Акустооптический приемник



Акустооптический приемник
Акустооптический приемник
H04B10/00 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2619454:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации (RU)
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU)

Изобретение относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой манипуляцией (ФМн). Технический результат состоит в расширении диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема. Для этого акустооптический приемник содержит приемную антенну 1, преобразователь 2 частоты, смеситель 3, гетеродин 5, первый 6 и второй 12 перемножители, первый 7 и второй 13 узкополосные фильтры, первый 8, второй 14, третий 15 и четвертый 16 амплитудные детекторы, первый 9, второй 17, третий 18 и четвертый 19 ключи, усилитель 10 первой суммарной частоты, усилитель 11 второй суммарной частоты, лазер 20, коллиматор 21, первую 22, вторую 23, третью 24 и четвертую 25 ячейки Брэгга, первую 26, вторую 27, третью 28 и четвертую 29 линзы, первую 30, вторую 31, третью 32 и четвертую 33 матрицы фотодетекторов. 2 ил.

 

Предлагаемый приемник относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой модуляцией (ФМн).

Известны акустооптические приемники (авт. свид. СССР №№1.718.695, 1.758.883, 1.785.410, 1.799.226, 1.799.227, патенты РФ №№2.001.533, 2.007.046, 2.234.808, 2.291.575, 2.314.644, 2.325.761, 2.439.811; Дикарев В.И. Методы и технические решения приема и обработки радиосигналов. Учебник, Санкт-Петербург, 2000, с. 413-462 и др.).

Из известных устройств наиболее близким к предлагаемому является «Акустооптический приемник» (авт. свид. СССР №№1.758.883, Н04B 10/06, 1990), который и выбран в качестве прототипа.

Указанный приемник обеспечивает подавление ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам.

Но с точки зрения расширения диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина целесообразно не подавлять, а использовать дополнительные каналы приема, проведя соответствующую их маркировку.

Технической задачей изобретения является расширение диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема.

Поставленная задача решается тем, что акустооптический приемник, содержащий, в соответствии с ближайшим аналогом, лазер, на пути распространения пучка света которого последовательно установлены коллиматор и первая ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена первая линза, в фокальной плоскости которой размещена первая матрица фотодетекторов, а также последовательно включенные приемную антенну, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, последовательно подключенные к выходу приемной антенны первый перемножитель, первый узкополосный фильтр, первый амплитудный детектор и первый ключ, отличается от ближайшего аналога тем, что он снабжен усилителем первой суммарной частоты, усилителем второй суммарной частоты, вторым перемножителем, вторым узкополосным фильтром, вторым, третьим и четвертым амплитудным детекторами, вторым, третьим и четвертым ключами, второй, третьей и четвертой ячейками Брэгга, второй, третьей и четвертой линзами, второй, третьей и четвертой матрицами фотодетекторов, причем на пути распространения пучка света лазера последовательно установлены вторая, третья и четвертая ячейки Брэгга, на пути распространения дифрагированной второй, третьей и четвертой ячейками Брэгга части пучка света установлены вторая, третья и четвертая линзы соответственно, в фокальной плоскости каждой из которой размещена вторая, третья и четвертая матрица фотодетекторов соответственно, к выходу смесителя последовательно подключены усилитель первой суммарной частоты, второй амплитудный детектор и второй ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга, к выходу смесителя последовательно подключены усилитель второй суммарной частоты, третий амплитудный детектор и третий ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга, второй вход первого ключа соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга, второй вход первого перемножителя соединен с выходом усилителя промежуточной частоты, к выходу приемной антенны последовательно подключены второй перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, второй узкополосный фильтр, четвертый амплитудный детектор и четвертый ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга.

Структурная схема акустооптического приемника представлена на фиг. 1. Частотная диаграмма, иллюстрирующая преобразование сигналов по частоте, показана на фиг. 2.

Акустооптический приемник содержит последовательно включенные приемную антенну 1, смеситель 3, второй вход которого соединен с выходом гетеродина 4, усилитель 10 первой суммарной частоты, второй амплитудный детектор 14 и второй ключ 17, второй вход которого через усилитель 5 промежуточной частоты соединен с выходом смесителя 3, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга 22. К выходу смесителя 3 последовательно подключены усилитель 11 второй суммарной частоты, третий амплитудный детектор 15 и третий ключ 18, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга 23. К выходу приемной антенны 1 последовательно подключены первый перемножитель 6, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, первый узкополосный фильтр 7, первый амплитудный детектор 8 и первый ключ 9, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а вход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга 24. К выходу приемной антенны 1 последовательно подключены второй перемножитель 12, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, второй узкополосный фильтр 13, четвертый амплитудный детектор 16 и четвертый ключ 19, второй вход которого соединен с выходом усилителя 5 промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга 25.

На пути распространения луча света лазера 20 последовательно установлены коллиматор 21, первая 22, вторая 23, третья 24 и четвертая 25 ячейки Брэгга. На пути распространения дифрагированного ячейкой Брэгга 22 (23, 24, 25) пучка света установлена линза 26 (27, 28, 29), в фокальной плоскости которой размещена матрица 30 (31, 32, 33) фотодетекторов.

Последовательно включенные гетеродин 4 и смеситель 3 образуют преобразователь 2 частоты.

Акустооптический приемник работает следующим образом.

Принимаемый сигнал с фазовой манипуляцией (ФМн) на частоте ωс

uc(t)=Uc⋅cos[(ωct+ϕk1(t)+ϕc], 0≤t≤Tc,

где Uc, ωс, ϕc, Tc - амплитуда, несущая частота, начальная фаза и длительность сигнала;

ϕk1(t)≈{0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t), причем ϕk1(t)=const при kτэ<t<(k+1)τэ и может изменяться скачком при t=kτэ, т.е. на границах между элементарными посылками (k=1, 2, …, N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тсс=N⋅τс),

с выхода приемной антенны 1 одновременно поступает на первые входы смесителя 3, первого 6 и второго 12 перемножителей. На второй вход смесителя 3 с выхода гетеродина 4 подается напряжение

uг(t)=Uг⋅cos[ωгt+ϕг],

где Uг, ωг, ϕг - амплитуда, частота и начальная фаза напряжения гетеродина.

Частота настройки ωн1 усилителя 5 промежуточной частоты выбрана равной промежуточной (разностной) частоте (фиг. 2)

ωн1пргс.

Частота настройки ωн2 усилителя 10 первой суммарной частоты выбрана равной первой суммарной частоте

ωн2Σ1сг.

Частота настройки ωн3 усилителя 11 второй суммарной частоте выбрана равной второй суммарной частоте

ωн3Σ2гз.

Частота настройки ωн4 первого 6 и второго 12 узкополосных фильтров выбрана равной второй гармонике частоты гетеродина 4

ωн4=2ωг.

На выходе смесителя 3 образуются напряжения комбинационных частот. Усилителями 5 и 10 выделяются напряжения промежуточной (разностной) и первой суммарной частот соответственно

uпр1(t)=Uпр1⋅cos[ωпрt-ϕk1(t)+ϕпр1],

uΣ1(t)=Uпр1⋅cos[ωΣ1t-ϕk1(t)+ϕΣ1], 0≤t≤Tc,

где

ωпргс - промежуточная (разностная) частота;

ωΣ1сг - первая суммарная частота;

ϕпр1гс; ϕΣ1сг.

Напряжение uΣ1(t) поступает на вход амплитудного детектора 14, где выделяется его огибающая, которая поступает на управляющий вход ключа 17, открывая его. В исходном состоянии ключи 9, 17, 18 и 19 всегда закрыты.

При этом напряжение uпр1(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 17 поступает на пьезоэлектрический преобразователь первой ячейки Брэгга 22, где происходит его преобразование в акустическое колебание. Каждая ячейка Брэгга 22 (23, 24, 25) состоит из звукопровода и возбуждающей гиперзвук пьезоэлектрической пластины, выполненной из кристалла ниобата лития соответственно X и Y-35° среза. Это обеспечивает автоматическую подстройку по углу Брэгга и работу ячейки в широком диапазоне частот.

Пучок света от лазера 20, сколлимированный коллиматором 21, проходит через ячейку Брэгга 22 и дифрагирует на акустических колебаниях, возбужденных напряжением uпр1(t). При этом следует отметить, что на каждой ячейке Брэгга дифрагирует только примерно десятая часть пучка света источника излучения.

На пути распространения дифрагируемой части пучка света установлена линза 26, в фокальной плоскости которой размещается матрица 30 фотодетекторов.

Следовательно, в фокальной плоскости линзы 30 формируется пространственный спектр принимаемого сигнала. Причем каждому разрешающему элементу анализируемого частотного диапазона соответствует свой фотодетектор.

Описанная выше работа акустооптического приемника соответствует случаю приема ФМн-сигналов по основному каналу на частоте ωс (фиг. 2).

Если ФМн-сигнал принимается по зеркальному каналу на частоте ωз

uз(t)=Uз⋅cos[ωзt+ϕk2(t)+ϕз], 0≤t≤Тз,

то усилителями 5 и 11 выделяются второе напряжение промежуточной частоты и напряжение второй суммарной частоты соответственно

uпр2(t)=Uпр2⋅cos[ωпрt-ϕk2(t)+ϕпр2],

uΣ2(t)=Uпр2⋅cos[ωΣ2t-ϕk2(t)+ϕΣ2], 0≤t≤Tз,

где

ωпрзг - промежуточная (разностная) частота;

ωΣ2гз - вторая суммарная частота;

ϕпрзг; ϕΣ2гз.

Напряжение uΣ2(t) поступает на вход амплитудного детектора 15, где выделяется его огибающая, которая поступает на управляющий вход ключа 18, открывая его.

При этом напряжение uпр2(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 18 поступает на пьезоэлектрический преобразователь второй ячейки Брэгга 23, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по зеркальному каналу на частоте ωз, анализируется в матрице 31 фотодетекторов.

Если ФМн-сигнал принимается по первому комбинационному каналу на частоте ωк1

uк1(t)=Uк1⋅cos[ωк1t+ϕk3(t)+ϕк1], 0≤t≤Tк1,

то усилителем 5 выделяется третье напряжение промежуточной частоты

uпр3(t)=Uпр3⋅cos[ωпрt+ϕk3(t)+ϕк3], 0≤t≤Tк1,

где

ωпр=2ωгк1 - промежуточная (разностная) частота;

ϕпр3гк1,

которое подается на второй вход первого перемножителя 6, на первый вход которого с выхода приемной антенны 1 поступает сигнал uк1(t), принимаемый по первому комбинационному каналу на частоте ωк1. На выходе перемножителя 6 образуются напряжения комбинационных частот. Первым узкополосным фильтром 7 выделяется гармоническое напряжение на второй гармонике частоты 2ωг гетеродина 4

u1(t)=U1⋅cos[2ωгt+ϕг], 0≤t≤Tк1,

где которое поступает на вход первого амплитудного детектора 8, где выделяется его огибающая, которая поступает на управляющий вход первого ключа 9, открывая его.

При этом напряжение uпр(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 9 поступает на пьезоэлектрический преобразователь третьей ячейки Брэгга 24, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по первому комбинационному каналу на частоте ωк1, анализируется в матрице 32 фотодетекторов.

Если ФМн-сигнал принимается по второму комбинационному каналу на частоте ωк2

uк2(t)=Uк2⋅cos[ωк2t+ϕk4(t)+ϕк2], 0≤t≤Tк2,

то усилителем 5 промежуточной частоты выделяется четвертое напряжение промежуточной частоты

uпр4(t)=Uпр4⋅cos[ωпрt+ϕk4(t)+ϕк4], 0≤t≤Tк2,

где

ωпрк2-2ωг - промежуточная (разностная) частота;

ϕпр4к2г,

которое подается на второй вход второго перемножителя 12, на первый вход которого с выхода приемной антенны 1 поступает сигнал, принимаемый по второму комбинационному каналу на частоте ωк2. На выходе перемножителя 12 образуются напряжения комбинационных частот. Вторым узкополосным фильтром 13 выделяется гармоническое напряжение на второй гармонике частоты 2ωг гетеродина 4

u2(t)=U2⋅соs[2ωгt+ϕг], 0≤t≤Tк2,

где которое поступает на вход четвертого амплитудного детектора 16, где выделяется его огибающая, которая поступает на управляющий вход четвертого ключа 19, открывая его.

При этом напряжение uпр4(t) с выхода усилителя 5 промежуточной частоты через открытый ключ 19 поступает на пьезоэлектрический преобразователь четвертой ячейки Брэгга 33, где происходит его преобразование в акустическое колебание. Амплитудный спектр сигнала, принимаемого по второму комбинационному каналу на частоте ωк2, анализируется в матрице 33 фотодетекторов.

Таким образом, предлагаемый акустооптический приемник по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивают расширение диапазона рабочих частот в четыре раза. Это достигается использованием дополнительных каналов приема: зеркального, первого и второго комбинационных.

Акустооптический приемник, содержащий лазер, на пути распространения пучка света которого последовательно установлены коллиматор и первая ячейка Брэгга, на пути распространения дифрагированной части пучка света установлена первая линза, в фокальной плоскости которой размещена первая матрица фотодетекторов, а также последовательно включенные приемную антенну, смеситель, второй вход которого соединен с выходом гетеродина, и усилитель промежуточной частоты, последовательно подключенные к выходу приемной антенны первый перемножитель, первый узкополосный фильтр, первый амплитудный детектор и первый ключ, отличающийся тем, что он снабжен усилителем первой суммарной частоты, усилителем второй суммарной частоты, вторым перемножителем, вторым узкополосным фильтром, вторым, третьим и четвертым амплитудными детекторами, вторым, третьим и четвертым ключами, второй, третьей и четвертой ячейками Брэгга, второй, третьей и четвертой линзами, второй, третьей и четвертой матрицами фотодетекторов, причем на пути распространения пучка света последовательно установлены вторая, третья и четвертая ячейки Брэгга, на пути распространения дифрагированной второй, третьей и четвертой ячейками Брэгга части пучка света установлены вторая, третья и четвертая линза соответственно, в фокальной плоскости каждой из которой размещена вторая, третья и четвертая матрица фотодетекторов соответственно, к выходу смесителя последовательно подключены усилитель первой суммарной частоты, второй амплитудный детектор и второй ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю первой ячейки Брэгга, к выходу смесителя последовательно подключены усилитель второй суммарной частоты, третий амплитудный детектор и третий ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю второй ячейки Брэгга, второй вход первого ключа соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю третьей ячейки Брэгга, второй вход первого перемножителя соединен с выходом усилителя промежуточной частоты, к выходу приемной антенны последовательно подключены второй перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, второй узкополосный фильтр, четвертый амплитудный детектор и четвертый ключ, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к пьезоэлектрическому преобразователю четвертой ячейки Брэгга.



 

Похожие патенты:

Изобретение относится к контроллерам защиты многопролетных волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве технического средства защиты информации (ТСЗИ) ограниченного доступа в многопролетных волоконно-оптических линиях передачи с оптическими усилителями.
Изобретение относится к области оптической связи и предназначено для использования в сетях передачи данных. Технический результат состоит в повышении качества связи за счет повышения надежности соединений между абонентами и базовыми приемниками и в оптимизации использования возможностей базовых приемников, путем определения и использования в реальном масштабе времени для каждого абонента максимально возможного количества базовых приемников оптического излучения.

Изобретение относится к технике связи и может использоваться в оптических линиях связи. Технический результат состоит в повышении пропускной способности передачи каналов связи.

Изобретение относится к технике связи и может быть использовано для волоконно-оптической связи. Технический результат состоит в уменьшении дифференциальной модовой задержки многомодовой волоконно-оптической линии в маломодовом режиме передачи.

Изобретение относится к осветительному устройству для встраивания символов данных информационного сигнала в выходной сигнал яркости осветительного устройства. Устройство включает в себя светоизлучающий диод (LED), содержащий по меньшей мере два сегмента, которые имеют общий электрод и выполнены с возможностью индивидуального управления.

Группа изобретений относится к оптронным системам передачи сигналов и может быть использована для управления передачей сигналов через оптронную среду передачи. Техническим результатом является предотвращение одновременного осуществления связи двух устройств через оптронную среду.

Изобретение относится к технике связи и может использоваться для контроля волоконно-оптических линий (ВОЛП) методами интегральной рефлектометрии и прямого детектирования .

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к технике связи и может использоваться для обеспечения информационной безопасности при защите акустической речевой информации (АРИ) от сопутствующей передачи по линиям связи, в том числе оптическим линиям связи (ОЛС).

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в повышении пропускной способности каналов связи.

Устройство передачи информации включает в себя корпус, выполненный из двух П-образных колец, одно из которых содержит внутренние перегородки. Кольца вложены одно в другое. Одно из П-образных колец связано с неподвижной частью, а другое - с вращающейся частью оптико-электронного прибора и выполнено с возможностью вращения вокруг центральной оси колец. По меньшей мере один светоизлучающий и один светочувствительный элементы установлены на противоположных плоских стенках П-образных колец. Светоотражателем является выполненная светоотражающей поверхность внутренних стенок соосных кольцевых полостей. Плоские стенки П-образных колец выполнены с возможностью подвода электрического сигнала к светоизлучающему элементу и отвода электрического сигнала от светочувствительного элемента. Технический результат заключается в обеспечении возможности передачи информации между вращающейся и неподвижной частями оптико-электронного прибора. 1 ил.

Изобретение относится к области радиоэлектроники, а именно к технике проводной связи, и может быть использовано для организации связи с глубокопогруженными подводными объектами. Техническим результатом является повышение помехоустойчивости, увеличение скорости и объема передаваемой информации по гидроакустическим каналам связи. Для этого принцип работы системы подводной кабельной гидроакустической связи с ПЛ основан на разделении во времени лучевой структуры акустического поля с последующим энергетическим суммированием всех пришедших в точку приема лучей. 2 ил.

Изобретение относится к технике связи и может использоваться в системах передачи аналоговых сигналов микро-наносекундного временного диапазона по волоконно-оптическим линиям связи (ВОЛС) с использованием внешней модуляции излучения. Технический результат состоит в повышении точности восстановления формы электрического сигнала по зарегистрированному аналоговому сигналу, передающемуся по ВОЛС с внешней модуляцией. Для этого в способе в каждом из N≥1 каналов системы передачи по ВОЛС производится внешняя модуляция излучения лазерного модуля, которое передается по входному одномодовому волокну, с помощью электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, в каждом из N каналов системы передачи предварительно выставляют рабочую точку модулятора путем подачи постоянного напряжения на электроды сдвига модулятора от источника питания для подачи постоянного напряжения на электроды сдвига модулятора, далее функцию пропускания и рабочую точку каждого модулятора точно определяют непосредственно перед подачей на электрический сигнальный вход каждого модулятора передаваемого информационного электрического сигнала, а затем в процессе обработки оптического сигнала определяют функцию пропускания и рабочую точку каждого модулятора, после этого по известному изменению оптического сигнала на выходе каждого модулятора, вызванному приходом передаваемого информационного электрического сигнала, и полученной ранее функции пропускания каждого модулятора восстанавливают форму передаваемого информационного электрического сигнала. 3 ил.

Изобретение относится к технике связи и может использоваться для регистрации импульсного ионизирующего и импульсного оптического излучения микро-, наносекундного временного диапазона и передаче по волоконно-оптическим линиям связи (ВОЛС) с использованием внешней модуляции излучения. Технический результат состоит в повышении точности восстановления формы зарегистрированного импульсного ионизирующего излучения. Для этого устройство регистрации импульсного ионизирующего и импульсного оптического излучения с передачей по ВОЛС содержит N≥1 каналов, каждый канал которой состоит из лазерного модуля, входного одномодового волокна, выходного одномодового волокна, электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, источника питания для подачи постоянного напряжения на электроды сдвига модулятора, приемника оптического излучения и оцифровщика. 3 ил.

Изобретение относится к области лазерной техники и касается устройства ввода импульсного лазерного пучка в волоконно-оптическую линию связи. Устройство включает в себя фокусирующую систему линз и волоконный световод с коллектором. Фокусирующая система линз выполнена в виде m линз, размещенных в плоскости, ортогональной направлению пучка, причем форму, количество, размер и фокусное расстояние линз подбирают исходя из условия полного перекрытия сечения входного пучка и заданной длины устройства. В качестве волоконного световода с коллектором используется m-канальный волоконный световод. Технический результат заключается в уменьшении длины устройства. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере отдельного узла. Сеть квантового распределения ключей, включающая по меньшей мере две локальные сети с квантовым распределением ключей, соединенные волоконно-оптическим каналом связи, причем каждая вышеупомянутая локальная сеть содержит по меньшей мере один сервер и по меньшей мере одну клиентскую часть, причем сервер включает по меньшей мере одну передающую серверную часть и по меньшей мере одну вспомогательную клиентскую часть, логически связанную с серверной передающей частью на узле. 2 н. и 2 з.п. ф-лы, 4 ил., 3 табл.

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый модулятор, волоконное зеркало и однофотонный детектор. Перечисленные выше элементы соединены между собой при помощи оптического волокна, сохраняющего состояние поляризации. Техническим результатом изобретения является повышение стабильности работы устройства квантовой криптографии за счет сохранения состояния поляризации на всем пути оптического тракта. 4 н. и 22 з.п. ф-лы, 7 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении пропускной способности передачи. Для этого раскрыты способ и устройство для осуществления связи посредством видимого света. Способ содержит этап, на котором выбирают первую последовательность и вторую последовательность частот интенсивности света для представления первого символа и второго символа, соответственно, для встраивания данных. Способ содержит дополнительный этап, на котором передают световой сигнал. Световой сигнал содержит периоды времени, в которые интенсивностью света светового сигнала последовательно управляют согласно выбранной последовательности частот интенсивности света. Тем самым генерируется световой сигнал со скачкообразным изменением частоты, в который могут быть встроены данные. Световой сигнал может быть сгенерирован и передан устройством, содержащим излучатель света. 2 н. и 11 з.п. ф-лы, 7 ил.

Способ и устройство формирования внутренней шкалы времени устройств сравнения и синхронизации шкал времени и оптоволоконных рефлектометров основаны на генерации оптических импульсов и направлении их в циркулятор, регистрации момента излучения импульсов с помощью фотоприемника, циркулятора и полупрозрачного зеркала, расположенного между выходом циркулятора и входом в исследуемую, в случае рефлектометрии, или соединяющую удаленные объекты, в случае синхронизации шкал времени, волоконно-оптическую линию. Причем момент излучения оптического импульса в линию фиксируется фотоприемником в том же канале, что и импульса, пришедшего из линии. Технический результат заключается в повышении точности сравнения и синхронизации шкал времени удаленных объектов с помощью оптоволоконной линии связи. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, при этом базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала. 3 ил.
Наверх