Термоуправляемый узел для газотурбинной системы (варианты) и способ управления каналом для потока охлаждающего воздуха

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура. Также имеется термочувствительный элемент, расположенный внутри второй полости и функционально связанный с элементом теплопередачи. Также имеется устройство регулирования потока, расположенное внутри второй полости и выполненное с возможностью смещения в ответ на изменение температуры в первой полости. Изобретение позволяет повысить эффективность работы газотурбинной системы. 3 н. и 17 з.п. ф-лы, 6 ил.

 

ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ

[0001] Настоящее изобретение относится к газотурбинным системам и, в частности, к термоуправляемому узлу для управления каналом для потока охлаждающего воздуха.

[0002] Газотурбинные системы имеют многочисленные зоны, которые являются термочувствительными в зависимости от материалов составных частей и схем повышения эффективности. Такие зоны часто отделяются и могут снабжаться источником охлаждения для обеспечения надлежащего регулирования температуры для сохранения срока службы и увеличения производительности газотурбинной системы в целом. Таким источником охлаждения часто является компрессор газотурбинной системы, при этом для выполнения функции охлаждения отбирается поток из компрессора из того объема потока, который передается от компрессора турбине для выполнения работы, которая преобразуется в энергию. Такие отборы из потока считаются убыточными потерями потока, поэтому желательно сокращение таких потерь.

[0003] Примером термочувствительной зоны газотурбинной системы является зона вблизи ротора и дисков турбинных лопаток, функционально связанных с ним. Вблизи таких зон часто находится полость венца, которая нуждается в охлаждающем потоке для продувки горячего газа из пути прохождения горячего газа, который движется в относительно радиально расходящемся положении над статорными лопатками и турбинными лопатками. Вблизи ротора и в пределах пути, ведущего в полость венца, обычно содержится уплотнение, например щеточное уплотнение, однако это уплотнение постепенно изнашивается в течение срока службы газотурбинной системы, при этом в процессе износа увеличивается объемная скорость потока охлаждающего воздуха от источника охлаждения, который поступает в полость венца. В начале срока службы уплотнения при более низкой объемной скорости потока, проходящего по указанному пути, обеспечивается проход для охлаждающего потока, который позволяет охлаждающему потоку достигать полости венца. Поскольку уплотнение изнашивается, неоправданно большое количество охлаждающего потока достигает полости венца, и общий КПД газовой турбины падает.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] В соответствии с одним из аспектов изобретения термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура. Также используется термочувствительный элемент, расположенный внутри второй полости и функционально связанный с элементом теплопередачи. Также используется устройство регулирования потока, расположенное внутри второй полости и выполненное с возможностью смещения в ответ на изменение температуры в первой полости.

[0005] В соответствии с другим аспектом изобретения термоуправляемый узел для газотурбинной системы содержит первую полость, имеющую первую температуру. Также имеется вторая полость, имеющая вторую температуру, при этом первая температура больше, чем вторая температура, причем первая полость и вторая полость разделены полой стенкой. Также имеется элемент теплопередачи, проходящий через полую стенку и имеющий первый конец, расположенный в первой полости, и второй конец, расположенный во второй полости. Также имеется термочувствительный элемент, расположенный внутри второй полости и выполненный с возможностью удаленного обнаружения изменений первой температуры путем функционального взаимодействия с элементом теплопередачи. Также имеется устройство регулирования потока, расположенное внутри второй полости и выполненное с возможностью увеличения и ограничения прохода для охлаждающего потока, при этом устройство регулирования потока приводится в действие в ответ на обнаружение изменения температуры в первой полости с помощью термочувствительного элемента.

[0006] В соответствии с еще одним аспектом изобретения предлагается способ управления каналом для потока охлаждающего воздуха для газотурбинной системы. Способ включает контроль изменения температуры в первой полости с помощью элемента теплопередачи. Способ также включает удаленное обнаружение изменения температуры с помощью термочувствительного элемента, расположенного во второй полости и функционально связанного с элементом теплопередачи. Способ также включает приведение в действие устройства регулирования потока в ответ на обнаружение изменения температуры, при этом устройство регулирования потока расположено во второй полости.

[0007] Эти и другие преимущества и отличительные особенности изобретения станут более понятными из последующего описания и прилагаемых чертежей.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Изобретение охарактеризовано в формуле изобретения, которая следует после описания. Указанные выше и другие признаки и преимущества изобретения будут понятны из последующего подробного описания и прилагаемых чертежей.

[0009] На фиг.1 представлен вид сбоку в вертикальном разрезе термоуправляемого узла для газотурбинной системы в соответствии с первым вариантом осуществления изобретения, установленным на полой стенке, при этом термоуправляемый узел находится в рабочем состоянии с первой температурой.

[0010] На фиг.2 представлен вид сбоку в вертикальном разрезе термоуправляемого узла, показанного на фиг.1, в рабочем состоянии со второй температурой.

[0011] На фиг.3 представлен вид сбоку в вертикальном разрезе термоуправляемого узла в соответствии со вторым вариантом осуществления изобретения, установленным на полой стенке, при этом термоуправляемый узел находится в рабочем состоянии с первой температурой.

[0012] На фиг.4 представлен вид сбоку в вертикальном разрезе термоуправляемого узла, показанного на фиг.3, в рабочем состоянии со второй температурой.

[0013] На фиг.5 представлен вид сбоку в вертикальном разрезе термоуправляемого узла в соответствии с третьим вариантом осуществления изобретения, установленным в удаленном местоположении.

[0014] На фиг.6 представлена блок-схема, иллюстрирующая способ управления каналом для потока охлаждающего воздуха газотурбинной системы.

[0015] В подробном описании изобретения объясняются варианты осуществления изобретения, а также преимущества и отличительные особенности изобретения, посредством примеров со ссылкой на чертежи.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0016] В соответствии с фиг.1, газотурбинная система (не показана) содержит термоуправляемый узел, который обозначен позицией 10. Термоуправляемый узел 10 используется для любой зоны газотурбинной системы, которая содержит смежные объемы с различными условиями эксплуатации, такими как, например, температура и давление. В частности, полая стенка 12 отделяет первую полость 14 от второй полости 16, при этом первая полость 14 имеет первую температуру и первое давление, а вторая полость 16 имеет вторую температуру и второе давление. В показанном примере изобретения первая температура больше, чем вторая температура, и второе давление больше, чем первое давление, что делает в результате первую полость 14 относительно горячей полостью, а вторую полость относительно холодной полостью. Примером зоны газотурбинной системы, где может быть расположен термоуправляемый узел 10, является зона вблизи пространства рабочего колеса турбины. Пространство рабочего колеса турбины предназначено для работы при температуре ниже, чем температура зон, которые подвергаются воздействию преобладающего потока горячего газа, проходящего над лопатками статора и турбинными лопатками. Происходит вторжение потока горячего газа в зоны, например полость венца, которая называется первой полостью 14, или горячей полостью, при этом охлаждающий поток 18 подается в ответ на возрастание температуры, как будет подробно описано ниже. Хотя указанный пример пространства рабочего колеса турбины является только примером местоположения, в котором может использоваться термоуправляемый узел 10, как указывалось выше, этот термоуправляемый узел 10, может использоваться во многих других рассматриваемых зонах газотурбинной системы.

[0017] В первом примере осуществления термоуправляемого узла 10 элемент 20 теплопередачи содержит тепловую трубку, которая проходит через полую стенку 12 и содержит первую часть 22, расположенную в первой полости 14, и вторую часть 24, расположенную во второй полости 16. Элемент 20 теплопередачи находится непосредственно вблизи термочувствительного элемента 26 и/или функционально связан с этим элементом, который удаленно воспринимает температуру первой полости 14 косвенно посредством элемента 20 теплопередачи. Термочувствительный элемент 26 включает любой элемент, который смещается в ответ на изменения температуры, и может включать, например, терможидкость, биметаллический компонент или пружину. В случае терможидкости корпус 28 привода заключает в себе терможидкость. Независимо от используемого конкретного термочувствительного элемента 26, термочувствительный элемент 26 размещен внутри второй полости 16 и связан со штоком 30 клапана, который проходит между термочувствительным элементом 26 и устройством регулирования потока, например тарелкой 32 клапана. Тарелка 32 клапана размещена во второй полости непосредственно вблизи прохода 34 для охлаждающего потока и увеличивает или уменьшает объемную скорость охлаждающего потока 18 из второй полости 16 в первую полость 14 по пути 36 охлаждения, который проходит через полую стенку 12.

[0018] Охлаждающий поток 18 подается прямо или косвенно от компрессора (не показан) или от любого другого источника, либо внутреннего, либо внешнего по отношению к газовой турбине. Охлаждающий поток 18 движется по пути 36 охлаждения и естественно стремится во вторую полость 16 вследствие перепада давления между первой полостью 14 и второй полостью 16. Для предотвращения движения ненужного избыточного потока по пути 36 охлаждения, тарелка 32 клапана закрывается, когда термочувствительный элемент установлен в рабочее состояние с первой температурой (фиг.1), что приводит к эффективному сокращению или предотвращению убыточных потерь охлаждающего потока 18. В этом состоянии охлаждающий поток 18 течет с первой объемной скоростью, которая может быть равна нулю, когда тарелка 32 клапана полностью закрыта. Рабочее состояние с первой температурой возникает, когда термочувствительный элемент 26 воспринимает температуру ниже температуры срабатывания узла.

[0019] В соответствии с фиг.2 тарелка 32 клапана смещается в рабочее состояние со второй температурой, что приводит ко второй объемной скорости охлаждающего потока 18 в ответ на рост первой температуры первой полости 14. Рабочее состояние со второй температурой возникает, когда термочувствительный элемент 26 воспринимает температуру выше температуры срабатывания узла. Так как первая температура уменьшается, тарелка 32 клапана смещается для уменьшения объемной скорости охлаждающего потока 18. Смещение тарелки 32 клапана активируется термочувствительным элементом 26 при удаленном обнаружении изменения температуры в первой полости 14 посредством элемента 20 теплопередачи. Как показано на фиг.1 и 2, рост температуры в первой полости 14 удаленно передается термочувствительному элементу 26 и ведет к расширению термочувствительного элемента 26, заставляя шток 32 клапана смещать в осевом направлении тарелку 32 клапана. Смещение в осевом направлении тарелки 32 клапана в ответ на рост температуры в первой полости 14 дает возможность большему количеству охлаждающего потока 18 поступать в проход 34 для охлаждающего потока и двигаться по пути 36 потока охлаждающего воздуха в первую полость 14.

[0020] Размещение термочувствительного элемента 26, штока 30 клапана и тарелки 32 клапана во второй полости 16 (например, более холодной полости) обеспечивает работу компонентов в относительно более холодной среде, чем среда первой полости 14 (например, горячей полости), предоставляя возможность пассивного удаленного обнаружения изменений температуры в первой полости 14. Схема удаленного обнаружения особенного полезна для вариантов осуществления термочувствительного элемента 26, содержащего материалы или вещества, которые могут функционировать неадекватно, если они подвергаются воздействию первой температуры первой полости 14, которая может превысить 1000°F (538°C). Размещение термочувствительного элемента 26 во второй полости 16 уменьшает термическое напряжение, которому подвергается термочувствительный элемент 26. Элемент 20 теплопередачи служит в качестве посредника для снижения температуры, при которой должен функционировать термочувствительный элемент 26. Более того, шток 30 клапана и тарелка 32 клапана подвергаются еще более низкой рабочей температуре, чем термочувствительный элемент, при этом только элемент 20 теплопередачи и термочувствительный элемент 26 подвергаются воздействию повышенной температуры.

[0021] На фиг.3 и 4 показан второй пример осуществления термоуправляемого узла 10. Второй пример осуществления узла подобен по конструкции и функциям первому примеру осуществления узла, подробно описанному выше. В показанном варианте осуществления изобретения элементом 20 теплопередачи является тепловой стержень, который входит в корпус 28 привода и находится в прямом или косвенном контакте с термочувствительным элементом 26.

[0022] На фиг.5 показан третий пример осуществления термоуправляемого узла 10. В отличие от описанных выше первого варианта осуществления узла (фиг.1 и 2) и второго варианта осуществления узла (фиг.3 и 4), каждый из которых установлен непосредственно на полой стенке 12, третий вариант осуществления узла установлен в удаленном местоположении 50, таком как, например, узел статора газовой турбины. Кроме того, как и во всех вариантах осуществления термоуправляемого узла 10, вблизи тарелки 32 клапана может быть установлена пружина 52 для дополнительного регулирования характеристик сил смещения тарелки 32 клапана.

[0023] В любом из ранее описанных вариантов осуществления изобретения также может быть включен храповой узел 60 (показан только на фиг.5), который предоставляет возможность тарелке 32 клапана втягиваться и тем самым уменьшать объемную скорость охлаждающего потока 18, но при этом запрещает растяжение, которое увеличило бы проход 34 для охлаждающего потока и объемную скорость охлаждающего потока 18. Храповой узел 60 содержит по меньшей мере один первый элемент 62 зацепления, но возможно и множество первых элементов 62 зацепления, которые выполнены с возможностью зацепления с по меньшей мере одним вторым элементом зацепления 64, но возможно и множеством вторых элементов зацепления 64. Храповой узел 60 особенно полезен для функции обхода межступенчатого уплотнения, которая требует меньшего охлаждающего потока 18 в первую полость 14, по мере того как уплотнение, например щеточное уплотнение, изнашивается и позволяет увеличенному охлаждающему потоку протекать в первую полость 14 через вторичный проход, который закрыт с помощью упомянутого уплотнения.

[0024] В соответствии с фиг.6 предлагается способ управления каналом 70 для потока охлаждающего воздуха с помощью термоуправляемого узла 10. Термоуправляемый узел 10 был описан ранее, поэтому конкретные структурные компоненты не нуждаются в дополнительном подробном описании. Способ управления каналом 70 для потока охлаждающего воздуха включает контроль изменения температуры в первой полости 72 с помощью элемента 20 теплопередачи. Изменение температуры в первой полости 14 удаленно обнаруживается 74 с помощью термочувствительного элемента 26, который расположен во второй полости 16, при этом удаленное обнаружение достигается посредством функциональной связи между термочувствительным элементом 26 и элементом 20 теплопередачи. После удаленного обнаружения изменения температуры в первой полости 14 термочувствительный элемент 26 приводит в действие устройство регулирования потока, например тарелку 32 клапана, в зависимости от того, является ли изменение температуры увеличением температуры или уменьшением температуры 76. Если изменение температуры, обнаруженное удаленно, является увеличением температуры в первой полости 14, когда тепло передается 78 термочувствительному элементу 26, проход 34 для охлаждающего потока увеличивается для увеличения объемной скорости 80 охлаждающего потока 18. И наоборот, если изменение температуры, обнаруженное удаленно, является уменьшением температуры в первой полости 14, когда тепло отбирается 82 от термочувствительного элемента 26, проход 34 для охлаждающего потока ограничивается для уменьшения объемной скорости 84 охлаждающего потока 18.

[0025] Хотя изобретение было подробно описано в связи только с ограниченным количеством вариантов его осуществления, следует понимать, что изобретение не ограничено такими раскрытыми вариантами. Напротив, изобретение может быть модифицировано для включения любых вариантов, изменений, замен или эквивалентных конфигураций, не описанных здесь, но соответствующих сущности изобретения. Кроме того, хотя были описаны различные варианты осуществления изобретения, следует понимать, что аспекты изобретения могут включать только некоторые из описанных вариантов. Соответственно, изобретение не ограничено приведенным выше описанием, а определяется только прилагаемой формулой изобретения.

1. Термоуправляемый узел для газотурбинной системы, содержащий:

элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура;

термочувствительный элемент, расположенный внутри второй полости и функционально связанный с элементом теплопередачи, и

устройство регулирования потока, расположенное внутри второй полости и выполненное с возможностью смещения в ответ на изменение температуры в первой полости.

2. Термоуправляемый узел по п.1, в котором первая полость имеет первое давление, а вторая полость имеет второе давление, при этом второе давление больше, чем первое давление.

3. Термоуправляемый узел по п.2, в котором устройство регулирования потока содержит тарелку клапана и шток клапана, проходящий от тарелки клапана к термочувствительному элементу.

4. Термоуправляемый узел по п.1, в котором термочувствительный элемент включает терможидкость.

5. Термоуправляемый узел по п.4, также содержащий корпус привода, содержащий терможидкость, при этом элемент теплопередачи передает тепло в терможидкость в ответ на повышение температуры в первой полости, приводя в действие устройство регулирования потока для увеличения объемной скорости потока охлаждающего воздуха из второй полости в первую полость.

6. Термоуправляемый узел по п.5, в котором элемент теплопередачи передает тепло от терможидкости в ответ на уменьшение температуры в первой полости, приводя в действие устройство регулирования потока для уменьшения объемной скорости потока охлаждающего воздуха из второй полости в первую полость.

7. Термоуправляемый узел по п.3, также содержащий храповой механизм, имеющий первый элемент зацепления, выполненный с возможностью зацепления со вторым элементом зацепления, при этом храповой механизм расположен вблизи штока клапана.

8. Термоуправляемый узел по п.1, в котором элемент теплопередачи содержит тепловую трубку и/или тепловой стержень.

9. Термоуправляемый узел по п.8, в котором тепловая трубка окружает термочувствительный элемент.

10. Термоуправляемый узел по п.1, содержащий множество термоуправляемых узлов, имеющих различные температуры срабатывания и выполненных с возможностью обеспечения различной объемной скорости потока охлаждающего воздуха.

11. Термоуправляемый узел для газотурбинной системы, содержащий:

первую полость, имеющую первую температуру;

вторую полость, имеющую вторую температуру, при этом первая температура больше, чем вторая температура, причем первая полость и вторая полость разделены полой стенкой;

элемент теплопередачи, проходящий через полую стенку и имеющий первый конец, расположенный в первой полости, и второй конец, расположенный во второй полости;

термочувствительный элемент, расположенный внутри второй полости и выполненный с возможностью удаленного обнаружения изменений первой температуры путем функционального взаимодействия с элементом теплопередачи, и

устройство регулирования потока, расположенное во второй полости и выполненное с возможностью увеличения и ограничения прохода для охлаждающего потока, при этом устройство регулирования потока приводится в действие в ответ на обнаружение изменения температуры в первой полости посредством термочувствительного элемента.

12. Термоуправляемый узел по п.11, в котором термочувствительный элемент включает терможидкость.

13. Термоуправляемый узел по п.12, также содержащий корпус привода, содержащий терможидкость, при этом элемент теплопередачи передает тепло в терможидкость в ответ на увеличение температуры в первой полости, приводя в действие устройство регулирования потока для увеличения прохода для охлаждающего потока для увеличения объемной скорости потока охлаждающего воздуха из второй полости в первую полость.

14. Термоуправляемый узел по п.13, в котором элемент теплопередачи передает тепло от терможидкости в ответ на уменьшение температуры в первой полости, приводя в действие устройство регулирования потока для ограничения прохода для охлаждающего потока для уменьшения объемной скорости потока охлаждающего воздуха из второй полости в первую полость.

15. Термоуправляемый узел по п.11, также содержащий храповой механизм, имеющий первый элемент зацепления, выполненный с возможностью зацепления со вторым элементом зацепления, при этом храповой механизм расположен вблизи штока клапана устройства регулирования потока.

16. Термоуправляемый узел по п.11, в котором элемент теплопередачи содержит тепловую трубку, окружающую термочувствительный элемент.

17. Термоуправляемый узел по п.11, в котором элемент теплопередачи содержит тепловой стержень.

18. Способ управления каналом для потока охлаждающего воздуха для газотурбинной системы, включающий:

контроль изменения температуры в первой полости с помощью элемента теплопередачи;

удаленное обнаружение изменения температуры с помощью термочувствительного элемента, расположенного во второй полости, при этом термочувствительный элемент функционально связан с элементом теплопередачи, и

приведение в действие устройства регулирования потока в ответ на обнаружение изменения температуры, при этом устройство регулирования потока расположено во второй полости.

19. Способ по п.18, также включающий:

передачу тепла термочувствительному элементу посредством элемента теплопередачи в ответ на увеличение температуры в первой полости и

увеличение объемной скорости потока охлаждающего воздуха из второй полости в первую полость путем увеличения прохода для охлаждающего потока в ответ на приведение в действие устройства регулирования потока с помощью термочувствительного элемента.

20. Способ по п.18, также включающий:

передачу тепла от термочувствительного элемента посредством элемента теплопередачи в ответ на уменьшение температуры в первой полости и

уменьшение объемной скорости потока охлаждающего воздуха из второй полости в первую полость путем ограничения прохода для охлаждающего потока в ответ на приведение в действие устройства регулирования потока с помощью термочувствительного элемента.



 

Похожие патенты:

Использование - в системах измерения температуры газа газотурбинных двигателей (ГТД). Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах.

Описаны системы и способы обнаружения утечек топлива в газотурбинных двигателях. В соответствии с одним вариантом осуществления изобретения предлагается способ обнаружения утечки топлива в газотурбинном двигателе.

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина.

Группа изобретений относится к способу и системе регулирования мощности в случае отказа двигателя летательного аппарата. Для регулирования мощности при отказе по меньшей мере одного двигателя летательного аппарата увеличивают пределы работы основной силовой установки типа двигателя (GPP) в соответствии с тремя аварийными режимами, расположенными последовательно в порядке уменьшения уровня мощности.

Изобретение относится к энергетике. Способ работы газотурбинного двигателя для снижения проскока аммиака включает в себя работу двигателя в диапазоне выходных уровней мощности; регулирование массового потока оксидов азота (NOx), производимого в отработавшем газе двигателя, чтобы быть в пределах 10% в диапазоне выходных уровней мощности; и обработку отработавшего газа двигателя в процессе селективного каталитического восстановления таким образом, что генерация NOx и соответствующий поток восстановителя, используемого в процессе селективного каталитического восстановления, остаются относительно постоянными в терминах массового (молярного) потока в диапазоне выходных уровней мощности, и регулируется проскок аммиака.

Изобретение относится к энергетике. Способ передачи топлива включает подачу воды к по меньшей мере одной форсунке главного топливного контура.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), основанного на программном изменении коэффициента избытка воэдуха в первичной зоне горения.

Использование: в системах измерения температуры газа газотурбинных двигателей (ГТД). Технический результат: повышение помехоустойчивости измерителя температуры газа ГТД.

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДДсм и ТРДДсм с форсажной камерой сгорания ТРДДФсм и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла.

Изобретение относится к способам регулирования турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Изобретение относится к энергетике. Способ и устройство предназначены для остановки генератора с целью подготовки его к повторному запуску. Из рабочего состояния инициируют последовательность остановки газовой турбины генератора. Продувочный газ нагнетают в газовую турбину для гашения пламени в камере сгорания газовой турбины. Продувочный газ пропускают через газовую турбину для вытеснения из нее топлива с использованием воздушного потока выбега через газовую турбину во время последовательности остановки с целью подготовки генератора к повторному пуску. Изобретение позволяет повысить эффективность остановки генератора и подготовки его к повторному запуску. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения. Стенд для испытаний газотурбинных двигателей включает нагрузочное устройство, имеющее возможность соединения с валом свободной силовой турбины испытуемого газотурбинного двигателя. В качестве нагрузочного устройства использован синхронный реверсивный турбогенератор, вал ротора которого имеет возможность соединения одним концом с валом свободной силовой турбины испытуемого газотурбинного двигателя, причём другой свободный конец ротора турбогенератора может быть оснащен механическим тормозным устройством. Стенд оснащен системой возбуждения турбогенератора, автономной активной балластной нагрузкой и командным блоком. Статорные электрические цепи турбогенератора имеют возможность подключения к балластной нагрузке, электрические цепи обмоток ротора турбогенератора подключены к системе возбуждения, при этом турбогенератор содержит датчик частоты вращения его вала, связанный с командным блоком, подключенным к системе возбуждения и имеющим возможность подключения к сектору газа испытуемого газотурбинного двигателя. Изобретение позволяет расширить функциональные возможности стенда. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета. Способ регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора дополнительно формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения. При полете самолета, при переходе на крейсерский режим работы двигателя, по сигналу выключения охлаждения турбины производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги. Изобретение позволяет повысить надежность переключения регулятором двигателя на программу управления направляющими аппаратами компрессора, обеспечивающую минимальный расход топлива в заданном диапазоне тяги, при переходе на крейсерский режим работы двигателя, и, как следствие, также позволяет снизить расход топлива на указанном режиме. 2 ил., 1 табл.

Изобретение относится к области авиации, в частности к системам регулирования турбореактивного двигателя, оптимизирующим его работу в зависимости от условий полета, в частности обеспечение оптимальных тягово-экономических характеристик во всей области эксплуатации самолета. В способе регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания предварительно проводят испытания двигателя на форсированном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры. Затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива. Далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсированном режиме при заданных значениях высоты и числа Маха. Изобретение позволяет снизить расход топлива на форсированном режиме работы двигателя. 2 табл.

Изобретение относится к способам управления расходом воздуха, охлаждающего турбину, преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре. Для перекрытия клапана поршень поворачивают или перемещают относительно корпуса клапана механизмом перемещения, дополнительно положение поршней всех клапанов изменяют синхронно до промежуточных положений в интервале от положения "открыто" в положение "закрыто" и, наоборот, при этом расход воздуха изменяют и фиксируют одновременно на всех клапанах с помощью средства передачи управляющего воздействия, связанного с механизмом перемещения каждого клапана и системой управления, причем средство передачи управляющего воздействия на расход воздуха выполнено механическим и/или электрическим. Предусмотрено, что в положении "закрыто" на всех клапанах одновременно обеспечивают с помощью системы управления минимально допустимый "дежурный" расход охлаждающего воздуха, необходимый для уменьшения до минимума концевых потерь за профилями на сопловом аппарате и рабочих лопатках турбины. Технический результат – уменьшение удельного расхода топлива на всех режимах эксплуатации, повышение стабильности охлаждения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано в системах автоматического регулирования газовых турбин электростанций для перевода газовых турбин в режим регулирования скорости вращения при снижении частоты в энергосистеме. В способе регулирования газовых турбин, включающем измерение частоты вращения ротора генератора газовой турбины в режиме реального времени, сравнение текущего значения частоты вращения с заданными уставками каждой из ступеней технологической защиты газовой турбины и формирование защитных сигналов, при выявлении снижения частоты вращения до уставки одной из ступеней технологической защиты начинают отсчет времени для этой ступени. В случае превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание отсчет времени прекращают, при этом продолжают вести отсчет времени для ступеней с более высокими уставками по частоте. В случае отсутствия превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание формируют защитный сигнал данной ступени на перевод газовой турбины из режима поддержания мощности с коррекцией по частоте в режим регулирования скорости вращения и на отключение генератора от сети. Изобретение позволяет повысить надежность и живучесть электростанции за счет повышения надежности работы газовых турбин при глубоких снижениях частоты в энергосистеме.

Изобретение относится к электротехнике, тепло- и электроэнергетике, а именно к когенерационным системам получения энергии для энергоснабжения машин и комплексов объектов нефтедобычи с использованием попутного нефтяного газа в качестве энергоносителя и тепла для обеспечения собственных нужд предприятий минерально-сырьевого комплекса, находящихся вдали от действующих систем централизованного электроснабжения без связи с единой энергосистемой. Система генерирования электрической и тепловой энергии снабжена двумя изолированными контурами, системой парогенерирования, первой и второй секцией шин с секционным выключателем, блоком синхронизации, первым и вторым пассивными фильтрами, и также активным фильтром. Изобретение позволяет повысить эффективность функционирования энергетической установки параллельно с сетью за счет фильтрации высших гармонических составляющих вырабатываемого тока посредством активного фильтра и синхронизацией тока по фазе через синхронизирующее устройство, а также использования в блоке утилизации выхлопных газов двух изолированных контуров циркуляции энергоносителя. 1 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности кратковременного обеспечения максимальной скорости полета самолета. Ожидаемый технический результат - возможность увеличения тяги сверх штатных режимов в ходе эксплуатации двигателя. Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного турбореактивного двигателя, включающем поддержание заданных частот вращения роторов и температуры газа за турбиной с помощью регулятора в зависимости от температуры воздуха на входе в двигатель, согласно настоящему изобретению предварительно для данного типа двигателей со штатной программой регулирования проводят его испытания на полном форсажном режиме (режиме работы двигателя с максимальным расходом топлива через форсажные коллекторы) с замером тяги, затем перенастраивают регулятор на повышение частот вращения роторов и температуры газа за турбиной, не превышая максимально допустимых значений для данного типа двигателей, до достижения заданного прироста тяги и фиксируют значения регулятора, а при не достижении заданного прироста тяги значения регулятора также фиксируют для максимально полученного прироста тяги, затем на основе полученных данных формируют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной и вносят ее в регулятор двигателя, далее в ходе эксплуатации двигателя при необходимости увеличения тяги сверх штатных режимов задействуют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной. 2 табл., 2 пр.

Струйный регулятор ГТД по приведенным оборотам относится к системам автоматического регулирования энергетических установок и может использоваться, в частности, в системах управления газотурбинных двигателей, а также при моделировании в лабораторных условиях работы силовой установки. Содержит струйный блок управления, выходы которого подключены к исполнительному механизму, вал с установленным на нем диском с отверстиями для получения сигнала о частоте вращения компрессора и термоприемник, выполненный в виде непроточного трубопровода, помещенный в среду, температура которой измеряется. Струйный регулятор сравнивает промежуток времени прохождения импульсов по трубопроводу с промежутком времени поворота вала на заданный угол. При равенстве этих временных промежутков заданный угол поворота диска однозначно определяет значение приведенных оборотов. Технический результат - повышение точности определения приведенных оборотов и, как следствие, более оптимальное регулирование параметров ГТД. 4 ил.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем, в частности запуска при выходе двигателя на режим авторотации. Частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения, роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, а после достижения холостой частоты вращения совместно авторотирующих роторов, частоту вращения роторов поддерживают постоянной, с помощью регулирования скоростного напора воздуха, до запуска двигателя. Использование изобретения позволяет поддерживать обороты вала ротора высокого давления на уровне, достаточном для запуска на режиме авторотации в полете, позволяет увеличить ресурс агрегатов вспомогательной силовой установки двигателя, увеличить показатели надежности и безотказности силовой установки. 1 ил.
Наверх