Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность направляющего приспособления для прямоточного перемещения твердого топлива в источнике плазмообразующего вещества со стороны прямоточного перемещения твердого топлива покрыть стеклоподобной пленкой в виде наноматериала. Изобретение направлено на обеспечение надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур. 2 ил.

 

Изобретение относится к области создания электрических реактивных двигателей.

Известен электрический ракетный двигатель (см., патент РФ №2225533, МПК F03 Н1/00, опубл. 10.03.2004), содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику переменной ЭДС, при этом устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.

Недостатком является сложность доставки и хранения газообразного топлива, а также небольшой ресурс, что практически не приемлемо для корректирующих двигателей космических аппаратов многолетнего использования.

Известен электрический ракетный двигатель (см., патент РФ №2551140, МПК F03 Н1/00, опубл. 20.05.2015, бюл. №9), содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику переменной ЭДС, при этом устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС, причем электрический ракетный двигатель снабжен источником плазмообразующего вещества, который состоит из электродов с фиксатором положения твердого топлива, состоящее из бобины с намотанной проволокой из металла высокой плотности и привода вращения бобины, а также направляющего приспособления для прямоточного перемещения твердого топлива в источнике плазмообразующего вещества импульсного источника напряжения.

Недостатком является снижение при длительной эксплуатации надежности задаваемой временной периодичности включения в работу двигателя из-за изменяющейся скорости подачи твердого топлива в источник плазмообразующего вещества, вследствие возрастания трения скольжения в зоне контакта между проволокой с высокой плотностью и внутренней поверхностью направляющего приспособления для прямоточного перемещения.

Задачей предлагаемого изобретения является обеспечение надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур, способствующих возрастанию трения скольжения в зоне контакта проволоки из металла с высокой плотностью и поверхности приспособления для ее прямоточного перемещения.

Технический результат достигается тем, что электрический ракетный двигатель содержит сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику переменной ЭДС, при этом устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС, причем электрический ракетный двигатель снабжен источником плазмообразующего вещества, который состоит из электродов с фиксатором положения твердого топлива, состоящее из бобины с намотанной проволокой из металла высокой плотности и привода вращения бобины, а также направляющего приспособления для прямоточного перемещения твердого топлива в источнике плазмообразующего вещества и импульсного источника напряжения, при этом поверхность направляющего приспособления со стороны прямоточного перемещения твердого топлива покрыта стеклоподобной пленкой в виде наноматериала.

На фиг. 1 представлено поперечное сечение электрического ракетного двигателя; на фиг. 2 – внутренняя поверхность направляющего приспособления для прямоточного перемещения твердого топлива с нанопокрытием в виде стеклоподобной пленки.

Электрический ракетный двигатель содержит сверхзвуковые сопла 1, канал 2 магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода 3, катушку 4 возбуждения магнитного поля, подключенную к источнику 5 переменной ЭДС, импульсный высокочастотный источник напряжения 6, подключенный к дополнительной катушке 7, установленной на входе в канал 2 ускорителя. Двигатель также содержит диффузор 8 с радиальными диэлектрическими ребрами 9 и источник плазмообразующего вещества 10. Источник плазмообразующего вещества 10 состоит из электродов 11 с фиксатором положения 12 твердого топлива 13, в виде, например, проволоки из металла с высокой плотностью, а также включает устройство подачи твердого топлива 14, состоящее из бобины 15 с намотанной проволокой из металла высокой плотности и привода 16 вращения бобины 15, а также направляющего приспособления 17 для прямоточного перемещения твердого топлива 13 в источнике плазмообразующего вещества 10 и импульсного источника напряжения 18. Поверхность 19 направляющего приспособления 17 для прямоточного перемещения твердого топлива 13 покрыта стеклоподобной пленкой в виде наноматериала 20.

Электрический ракетный двигатель работает следующим образом.

В процессе выпрямления сматываемой с бобины 15 проволоки из металла с высокой плотностью, являющейся твердым топливом 13, в зоне контакта с поверхностями 19 возникает теплота трения скольжения. В связи с тем, что масса направляющего приспособления 17 для прямоточного перемещения твердого топлива значительно превышает массу проволоки 13 из металла с высокой плотностью и соответственно обладает большей тепловой инерцией (grad t1) в соответствии с тепловой инерцией проволоки (grad t2) по условию взаимного нахождения в среде с низкими температурами окружающей среды, то в зоне контакта – выпрямления сматываемой с бобины 15 проволоки образуются термонапряжения, обусловленные встречно направленными градиентами температур (grad t1 и grad t2) при нестационарном режиме теплообмена (см., например, стр. 136-141, П.В. Цой «Методы расчета отдельных задач тепломассопереноса», М. Энергия – 1971, 384 с., ил.). В результате скорость перемещения твердого топлива 13 из-за более скоростного прогрева проволоки и соответственно возрастание сопротивление скольжению по поверхностям 19 направляющего устройства 17 уменьшаются, нарушая режим работы электрического ракетного двигателя, т.е. надежной его работы.

При нанесении на поверхности 19 наноматериала 20 путем электрохимического растворения металла (см., например, Киш Л. Кинематика электрохимического растворения металлов. М.: Мир, - 1990, 272 с., ил.; Литвинова В.А.. Саврук Е.В. Нанообразная, стеклообразная пленка из тантала. Наноразмерные пленки оксида тантала, полученные ионно-плазменным методом//Сб. трудов региональной научно-практической конференции «Современные проблемы и достижения аграрной науки в животноводстве, растениеводстве и экономике»- Томск: ТЕХИиГАУ-Вып.12, -2010, - с. 299-301) с образованием стеклоподобной пленки, встречно направленные температурные градиенты (grad t1 и grad t2) недостаточны по суммарному абсолютному значению для разрушения наноматериала 20 и твердое топливо 13 в заданном режиме в процессе выпрямления скользит между поверхностями 19 в источник плазмообразующего вещества 10, обеспечивая надежную работу при длительной эксплуатации электрического ракетного двигателя.

Твердое топливо 13 в виде проволоки из металла с высокой плотностью перемещается из устройства подачи 14 посредством сматывания с бобины 15 при вращении привода 16 через направляющее устройство 17, где выпрямляется и прямоточно подается в источник плазмообразующего вещества 10, а при контакте с фиксатором положения 12 закрепляется на электродах 11. После этого включается система импульсного источника напряжения 18 и подается разряд между электродами 11, что способствует возникновению плазменных сгустков перед входом в сверхзвуковое сопло 1. Затем включается система, содержащая источник импульсного высокочастотного напряжения 6, который подключен к дополнительной катушке 7. Расход топлива определяется скоростью подачи проволоки, скважностью источника импульсного напряжения 18 и его мощностью.

Систему импульсного высокочастотного разряда 6 периодически включают с заданной временной скважностью, и каждое включение формирует в газовом потоке плазменный сгусток на входе канала 2 МГД ускорителя. Внешним источником переменной ЭДС создается переменный ток в катушке возбуждения 4, что порождает переменное во времени радиальное магнитное поле между полюсами коаксиального магнитопровода 3. Это генерирует вихревое электрическое поле азимутального направления. Под воздействием азимутального электрического и радиального магнитного полей из плазменных сгустков формируются самоподдерживающиеся азимутальные плазменные токовые витки (Т-слои), которые в свою очередь действуют на газовый поток как ускоряющие поршни. После канала МГД-ускорителя ускоренный поток попадает в расширяющийся канал-диффузор 8, в котором установлены радиальные диэлектрические ребра 9. Ребра обтекаются газовым потоком, но на них разрываются электрические цепи Т-слоев, что позволяет прервать электродинамическую стадию ускорения потока. В диффузоре 8, являющемся продолжением канала МГД-ускорителя, осуществляется дальнейшее ускорение газового потока за счет тепловой энергии, перешедшей из Т-слоев в поток.

Оригинальность предлагаемого изобретения заключается в поддержании надежной работы при длительной эксплуатации электрического ракетного двигателя как корректирующего устройства для космических аппаратов, путем обеспечения заданной временной периодичности поступления твердого топлива в источник плазменного вещества, вследствие устранения снижения, скорости перемещения проволоки из металла с высокой плотностью за счет покрытия поверхностей направляющего устройства для прямоточного перемещения стеклоподобной пленкой в виде наноматериала, способствующей постоянству скольжения в процессе выпрямления в независимости от температурных градиентов, т.е. термонапряжения.

Электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику переменной ЭДС, при этом устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС, причем электрический ракетный двигатель снабжен источником плазмообразующего вещества, который состоит из электродов с фиксатором положения твердого топлива, состоящее из бобины с намотанной проволокой из металла высокой плотности и привода вращения бобины, а также направляющего приспособления для прямоточного перемещения твердого топлива в источнике плазмообразующего вещества и импульсного источника напряжения, отличающийся тем, что поверхность направляющего приспособления со стороны прямоточного перемещения твердого топлива покрыта стеклоподобной пленкой в виде наноматериала.



 

Похожие патенты:

Изобретение относится к системам подачи рабочего тела в импульсный плазменный электрический реактивный двигатель. Способ подачи жидкого рабочего тела из бака хранения в импульсном плазменном электрическом реактивном двигателе на подвижную поверхность разрядного промежутка заключается в смачивании поверхности путем контакта капиллярного фитиля, смоченного рабочим телом, с указанной поверхностью.

Изобретение относится к электрореактивным двигателям прямоточного типа (ПЭРД), в которых в качестве рабочего вещества используется газообразная окружающая среда. ПЭРД предназначен для управления движением низкоорбитального космического аппарата.

Изобретение относится к средствам управления движением космических аппаратов, а именно к электрическим (плазменным) ракетным двигателям для коррекции орбиты искусственного, преимущественно низкоорбитального спутника планеты с атмосферой.

Изобретение относится к ракетно-космической технике и может быть использовано при испытаниях и эксплуатации ионных двигателей. Ионный двигатель снабжен устройством для защиты от дугового разряда, вызванного межэлектродным пробоем между эмиссионным и ускоряющим электродами ионно-оптической системы.

Изобретение относится к технике стационарных плазменных двигателей (СПД). В динамический имитатор СПД, содержащий имитатор поджигного промежутка, имитатор регулятора рабочего тела, содержащий резистивную токоограничивающую нагрузку, транзисторный узел, введены имитатор магнитной системы, содержащий катушки, имитатор нагревателя катода, подключенный к шине катода, имитатор броска пускового разрядного тока, подключенный между плюсовой шиной и шиной катода, силовой ключ с характеристикой тиристорного типа, датчик тока, своим входом подключенный между вторым выводом резистивной токоограничивающей нагрузки и плюсовой шиной, генератор, имитирующий напряжение колебаний разрядного тока и суммирующий усилитель, первый вход которого подключен к функциональному выходу имитатора регулятора расхода рабочего тела, второй вход подключен к выходу генератора, имитирующего напряжение колебаний тока разряда, третий вход подключен к выходу датчика тока, выход суммирующего усилителя подключен к управляющему входу транзисторного узла с регулируемой проводимостью, а шина катода подключена к минусовому входу динамического имитатора СПД через катушки имитатора магнитной системы.

Изобретение относится к миниатюрному плазменному двигателю, при этом согласно изобретению: производят возбуждение плазмы микроразрядом с полым катодом вблизи выхода и внутри средства инжекции газообразного рабочего тела, при этом указанное средство инжекции является магнитным и содержит заострение на своем выходном конце, электроны намагниченной плазмы приводят в циклотронное вращение на уровне выходного конца указанного средства инжекции.

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового вычислительного комплекса КА.

Электрическая двигательная установка содержит первый стационарный плазменный двигатель (111А), содержащий первый одиночный катод (140А), первый анод (125А) и первый газовый коллектор (121А, 141А), а также второй стационарный плазменный двигатель (111В), содержащий второй одиночный катод (140В), второй анод (125В) и второй газовый коллектор (121В, 141В).

Изобретение относится к области электроракетных двигателей (ЭРД). В ЭРД, содержащем разрядную камеру с соплом-анодом, трубопровод подачи рабочего тела, катод, обмотку электромагнитов, согласно изобретению на всей внутренней поверхности разрядной камеры в качестве зашиты от воздействия ионизирующего излучения высокотемпературной плазмы установлены фотоэлектрические и термоэлектрические преобразователи, вырабатывающие электродвижущую силу (ЭДС), причем термоэлектрические преобразователи расположены между корпусом разрядной камеры и фотоэлектрическими преобразователями.

Двигательная установка летательного аппарата, содержащая окружной газозаборный канал, расположенный между корпусом аппарата и обечайкой газозаборника, а также магнитную систему, наводящую в канале радиальное магнитное поле.

Изобретение относится к области двигателей на эффекте Холла и, в частности, к двигателю (1), в кольцевом канале (2) которого нижний по потоку край имеет изменяемое поперечное сечение для обеспечения возможности изменения тяги и удельного импульса. Изобретение направлено на создание двигателя на эффекте Холла, способного работать как в режиме высокой тяги, так и в режиме высокого удельного импульса. 4 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к межорбитальным маневрам космических аппаратов (КА). Способ включает выведение КА на переходную орбиту с высотой апогея больше высоты геостационарной орбиты (ГСО) и высотой перигея ниже ГСО. Довыведение КА проводят в два этапа, на первом из которых с помощью электрореактивных двигателей большой тяги (например, электронагревных) уменьшают наклонение переходной орбиты, обеспечивая его естественную эволюцию за расчетный период. Затем увеличивают высоту перигея переходной орбиты, обеспечивая непопадание КА в зону внутреннего радиационного пояса Земли. На втором этапе с помощью электрореактивных двигателей малой тяги (например, ионных или плазменных) выводят КА на ГСО. Инерциальная ориентация КА остается неизменной на всем втором этапе. Вместе с изменением эксцентриситета орбиты изменяют скорость дрейфа КА в требуемом направлении и совмещают довыведение по эксцентриситету с приведением по долготе. Техническим результатом изобретения является уменьшение затрат времени и ресурсов, связанных с подготовкой к запуску и осуществлением выведения КА на орбиту штатной эксплуатации. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области двигателей на эффекте Холла, в частности к двигателю (1) на эффекте Холла с регулируемой тягой, в котором конечная ступень магнитного контура содержит взаимно противоположные внутренний полюс (18) и внешний полюс (15), причем внутренний полюс (18) смещен по оси вниз по потоку по отношению к внутреннему полюсу (15) таким образом, что магнитное поле (M) наклонено относительно поперечной плоскости двигателя (1). 3 н. и 7 з.п. ф-лы, 7 ил.

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки, включает магистраль подачи рабочего тела в двигатели электроракетной двигательной установки, измерительную магистраль с установленным на ней датчиком давления, в него введены нормально открытый отсечной клапан и дополнительный баллон, установленные на измерительной магистрали последовательно между баллоном электроракетной двигательной установки и датчиком давления, при этом дополнительный баллон имеет объем в 500…1000 раз меньше, чем у баллона электроракетной двигательной установки, и снабжен нагревательным элементом и датчиком температуры. Техническим результатом изобретения является возможность измерения в любой момент эксплуатации ЭРДУ как в космосе, так и в наземных условиях массы рабочего тела. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способу создания электрореактивной тяги. Способ состоит в том, что после создания электрореактивной тяги в режиме горения топлива при импульсном давлении в усеченной сферической камере сгорания с образованием огненного ядра в камере сгорания и плазменного ядра в индукторе магнитного поля при воздействии СВЧ-полем в электронно-циклотронном резонансном режиме, а также создания прямого ускоряющего импульсного напряжения со стороны ускорителя катионов, расположенного перед соплом, дополнительно обеспечивают путем создания обратного ускоряющего импульсного напряжения со стороны изолированного электрода, установленного в камере сгорания, детонационный режим горения топлива в импульсно-пульсирующем режиме, при котором происходит формирование устойчивой детонационной волны в огненном ядре за счет импульсного потока ионизационно-термических волн катионов из плазменного ядра. Причем на поток ионизационно-термических волн катионов при действии обратного ускоряющего напряжения и на поток продуктов сгорания при действии прямого ускоряющего напряжения воздействуют магнитным полем, вектор индукции которого совпадает с вектором скорости этих потоков. Изобретение позволяетповысит удельную тягу, КПД и эффективность преобразования энергии продуктов сгорания топлива в электроэнергию. 2 з.п. ф-лы, 1 ил.

Изобретение относится к технологии питания рабочим газом ионного реактивного двигателя малой тяги. Способ питания ионного реактивного двигателя малой тяги рабочим газом, поступающим из резервуара с избыточным давлением, осуществляется посредством устройства питания, содержащего клапан on/off и, последовательно по ходу от упомянутого клапана on/off, дроссель высокого давления, буферный резервуар и по меньшей мере один дроссель низкого давления. Способ содержит этапы вычисления заданного значения давления (pc) для буферного резервуара как функции заданного значения расхода (Qc), вычисление разности (Δp) между заданным значением давления (pc) для буферного резервуара и давлением (pt), измеренным в буферном резервуаре, вычисление заданного значения (tc) для времени открытия клапана on/off как функции упомянутой разности (Δp) и давления (pr) в упомянутом резервуаре с избыточным давлением, и открытия клапана on/off в соответствии с упомянутым заданным значением (tc) времени открытия. Изобретение позволяет повысить надежность питания рабочим газом ионного реактивного двигателя малой тяги. 2 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло эжектора, камеру смешения, полость разрежения со щелью, соединяющей полость разрежения с поверхностью крыла, выходной диффузор. Актуатор позволяет без перегрева рабочей области создавать истекающую из сопла высокоскоростную пульсирующую струю газа в одной области течения и одновременно осуществлять отсос пограничного слоя в другой. Изобретение направлено на расширение возможности управления обтеканием крыла летательного аппарата. 2 ил.

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя, системы торможения струи плазмы иода, истекающей из двигателя, системы хранения и подачи иода, снабженной нагревателями и соединенной через клапаны с электроракетным двигателем, устройства для конденсации иода, снабженного системой подачи криоагента, дополнительно включает паропровод иода. Система торможения, установленная соосно с электроракетным двигателем и снабженная контуром охлаждения, содержит центральное тело в виде усеченного конуса и охватывающий его приемный конус, больший диаметр которого обращен к выходному сечению электроракетного двигателя, а меньший связан с паропроводом иода, конечный участок которого соединен с устройством для конденсации иода, выполненного в виде снабженной герметичной рубашкой, гидравлически связанной с системой подачи криоагента, емкости, во внутренней полости которой размещен эластичный пакет для сбора иода, выполненный из хладостойкого материала и прилегающий к ее внутренней стенке. Способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде, состоит в том, что истекающую из двигателя струю плазмы иода затормаживают в системе торможения и осаждают в устройстве для конденсации иода. Изобретение позволяет повысить экономическую эффективности работы стенда. 2 н.п. ф-лы, 1 ил.

Изобретение относится к транспорту, в частности к ионным двигателям. Система управления ионными двигателями содержит два устройства управления питанием, четыре ионных двигателя и два коммутационных узла. Один коммутационный узел соединен с двумя устройствами управления питанием и с двумя из четырех ионных двигателей. Другой коммутационный узел соединен с указанными двумя устройствами управления питанием и с другими двумя ионными двигателями. Каждый коммутационный узел имеет первое и второе коммутационные состояния, которые могут быть выбраны для обеспечения возможности подачи питания любым устройством управления питанием на любой ионный двигатель с первого по четвертый. Каждый коммутационный узел содержит полый вал, выполненный с возможностью поворота и приводимый в действие шаговым двигателем. Ионный двигатель содержит разрядный анод, разрядный катод, электрод устройства поддержания разряда, разрядный нагреватель, катод нейтрализатора, нагреватель нейтрализатора, экранную, ускорительную и замедлительную решетки. Технический результат - повышение надежности средств коммутации. 2 н. и 13 з.п. ф-лы, 17 ил.

Система (300, 400) и способы (500) испытания реактивного двигателя (100) малой тяги в вакуумной среде. Способы включают в себя: помещение реактивного двигателя малой тяги в вакуумную камеру, которая, по меньшей мере частично, заземлена; удаление из вакуумной камеры по меньшей мере одного газа для обеспечивания вакуумной среды; запуск реактивного двигателя малой тяги с целью создания пучка электронов; и/или электроизолирование электронов пучка от, по меньшей мере, одной электропроводящей поверхности вакуумной камеры. Электроизоляция может быть достигнута путем приложения к пучку электрического напряжения смещения с помощью электрода. Электрод может содержать электропроводящий объект, расположенный в вакуумной камере, и/или, по меньшей мере, часть стенки вакуумной камеры. Во всех случаях электрод электрически изолирован от той части вакуумной камеры, которая заземлена. 2 н. и 18 з.п. ф-лы, 7 ил.
Наверх