируют паровой поток, образованный в результате термического испарения вещества поверхности астрономического объекта данным лучом.

2. Устройство взятия проб вещества с поверхности астрономического объекта, содержащее средство воздействия на поверхность астрономического объекта и элемент сбора пробы вещества поверхности астрономического объекта, отличающееся тем, что средство воздействия на поверхность астрономического объекта установлено на торце космического аппарата и выполнено в виде источника направленного электронного луча с блендой, элемент сбора вещества установлен перед источником направленного электронного луча и выполнен в виде подложки с центральным осевым отверстием, закрепленной на торце космического аппарата, причем источник, бленда и отверстие подложки соосны.



 

Похожие патенты:
Изобретение относится к исследованиям материалов методом проб в условиях космического полета с целью обнаружения микроорганизмов космического происхождения. Способ предусмативает взятие проб с поверхностей орбитальной станции посредством стерилизованного и гермоизолированного на Земле пробозаборника.

Изобретение относится к геофизическим методам исследования процессов разработки месторождений углеводородов, в частности к комплексам микросейсмического контроля разработки континентальных и шельфовых месторождений углеводородов, содержащим, по крайней мере, один телеметрический сейсмический бортовой модуль управления и регистрации, соединенный линиями связи с 32-мя полевыми модулями регистрации микросейсмической эмиссии, возбуждаемой при производстве ГРП, соединенный посредством высокоскоростной сети Ethernet с устройством сбора и обработки - сервером, на котором установлена база данных микросейсмического мониторинга, модуль предварительной обработки данных и модуль специализированной обработки с возможностью параллельного вычисления на кластере карт распределения источников микросейсмической эмиссии.

Изобретение относится к технике контроля запыленности поверхности горных выработок, промышленных помещений на предприятиях угольной, горно-металлургической и других отраслей промышленности и сельскохозяйственного производства, где присутствует взрывчатая пыль: угольная, сульфидная, мучная, пластмассовая и др.

Изобретение относится к устройствам точной механики и может быть использовано в системах сближения зонда и образца в сканирующей зондовой микроскопии. Координатный стол содержит первый базовый элемент 1 с первой направляющей 2 по первой координате X, на котором установлен второй базовый элемент 3 со второй направляющей 4 по первой координате X и третий базовый элемент 5 с третьей направляющей 6 по первой координате X.

Изобретение относится к области черной металлургии и может быть использовано для отбора проб расплавленного металла из различных металлургических агрегатов с целью их дальнейшего исследования различными способами на содержание химических веществ.

Изобретение относится к испытательной технике, а именно к образцам, и позволяет испытывать полимерные композиционные материалы (ПКМ) на сдвиг в плоскости листа, а точнее высокомодульные углепластики, с укладкой слоев под углом ±45°.
Изобретение относится к области ветеринарии и предназначено для диагностики нематодозов жвачных животных. Способ сбора и фиксации нематод, паразитирующих в сычуге и тонком кишечнике жвачных животных, включает извлечение сычуга и тонкого кишечника с содержимым во время патологоанатомического вскрытия.

Изобретение относится к области экологических и радиоэкологических исследований и предназначено для оценки содержания и распределения химических элементов, в том числе радионуклидов в почвенном слое.

Изобретение относится к методам пробоподготовки биоорганических, в том числе медицинских образцов для определения в них изотопного соотношения 14С/12С и 14С/13С с помощью ускорительного масс-спектрометра (УМС).

Группа изобретений относится к технологии и технике отбора проб жидкости из газожидкостного потока в трубопроводе и может найти применение в нефтедобывающей и других отраслях промышленности, где требуется осуществление отбора представительной пробы ручным или автоматическим способом.

Изобретение относится к космической технике, а именно к системам подачи топлива в космических аппаратах (КА). Устройство отбора топлива из баков КА в условиях невесомости для жидкостной реактивной двигательной установки содержит баки компонентов топлива и расположенную на оси в каждом баке возле одной из его стенок локальную систему отбора жидких компонентов топлива с капиллярным заборным устройством емкостного типа.

Изобретение относится к космической технике и может быть использовано для передачи телеметрической информации со спускаемого космического аппарата (СКА). Устройство передачи телеинформации со СКА содержит камеру телезонда с теплозащитной оболочкой, телезонд, крышку камеры, два вышибных заряда.

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА.

Изобретение относится к космической области, а именно к радиоэлектронным устройствам космического модуля. Технический результат - расширение функциональных возможностей радиоэлектронного блока за счет крепления устройств жизнеобеспечения и полезной нагрузки космического модуля непосредственно на его корпусе, что уменьшает объем и массу модуля.

Изобретение относится к методам снижения угрозы для Земли от опасных космических объектов (ОКО): астероидов, комет и т.п. Способ включает посылку к ОКО космического аппарата с оборудованием для разрушения ОКО и посадку на ОКО.

Изобретение относится к космической технике и может быть использовано для маскировки космических объектов путем формирования ложных целей. Надувная ложная цель содержит надувную трансформируемую оболочку с остаточным газом, газогенератором с электрозапалом, источником тока с выключателем, гибкие упругие связи.

В виброзащитной платформе крепление и расфиксация подвижной части (2) с основанием (1) осуществляется автоматически с помощью системы, содержащей фиксаторы с реверсивными электромоторами-редукторами (6) и концевыми выключателями (15), срабатывающими в крайних положениях подвижной части виброзащитной платформы и отключающими электромоторы-редукторы.

Изобретение относится к космической отрасли и касается узлов и элементов крепления оборудования космического аппарата (КА) на его силовой конструкции из полимерных композиционных материалов (ПКМ).

Группа изобретений относится к методам и средствам прицеливания (наведения) бортовых приборов, преимущественно аэрокосмического пилотируемого аппарата (ПА). Предлагаемый способ включает определение положения и ориентации свободно перемещаемого прибора внутри ПА.

Изобретение относится к области машиностроения. Шариковый замок содержит рабочую поверхность, выполненную в виде конической поверхности.

Изобретение относится к измерительной технике и предназначено для измерения уровня диэлектрических жидкостей, находящихся в баках ракет-носителей (РН). Устройство для измерения уровня топлива в баках РН включает в себя емкостный датчик в виде электродов и элементы его крепления. Устройство выполнено в виде трубы, жестко закрепленной к днищу бака. По высоте трубы установлены дополнительные емкостные датчики. Электроды каждого емкостного датчика выполнены в виде медных пластинок, установленных на расстоянии друг от друга на шпильках. Четные медные пластинки припаяны к шпилькам, расположенным по диагонали, а нечетные медные пластинки - к оставшимся шпилькам. Концы шпилек закреплены в колодках, жестко установленных в трубе, а на одной из колодок выполнены отверстия под электропровода, взаимодействующие с двумя четными и двумя нечетными медными пластинками, выводы которых выведены за пределы трубы, что обеспечивает электрическую связь всех емкостных датчиков. Концы медных пластинок жестко зафиксированы. Провода электрической связи емкостных датчиков защищены кожухом, а верхняя часть трубы крышкой. Техническим результатом изобретения является повышение точности измерения уровня топлива в баках РН. 2 з.п. ф-лы, 3 ил.
Наверх