Способ определения толщины однородного покрытия

Изобретение относится к определению геометрических характеристик однородных покрытий, а именно к определению его толщины посредством вдавливания в поверхность материала цилиндрического индентора, и может быть использовано для определения толщины покрытий на подложках из различных материалов. Сущность: вдавливают в покрытие с известным модулем Юнга и коэффициентом Пуассона на подложке, модуль Юнга и коэффициент Пуассона которой также известен, цилиндрический индентор, определяют в соответствии с показаниями прибора, регистрирующего связь между вдавливающей силой и осадкой индентора, модуль жесткости системы покрытие – подложка (Ecs), далее рассчитывают значение отношения модуля жесткости системы к модулю упругости подложки (Ecs/Es) и с помощью известных способов нахождения значения функции по заданной неявной зависимости определяют толщину однородного покрытия из формулы. Технический результат: повышение точности определения толщины тонких покрытий и пленок, а также сокращение количества необходимых экспериментов. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к определению геометрических характеристик однородных покрытий, а именно к определению толщины покрытий посредством вдавливания в поверхность материала цилиндрического индентора, и может быть использовано для определения толщины покрытий на подложках из различных материалов.

Наиболее близким по выполнению является способ определения толщины покрытия, при котором в поверхность покрытия несколько раз с увеличивающейся нагрузкой вдавливают индентор с непрерывной регистрацией приложенной нагрузки и глубины внедрения, при этом нагрузка подбирается таким образом, чтобы наименьшая глубина внедрения была меньше предполагаемой минимальной толщины покрытия, а наибольшая глубина внедрения была больше предполагаемой максимальной толщины покрытия. В качестве измеренного значения толщины принимается глубина внедрения, при которой отношение виртуальной нагрузки QUOTE , характеризующей остаточные напряжения, к максимальной приложенной нагрузке QUOTE является наибольшим, при этом QUOTE для каждого эксперимента определяется с помощью аппроксимации кривой нагрузка–глубина внедрения на стадии разгрузки предлагаемой авторами формулой (патент CN 101839707 B «Film thickness testing method based on nano indentation unloading curve», опубл. 12.12.2012).

Недостатком данного способа является то, что для определения толщины покрытия требуется большое количество экспериментов с различным значением нагрузки и соответствующим значением глубины внедрения, причем точность определения толщины не будет превышать полуширину шага изменения максимальной глубины внедрения. Другим недостатком является необходимость произведения индентирования на глубину, большую предполагаемой толщины покрытия, что приводит к локальному разрушению покрытия и в ряде случаев является нежелательным.

Техническим результатом от применения предлагаемого способа является повышение точности определения толщины тонких покрытий и пленок, а также сокращение количества необходимых экспериментов.

Технический результат достигается тем, что вдавливают в покрытие с известными модулем Юнга и коэффициентом Пуассона на подложке, модуль Юнга и коэффициент Пуассона которой также известен, цилиндрический индентор, определяют в соответствии с показаниями прибора, регистрирующего связь между вдавливающей силой и осадкой индентора, модуль жесткости системы покрытие – подложка (Ecs), далее рассчитывают значение отношения модуля жесткости системы к модулю упругости подложки (ECS/ES) и с помощью известных способов нахождения значения функции по заданной неявной зависимости определяют H/a из формулы (1)

, (1)

где ECS – модуль жесткости системы покрытие–подложка, EC – модуль упругости покрытия, ES – модуль упругости подложки, vS – коэффициент Пуассона подложки, sh – гиперболический синус, – радиус индентора, – толщина покрытия, Ci, Ai – комплексные константы, определяемые в ходе решения контактной задачи о внедрении штампа в упругое полупространство с покрытием.

Константы Ci, Ai могут быть рассчитаны с помощью алгоритма, описанного в работе Айзикович С.М., Александров В.М. «Осесимметричная задача о вдавливании круглого штампа в упругое, неоднородное по глубине полупространство» (Изв. АН СССР. МТТ. 1984, N2, с.73-82) и реализованного, например, в программах для ЭВМ, по свидетельствам РФ о государственной регистрации программ для ЭВМ № 2012614268 от 14.05.2012 г., №2012614938 от 01.06.2012 г., №2012614939 от 01.06.2012 г.

H из неявной зависимости (1) можно определить также с помощью таблицы значений Ecs/Es или с использованием программ для ЭВМ. В столбце, соответствующем известному значению Ec/Es, находят измеренное значение Ecs/Es и по строке определяют ближайшее значение H/a. В качестве примера приводится Таблица 1 для значений a/H от 0.105 до 2.000 и Ec/Es от 1.1 до 5.0 (Таблица 1а) или значений Ec/Es от 1/1.1 до 1/5.0 (Таблица 1б).

Предпочтительное отношение радиуса индентора к толщине покрытия находится в пределах 0,1-8.

Отличием предлагаемого способа является то, что толщину покрытия определяют из полученного значения модуля жесткости для системы покрытие – подложка и известных заранее модулей упругости подложки и покрытия.

Ниже приведен пример осуществления изобретения.

Пример.

Для исследований взят алмазоподобный углерод (DLC, diamond-like carbon) с заранее определенным экспериментально модулем упругости Еc = 259 ГПа. На плавленый кварц с модулем упругости Es=69.6 ГПа нанесено покрытие из взятого алмазоподобного углерода толщиной H = 250 нм. По результатам индентирования слоя DLC с использованием цилиндрического индентора при радиусе зоны контакта a, равному 100 нм, получено значение величины ГПа. Для использования формулы (1) находим значение отношения

,

затем определяем

.

С помощью программ для ЭВМ (свидетельства РФ о гос. регистрации программ для ЭВМ № 2012614268 от 14.05.2012 г., № 2012614938 от 01.06.2012 г., №2012614939 от 01.06.2012 г.), использующих алгоритм определения коэффициентов Ci, Ai, описанный в работе Айзикович С.М., Александров В.М. «Осесимметричная задача о вдавливании круглого штампа в упругое, неоднородное по глубине полупространство» (Изв. АН СССР. МТТ, 1984, № 2, с. 73–82), определяем значения коэффициентов . Затем строим таблицу значений в зависимости от и . Вычислим отношение модуля Юнга покрытия к модулю Юнга подложки и найдем отношение

,

затем вычислим величины

и получим значение толщины покрытия по формуле

.

Таким образом, способ позволяет определить толщину покрытия с погрешностью

.

1. Способ определения толщины однородного покрытия, характеризующийся тем, что вдавливают в покрытие с известным модулем Юнга и коэффициентом Пуассона на подложке, модуль Юнга и коэффициент Пуассона которой также известен, цилиндрический индентор, определяют в соответствии с показаниями прибора, регистрирующего связь между вдавливающей силой и осадкой индентора, модуль жесткости системы покрытие – подложка (Ecs), далее рассчитывают значение отношения модуля жесткости системы к модулю упругости подложки (Ecs/Es) и с помощью известных способов нахождения значения функции по заданной неявной зависимости определяют толщину из формулы

,

где Ecs – модуль жесткости системы покрытие – подложка, Ec – модуль упругости покрытия, Es – модуль упругости подложки, vs – коэффициент Пуассона подложки, sh – гиперболический синус, – радиус индентора, – толщина покрытия,  – комплексные константы, определяемые в ходе решения контактной задачи о внедрении штампа в упругое полупространство с покрытием.

2. Способ по п. 1, характеризующийся тем, что отношение радиуса индентора к толщине покрытия находится в пределах 0,1-8.



 

Похожие патенты:

Изобретение относится к устройствам, предназначенным для изучения усилий на сжатие и непосредственно на процесс резания материалов, преимущественно корнеклубнеплодов.

Изобретение относится к механическим испытаниям, а конкретно к исследованиям твердости образцов из токсичных материалов. Установка содержит вакуумируемую рабочую камеру с захватами, один из которых активный, а второй пассивный захват-тензодинамометр, механизм нагружения, регистрирующую аппаратуру, установленную на захвате-тензодинамометре К активному захвату прикреплена верхняя рамка, а к пассивному захвату прикреплена нижняя рамка, которые соединены друг с другом таким образом, что растягивающее усилие захватов инвертируется в сжимающее усилие рамок, в месте соприкосновения рамок помещен испытуемый образец и индентор, который вдавливается в образец с определенным усилием, фиксируемым захватом-тензодинамометром.

Изобретение относится к способам определения механических свойств материалов путем вдавливания индентора в поверхность образца с заданной нагрузкой, а именно к способам определения статического модуля упругости Юнга (ниже модуль упругости).

Изобретение относится к области определения остаточного напряжения путем инструментального индентирования. Сущность: осуществляют приложение к образцу одноосного напряжения, двуосного напряжения и одинакового по всем направлениям напряжения, а затем выполнение инструментального индентирования с использованием индентора, вычисление наибольшей глубины вдавливания индентора в ненапряженном состоянии образца путем подстановки в формулу для вычисления максимальной глубины вдавливания индентора в ненапряженном состоянии фактической глубины контакта в ненапряженном состоянии, полученной из фактической глубины контакта индентора, и максимальной глубины вдавливания индентора и результирующей глубины отпечатка индентора при приложении максимального вдавливающего усилия L0, найденных из зависимости глубины вдавливания индентора от вдавливающего усилия, полученной путем инструментального индентирования, получение кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии путем подстановки вычисленной указанным образом максимальной глубины вдавливания индентора в ненапряженном состоянии образца в формулу, связывающую глубину вдавливания индентора и вдавливающее усилие, и вычисления разности ΔL усилий между усилием L1, соответствующим максимальной глубине вдавливания индентора на кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии, и максимальным вдавливающим усилием L0, и вычисление остаточного напряжения в образце путем подстановки вычисленной разности ΔL усилий в формулу для вычисления остаточного напряжения.

Изобретение относится к измерительной технике и может использоваться в сельском хозяйстве для исследования физико-механических свойств почвы, в частности твердости почвы.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз характеризуется тем, что определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения нанокомпозитных покрытий металл-керамика с требуемым значением микротвердости включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значение микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины ионно-лучевым распылением включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом и с изменением процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз.

Изобретение относится к устройствам для исследования и анализа свойств материалов путем определения величины сопротивления их просверливанию и может быть использовано для определения физико-механических характеристик древесины растущих деревьев, пиломатериалов, деревянных строительных конструкций различного назначения.

Изобретение относится к исследованию материалов путем определения их химических или физических свойств, в частности к исследованию прочностных свойств твердых материалов путем приложения к ним механических усилий, а именно путем измерения высоты отскакивания ударного тела.

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ инструмента в материал. Возбуждают колебания посредством по меньшей мере одного источника колебаний и измеряют по меньшей мере одну частоту взаимодействия инструмента посредством по меньшей мере одного датчика колебаний. На основе определенной частоты взаимодействия определяют контактную жесткость, по меньшей, мере одного выступа и определяют механические свойства материала, учитывая механические свойства по меньшей мере одного выступа. Технический результат – обеспечение простоты и быстроты определения механических свойств материалов. 5 з.п. ф-лы, 3 ил.

Изобретение относится к пуленепробиваемым волокнистым композитам и касается пуленепробиваемых однонаправленных лент или изделий с жесткой структурой и низким значением глубины отпечатка и способов их изготовления. Пуленепробиваемый волокнистый композит содержит множество смежных слоев на основе волокон, причем каждый слой на основе волокон содержит синтетические волокна с высоким модулем упругости при растяжении, характеризующиеся наличием поверхностей, которые, по меньшей мере, частично покрыты полимерным материалом, при этом указанные волокна преимущественно не содержат защитного покрытия волокон так, что указанный полимерный материал находится преимущественно в непосредственном взаимодействии с поверхностями волокон, при этом указанный волокнистый композит характеризуется значением динамического модуля упругости, которое превышает значение динамического модуля упругости сопоставимого волокнистого композита, характеризующегося наличием поверхностей волокон, которые преимущественно покрыты защитным покрытием волокон, при этом указанное защитное покрытие волокон расположено между поверхностями волокон и полимерным материалом. Описаны также способы изготовления пуленепробиваемого композита. Изобретение обеспечивает создание композитов с улучшенными свойствами устойчивости к воздействию пуль и осколков, в частности улучшенными значениями динамического модуля упругости, что коррелирует с низкой глубиной отпечатка композита. 4 н. и 11 з.п. ф-лы, 4 табл.

Изобретения относятся к испытательной технике, а именно к способам задания сложного напряженного состояния в образце материала и устройствам для этого. Сущность: образец устанавливают на опоры, расположенные по одной по каждому плечу крестообразного образца симметрично центра на расстояниях, определяемых по формуле: Где: σ1 и σ2 - напряжения в центре образца во взаимно перпендикулярных направлениях, b - ширина плеча образца, h - толщина плеча образца, p - усилие воздействия на образец, а воздействие осуществляют индентором по центру образца со стороны, противоположной от опор. Устройство содержит крестообразное основание с Т-образными пазами в его плечах, расположенными под прямым углом друг к другу. В пазах расположены опоры цилиндрической формы с возможностью перемещения, оси которых расположены перпендикулярно направлению плеч основания. Индентор сферической формы установлен по центру образца со стороны, противоположной от опор. Технический результат: упрощение способа испытания и получение достоверного результата. 2 н.п. ф-лы, 2 ил.
Наверх