Система смазки подшипников опор роторов газотурбинного двигателя

Изобретение относится к системе смазки подшипников опор роторов газотурбинного двигателя и обеспечивает отказоустойчивость насосов с регулируемыми электроприводами системы смазки с числом откачивающих насосов более двух при отказе одного из насосов или их электроприводов как в тракте нагнетания масла, так и в тракте откачки масловоздушной смеси для ГТД. Система снабжена трехпроходными и отсечными клапанами, по меньшей мере, двумя группами насосов откачки масловоздушной смеси из полостей опор с отсечными клапанами на входе в насосы откачки и промежуточным масловоздушным коллектором с дополнительными отсечными клапанами. Трехпроходные и отсечные клапаны выполнены с электрическим управлением и подключены каналами связи к регулятору системы смазки. Система содержит также воздухоотделитель с регулируемым электроприводом. Все электроприводы системы смазки работают на заданных из регулятора режимах. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к системам смазки авиационных газотурбинных двигателей (ГТД) и двигателей стационарных газотурбинных установок (ГТУ).

В известных системах смазки ГТД вращение нагнетающего маслонасоса, насосов откачки масловоздушной смеси из опор роторов и насоса системы суфлирования выполняется от коробки приводов агрегатов ГТД (см., например, Авиационный двигатель ПС-90А. А.А. Иноземцев, Е.А. Конев и др. М.: Либра-К, 2007, стр. 154).

Наличие жесткой связи частоты вращения насосов с частотой вращения ротора двигателя не позволяет обеспечить отказоустойчивость системы смазки при отказе одного из насосов, а также оптимальную их работу на всех режимах. Возникают проблемы со смазкой подшипников на режиме запуска при низкой температуре воздуха после стоянки, с удалением воздуха из масла и др.

Известны комбинированные системы с механическим и электрическим приводом насосов (см., например, патент РФ №2323358 и патент США №8281563), в которых электропривод используется для вращения резервного откачивающего насоса. Это повышает надежность системы, но не обеспечивает функционирование при отказе нагнетающего насоса.

Известны патенты США №№7871248, 8113317, 8201662, согласно которым один электродвигатель вращает все насосы системы смазки по сигналам от цифрового регулятора ГТД. При этом частота вращения насосов изменяется независимо от частоты вращения ротора ГТД. Однако из-за взаимосвязи частот вращения нагнетающего и откачивающего насосов невозможно обеспечить их взаимозаменяемость для обеспечения отказоустойчивости системы.

Наиболее близким аналогом, выбранным за прототип, является электроприводная система смазки малоразмерного ГТД. Christopher J. Spytek. Electrically Driven on Demand Oil System for Gas Turbine Engines. Proceedings of ASME Turbo Expo 2013:Turbine Technical Conference and Exposition GT2013. June 3-7, San Antonio, Texas, USA, GT2013-94706.

Система смазки содержит электроприводной нагнетающий насос, два откачивающих насоса, вращаемых одним электроприводом, и устройство регулирования в виде регуляторов давления и температуры масла.

Важным свойством этой системы является возможность обеспечения смазки ГТД при отказе нагнетающего насоса. В этом случае функцию нагнетания выполняет откачивающий насос. Для этого в гидравлическом тракте системы установлены три дополнительных органа управления в виде двухпозиционных трехпроходных клапанов.

Однако в этой системе не обеспечивается ее отказоустойчивость при отказе электропривода откачивающих насосов.

В основу данного изобретения положена задача обеспечения отказоустойчивости (отказобезопасности, безотказности) электроприводных насосов системы смазки с числом откачивающих насосов более двух при отказе одного из насосов или их электропривода как в тракте нагнетания масла, так и в тракте откачки масловоздушной смеси для ГТД и ГТУ.

Технический результат, достигаемый изобретением, заключается в раздельном управлении электроприводами насосов системы смазки и сохранении работоспособности системы смазки при отказе любого насоса или электропривода путем реализации взаимозаменяемости нагнетающих и откачивающих насосов.

Поставленная задача решается тем, что система смазки подшипников опор роторов газотурбинного двигателя содержит линии всасывания и нагнетания масла из маслобака в опоры, откачки масловоздушной смеси и суфлирования воздушно-масляной смеси из полостей опор, устройство регулирования системы смазки, электроприводные средства нагнетания масла в полости опор и откачки масловоздушной смеси из полостей опор в бак. При этом вход средства нагнетания масла, выполненного в виде насоса, посредством линии всасывания гидравлически соединен с баком, а выход - через линию нагнетания с подшипниками опор роторов. Выходы из полостей опор связаны с входом средства откачки масловоздушной смеси. Причем выход средства откачки масловоздушной смеси через линию откачки подключен к баку.

Новым в системе смазки подшипников опор роторов ГТД является то, что средство откачки выполнено в виде двух групп насосов откачки масловоздушной смеси из полостей опор с отсечными клапанами на входе в насосы откачки. Система смазки содержит промежуточный масловоздушный коллектор с дополнительными отсечными клапанами. При этом коллектор на входе подключен к полостям каждой опоры двигателя, а на выходе - к входам отсечных клапанов насосов откачки масловоздушной смеси. Дополнительные отсечные клапаны расположены между подключениями коллектора к смежным опорам роторов. Электропривод каждого насоса выполнен регулируемым и соединен каналом связи с соответствующим выходом устройства регулирования системы смазки. В линии всасывания на входе в насос нагнетания масла установлен трехпроходной клапан, вход которого подключен к баку, первый выход - к входу насоса нагнетания, а второй выход - к входам одной из групп насосов откачки масловоздушной смеси после отсечных клапанов. На выходе этой группы насосов откачки установлены дополнительные трехпроходные клапаны, входы которых связаны с выходом соответствующих насосов откачки, первый выход - с линией откачки масловоздушной смеси из опор в бак, а второй - с линией нагнетания масла. Причем выходы насосов откачки другой группы прямо подключены к линии откачки масловоздушной смеси из опор. При этом все трехпроходные и отсечные клапаны выполнены с электрическим управлением и подключены каналами связи к устройству регулирования системы смазки.

При такой системе смазки опор газотурбинного двигателя:

- установка в гидравлических трактах всасывания и откачки системы смазки, трехпроходных и отсечных электрически управляемых от устройства регулирования системы смазки клапанов позволяет сохранить подачу масла к подшипникам опор роторов при отказе насоса нагнетания масла или его электропривода путем использования для нагнетания масла откачивающих насосов одной из групп, что обеспечивает отказоустойчивость системы смазки;

- выполнение средств откачки в виде двух групп насосов откачки масловоздушной смеси из полостей опор с отсечными клапанами на входе в насосы позволяет обеспечить взаимозаменяемость работы насосов откачки при отказе электропривода или насоса одной из групп, что является одним из условий обеспечения отказоустойчивости системы смазки;

- использование регулируемых электроприводов для насосов нагнетания масла и насосов откачки масловоздушной смеси позволяет обеспечить предварительное удаление из опор двигателя масла, что существенно уменьшит величину мощности трения в подшипниках и ускорит раскрутку роторов ГТД, особенно при низких отрицательных температурах окружающей среды, что также содействует обеспечению отказоустойчивости системы смазки.

Развитие совокупности существенных признаков изобретения для частного случая его выполнения дано далее.

Наличие в системе смазки воздухоотделителя с регулируемым электроприводом, подключенным гидравлически на входе к линиям суфлирования воздушно-масляной смеси из полостей опор ротора и маслобака с выходом воздуха в атмосферу, а - масла в обратно бак, где электропривод воздухоотделителя каналом связи подключен к устройству регулирования системы смазки, а воздухоотделитель осуществляет эффективное отделение воздуха от масла в системе смазки на всех режимах работы газотурбинного двигателя, что повышает отказоустойчивость системы смазки с электроприводными насосами на всех режимах работы газотурбинного двигателя.

Таким образом, решена поставленная в изобретении задача. Обеспечена отказоустойчивость насосов с электроприводами системы смазки с числом откачивающих насосов более двух при отказе одного из насосов или их электроприводов, как в тракте нагнетания масла, так и в тракте откачки масловоздушной смеси для ГТД и ГТУ.

Настоящее изобретение поясняется последующим подробным описанием системы смазки подшипников опор роторов газотурбинного двигателя со ссылками на чертеж.

Система смазки содержит линии 2, 3, 4, 5, 6 соответственно всасывания и нагнетания масла из маслобака 7 в опоры 1, откачки масловоздушной смеси и суфлирования воздушно-масляной смеси из полостей опор, устройство регулирования системы смазки, а также насосы 8, 9, 10 соответственно с электроприводами 11, 12, 13 нагнетания масла в полости опор 1 и откачки масловоздушной смеси из полостей опор 1 в бак. Вход насоса 8 посредством линии 2 всасывания гидравлически соединен с баком 7, а выход - через линию 3 нагнетания с подшипниками опор 1 роторов. Выходы из полостей опор 1 связаны линией 4 с входами соответствующих насосов 9 и 10 откачки масловоздушной смеси. На входе насосов 9 и 10 имеются отсечные клапаны 17 (ОК), а выход насосов 9 и 10 через линию 5 откачки подключен к баку 7.

Насосы откачки разбиваются на группы, каждая из которых вращается своим электроприводом. На чертеже, например, показаны две группы насосов: два насоса 9, расположенные в «холодной» части ГТД (опоры вала компрессора), вращаются электроприводом 12, а насосы 10, расположенные в «горячей» части ГТД (опоры вала турбины), - электроприводом 13.

В системе смазки имеется промежуточный масловоздушный коллектор 18 с дополнительными отсечными клапанами 19 (ОК). При этом коллектор 18 на входе подключен к полостям отдельных опор 1 двигателя, а на выходе - к входам отсечных клапанов 17 насосов откачки 9 и 10 масловоздушной смеси. Дополнительные отсечные клапаны 19 расположены между подключениями коллектора 18 к смежным опорам 1 роторов.

В линии всасывания 2 на входе в насос 8 нагнетания масла установлен трехпроходной клапан 15 (ТК), вход которого подключен к баку 7, первый выход - к входу насоса 8 нагнетания, а второй выход - к входам насосов 9 откачки масла после отсечных клапанов 17. На выходе насосов 9 откачки масла установлены трехпроходные клапаны 16 (ТК), входы которых связаны с выходом соответствующего насоса 9 откачки, первый выход - с линией 5 откачки масловоздушной смеси в бак 7, а второй - с линией 3 нагнетания масла.

Трехпроходные и отсечные клапаны выполнены двухпозиционными с электрическим управлением и подключены каналами 22 связи с соответствующим выходом устройства регулирования системы смазки выполненными в виде цифрового регулятора 14 системы смазки. Каждый электропривод 11, 12, 13, 24 регулируемый и содержит электродвигатель и блок управления, который обеспечивает требуемую частоту вращения ротора, задаваемую по каналам связи 20 от регулятора 14 системы смазки. Вход регулятора 14 каналом связи 21 соединен с электронным регулятором ГТД (не показан).

Система смазки содержит также воздухоотделитель 23 с регулируемым электроприводом 24, подключенный гидравлически на входе к линиям 6 и 25 суфлирования воздушно-масляной смеси из полостей опор 1 роторов и маслобака 7 с выходом воздуха в атмосферу (не показано), а масла - обратно в бак 7, причем электропривод каналом 20 связи подключен к регулятору 14 системы смазки.

Система смазки с электроприводными насосами без отказов функционирует следующим образом. В исходном состоянии отсечные клапаны 19 закрыты, а отсечные клапаны 17 - открыты, трехпроходный клапан 15 - в положении подвода масла к насосу 8 нагнетания, а клапаны 16 - в положении подачи масловоздушной смеси в линию откачки 5 и далее в бак 7. До запуска ГТД на вход регулятора 14 по линии связи 21 поступает команда на опережающее включение электроприводов 12 и 13 насосов 9 и 10 откачки, а также электропривода 24 воздухоотделителя 23. При этом с выходов 20 регулятора 14 на вход блока управления электроприводов 12,13 и 24 поступают команды на их включение (одновременно или задержкой относительно друг друга) и они выходят на требуемое значение частоты вращения.

Насосы откачки 9 и 10 удаляют из полостей опор 1 масловоздушную смесь, а воздухоотделитель 23 - воздушно-масляную смесь. Через установленный промежуток времени начинается раскрутка роторов ГТД. При заданной частоте их вращения с выходов 20 регулятора 14 на вход блока управления электропривода 11 поступает команда на его включение и начинается вращение насоса 8 нагнетания масла в полости опор 1.

Далее все электроприводы 11, 12, 13 и 24 системы смазки работают на заданных из регулятора 14 режимах, которые обеспечивает оптимальную смазку подшипников на всех режимах работы ГТД. Из-за предварительно удаленного из опор двигателя масла существенно уменьшается величина мощности трения в подшипниках роторов и уменьшается время запуска ГТД.

Отказ электропривода 12 или 13 насосов откачки 9 (10) компенсируется изменением режима функционирующего электропривода других насосов откачки. Так, при регистрации отказа электропривода 12 одновременно закрываются отсечные клапаны 17 на входе в насосы 9 и открываются отсечные клапаны 19 коллектора 18, объединяющего выходы всех опор 1, а электропривод 13 насосов 10 перенастраивается на режим повышенной частоты вращения. При этом увеличивается производительность насосов 10, и они откачивают масловоздушную смесь из коллектора 18 и, следовательно, из всех опор 1.

При отказе, например электропривода 11 или насоса 8, функцию нагнетания могут выполнять насосы 9 с электроприводом 12. При регистрации отказа одновременно клапан 15 переводится в положение подачи масла на вход насосов 9, клапаны 16 - в положение подачи масла откачивающими насосами 9 в линию нагнетания 3 и далее в подшипники опор 1, закрываются отсечные клапаны 17 на входе в насосы 9 и открываются отсечные клапаны 19 коллектора 18, объединяющего выходы всех опор 1. Электропривод 12 перенастраивается на режим требуемой частоты вращения для подачи насосами 9 масла во все опоры 1, а электропривод 13 насосов 10 - для откачки масловоздушной смеси из коллектора 18 и, следовательно, из опор 1.

Таким образом, в заявленной системе смазки выполняется раздельное управление насосами подачи масла к подшипникам опор ГТД, откачка из них масловоздушной смеси и утилизация воздуха системой суфлирования. Такая конструкция обеспечивает взаимозаменяемость насосов при отказе любого из электроприводов на всех режимах работы двигателя, а также реализацию оптимальных законов управления нагнетанием масла в подшипники опор роторов, эффективное отделение воздуха от масла, его утилизацию и др.

1. Система смазки подшипников опор роторов газотурбинного двигателя, содержащая линии всасывания и нагнетания масла из маслобака в опоры, откачки масловоздушной смеси и суфлирования воздушно-масляной смеси из полостей опор, устройство регулирования системы смазки, электроприводные средства нагнетания масла в полости опор и откачки масловоздушной смеси из полостей опор в бак, при этом вход средства нагнетания масла, выполненного в виде насоса, посредством линии всасывания гидравлически соединен с баком, а выход - через линию нагнетания с подшипниками опор роторов, выходы из полостей опор связаны с входом средства откачки масловоздушной смеси, причем выход средства откачки масловоздушной смеси через линию откачки подключен к баку, отличающаяся тем, что средство откачки выполнено в виде двух групп насосов откачки масловоздушной смеси из полостей опор с отсечными клапанами на входе в насосы откачки, а система смазки содержит промежуточный масловоздушный коллектор с дополнительными отсечными клапанами, при этом коллектор на входе подключен к полостям каждой опоры двигателя, а на выходе - к входам отсечных клапанов насосов откачки масловоздушной смеси, к тому же дополнительные отсечные клапаны расположены между подключениями коллектора к смежным опорам роторов, электропривод каждого насоса выполнен регулируемым и соединен каналом связи с соответствующим выходом устройства регулирования системы смазки, в линии всасывания на входе в насос нагнетания масла установлен трехпроходной клапан, вход которого подключен к баку, первый выход - к входу насоса нагнетания, а второй выход - к входам одной из групп насосов откачки масловоздушной смеси после отсечных клапанов, кроме того, на выходе этой группы насосов откачки установлены дополнительные трехпроходные клапаны, входы которых связаны с выходом соответствующих насосов откачки, первый выход - с линией откачки масловоздушной смеси из опор, а второй - с линией нагнетания масла, причем выходы насосов откачки другой группы прямо подключены к линии откачки масловоздушной смеси из опор, при этом все трехпроходные и отсечные клапаны выполнены с электрическим управлением и подключены каналами связи к устройству регулирования системы смазки.

2. Система смазки по п. 1, отличающаяся тем, что содержит воздухоотделитель с регулируемым электроприводом, подключенный гидравлически на входе к линиям суфлирования воздушно-масляной смеси из полостей опор ротора и маслобака с выходом воздуха в атмосферу, а масла - обратно в бак, причем электропривод воздухоотделителя каналом связи подключен к устройству регулирования системы смазки.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения, а именно к масляной системе авиационного газотурбинного двигателя (ГТД). Маслосистема ГТД содержит маслобак с центробежным воздухоотделителем, суфлер-сепаратор с магистралью суфлирования и установленный в магистрали подачи масла сифонный затвор с жиклером стравливания в петле затвора.

Изобретение относится к области техники турбовальных двигателей, более конкретно к опоре (14) для, по меньшей мере, одного подшипника для горячей части турбовального двигателя.

Изобретение относится к области авиационного двигателестроения, а именно к системам разгрузки опор роторов компрессоров низкого давления газотурбинного двигателя, в том числе и в составе летательного аппарата.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Устройство для смазки опорного подшипника ротора турбомашины содержит откачивающий насос, всасывающая магистраль которого подключена к сливной магистрали масляной полости.

Изобретение относится к области машиностроения, касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей (ГТД) для отделения жидкости от газожидкостной смеси.

Группа изобретений относится к роторным газотурбинным машинам и может быть использована для подачи масла в межроторные подшипники для смазывания и охлаждения их, а также для уменьшения контактных напряжений на телах качения подшипников.

Устройство для смазки опорного подшипника ротора двухроторной турбомашины относится к области авиационного двигателестроения. Масляная полость сообщена магистралью слива с компенсационной емкостью, подсоединенной к всасывающей магистрали откачивающего насоса и сообщенной через сливную магистраль с масляной полостью в зоне стыковки качающего узла насоса с приводной рессорой.

Изобретение может быть использовано при изготовлении опор с расположением подшипника между двумя вращающимися роторами, в частности в газотурбинных двигателях авиационного и наземного применения.

Изобретение относится к энергетике. Опора двухвального газотурбинного двигателя, содержащая роликоподшипник, установленный между валами роторов низкого и высокого давлений, масляную подводящую полость под внутренним кольцом, маслоподводящие отверстия, выполненные во внутреннем кольце подшипника, сепаратор, центрированный по наружному кольцу, причём на беговых дорожках внутреннего и наружного колец выполнены одна или несколько радиальных маслоотводящих канавок произвольного профиля.

Изобретение относится к газотурбинным двигателям, а именно к маслосистемам, их агрегатам наддува полостей и устройствам суфлирования масла. Двухроторный газотурбинный двигатель снабжен системой последовательно сообщенных друг с другом посредством дополнительных воздуховодов предмасляных полостей компрессора низкого давления и предмасляной полости компрессора высокого давления, одновременно сообщенных с предмасляной полостью турбины, эжектором, содержащим эжектируемую полость, эжектирующую полость и камеру смешения, предмасляная полость турбины сообщена, с одной стороны, через воздуховод с клапаном суфлирования, а с другой стороны, с входом эжектируемой полости эжектора, выход которой сообщен с входом камеры смешения, при этом эжектирующая полость своим входом сообщена с источником питания, а выходом с входом камеры смешения, выход камеры смешения сообщен с входной полостью форсажной камеры.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов газотурбинных двигателей (ГТД). В устройстве всасывающий патрубок откачивающего насоса выполнен в виде полого гибкого элемента, соединенного герметично с входным фланцем насоса и снабженным на конце заборником масла с инерционным грузом, а в канале для суфлирования масляной полости установлен нормально открытый шариковый клапан, что позволяет при перевороте самолета или возникновении отрицательных перегрузок исключить перетекание масла из маслобака в масляную полость опорного подшипника при выполнении самолетом длительных (более 30 с) фигурных полетов и восстановить циркуляционный объем масла в маслобаке и обеспечить стабильность давления масла на входе в двигатель. Технический результат от использования изобретения - повышение маневренности самолета за счет увеличения продолжительности фигурных полетов. 2 ил.

Изобретение относится к области авиационного двигателестроения и, в частности, к элементам системы суфлирования авиационного газотурбинного двигателя (ГТД) и может быть использовано в качестве суфлера-сепаратора, воздухоотделителя в других устройствах для отделения жидкости от газожидкостной смеси. Дистанционная втулка выполнена из двух частей, в одной из которых со стороны вала образована кольцевая проточка, в которую заведен ответный конец другой части втулки, причем в валу установлен стопор, выполненный в виде штифта, концы которого размещены между торцами частей втулки, а его торцы контактируют с боковой поверхностью кольцевой проточки. Технический результат изобретения – обеспечение работы суфлера при разрушении крепления крыльчатки к валу. 1 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к конструкции радиально-упорной опоры ротора компрессора. Радиально-упорная опора ротора газотурбинного двигателя содержит радиально-упорный шарикоподшипник и дополнительный радиально-упорный шарикоподшипник, внутренние кольца которых установлены на валу. Оба внутренних кольца радиально-упорных шарикоподшипников выполнены разъемными и зафиксированы на валу в осевом и окружном направлениях. Между близлежащими торцами внутренних колец установлено регулировочное кольцо. Наружное кольцо дополнительного радиально-упорного шарикоподшипника установлено в обойме, на внутренней поверхности которой со стороны компрессора выполнен бурт, контактирующий по торцам с наружным кольцом дополнительного радиально-упорного шарикоподшипника. Оба радиально-упорных шарикоподшипника заключены в общем корпусе, причем наружное кольцо радиально-упорного шарикоподшипника зафиксировано относительно последнего в осевом направлении посредством бурта, выполненного со стороны его внутренней поверхности и гайки соответственно. Между близлежащими торцами бурта и наружного кольца дополнительного радиально-упорного шарикоподшипника установлена осевая пружина. Общий корпус радиально-упорных шарикоподшипников установлен в корпусе опоры, выполненном разборным, и выполнен с возможностью смещения вдоль продольной оси опоры, ограниченного стенками корпуса опоры. Между стенкой корпуса опоры и близлежащими торцами общего корпуса радиально-упорных шарикоподшипников и обоймы образована кольцевая полость. В кольцевой полости по окружности установлены элементы, ограниченные в радиальном направлении общим корпусом радиально-упорных шарикоподшипников и осевым кольцевым выступом соответственно, выполненным на одной из стенок корпуса опоры. Обращенная к стенке корпуса опоры поверхность каждого из указанных элементов выполнена сферической, а на противолежащей поверхности выполнены два выступа, торцы которых контактируют с торцами общего корпуса радиально-упорных шарикоподшипников и обоймы соответственно. Изобретение позволяет повысить надежность работы компрессора за счет снижения суммарной осевой нагрузки на заднюю шарикоподшипниковую опору ротора при работе газотурбинного двигателя. 1 ил.

Изобретение относится к способу смазки авиационных газотурбинных двигателей (ГТД) и может быть использовано в двигателях, где привод маслоагрегатов осуществляется непосредственно от ротора ГТД, а маслоагрегаты и коммуникации маслосистемы установлены внутри ГТД. Способ смазки и охлаждения передней опоры ротора газотурбинного двигателя, снабженного циркуляционной системой смазки, при котором воздух, поступающий в двигатель, охлаждает маслобак и масло, поступающее далее к опорам, причём охлаждение корпуса маслобака, совмещенного с теплообменником и расположенного внутри двигателя между коком и передней опорой ротора, осуществляется воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, при этом на следующем этапе движения воздух поступает в корпус передней опоры ротора двигателя для ее дополнительного охлаждения. Изобретение позволяет повысить эффективность охлаждения масла в маслобаке, а также эффективность охлаждения передней опоры ротора ГТД, с уменьшением массы и габаритов двигателя. 2 ил.

Изобретение относится к газотурбинной установке, содержащей турбинный кожух, в котором расположены компрессор, турбина высокого давления и силовая турбина. Газовая турбина содержит систему вентиляции, предназначенную для охлаждения внутреннего пространства турбинного кожуха, а также контур подачи смазочного масла. Контур подачи смазочного масла включает насос для смазочного масла, резервуар для смазочного масла, первичный охладитель смазочного масла. В турбинном кожухе расположен вторичный охладитель смазочного масла, размещенный в положении ниже вращающегося вала газовой турбины. Система вентиляции расположена и выполнена с обеспечением контактированая по меньшей мере части воздушного потока, предназначенного для охлаждения турбинного кожуха, с вторичным охладителем смазочного масла для отвода тепла от смазочного масла, циркулирующего в указанном охладителе. Технический результат - повышение надежности путем предотвращения заливки маслом машины в случае отключения турбины и перебоя в работе маслоотсасывающего насоса. 2 н. и 15 з.п .ф-лы, 5 ил.

Газотурбинный двигатель содержит вентилятор, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, турбинную секцию, сообщающуюся по текучей среде с камерой сгорания, а также систему изменения скорости. Турбинная секция содержит турбину привода вентилятора и вторую турбину, при этом турбина привода вентилятора содержит множество ступеней турбины. Вентилятор содержит множество лопаток, выполненных с возможностью вращения вокруг оси, при этом соотношение между числом лопаток вентилятора и числом ступеней турбины привода вентилятора составляет от 2,5 до 8,5. Система изменения скорости приводится в действие турбиной привода вентилятора для вращения вентилятора вокруг оси. Турбина привода вентилятора содержит первый задний ротор, присоединенный к первому валу, а вторая турбина содержит второй задний ротор, присоединенный ко второму валу. Между первым валом и вторым валом образован кольцевой зазор. Первый подшипниковый узел расположен аксиально позади первого соединения между первым задним ротором и первым валом, а второй подшипниковый узел расположен в кольцевом зазоре, образованном между первым валом и вторым валом. Изобретение позволяет исключить потребность в несущих конструкциях, соединенных с неподвижной конструкцией через промежуточную силовую раму, уменьшить длину валов, обеспечить поддержку внешнего вала соосно с втулкой соединения ротора турбины высокого давления и внешнего вала, обеспечить более компактную турбинную секцию, а также снизить ее вес и потребление топлива. 19 з.п. ф-лы, 13 ил.

Изобретение относится к способу смазки и охлаждения опор авиационных газотурбинных двигателей (ГТД) и может быть использовано в двигателях, где привод маслоагрегатов осуществляется непосредственно от ротора ГТД, а маслоагрегаты и коммуникации маслосистемы установлены внутри ГТД. Техническим результатом является повышение эффективности охлаждения опор. В способе выполняется дополнительное охлаждение опор воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, сообщенные с внутренними каналами, расположенными в корпусах опор, через которые воздух поступает в зону внешней обоймы подшипника, при этом суфлирование опор и подвод масла обеспечиваются внутренними трубопроводами. 1 ил.

Изобретение относится к области авиадвигателестроения и касается устройства для смазки опорного подшипника ротора турбомашины, в частности авиационного двухроторного газотурбинного двигателя самолета (ГТД). Патрубок подвода масла выполнен из двух сообщающихся между собой трубопроводов, снабженных на концах заборниками, один из которых установлен в верхней части масляной полости, а другой в нижней ее части, при этом заборники снабжены автономными грузовыми шариковыми клапанами. Эта особенность позволит при перевернутом полете или полете с отрицательными перегрузками исключить уход масла из маслобака в масляную полость опорного подшипника ротора ГТД и избежать режим «масляное голодание» двигателя при выполнении самолетом фигур высшего пилотажа (не менее 30 с). 1 ил.

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью циркуляционного отсека так, что выходное отверстие трубопровода расположено в верхней полости циркуляционного отсека и направлено в сторону перегородки, отделяющей отсеки друг от друга. В результате использования изобретения продолжительность фигурных полетов самолета увеличивается (более 30 с), кроме того, повышается надежность маслосистемы за счет перепуска охлажденного масла в бак, а также стабильной подачи масла на вход в двигатель при перевороте самолета. 1 ил.

Изобретение относится к упругодемпферным опорам турбин газотурбинных двигателей авиационного и наземного применения. Упругодемпферная опора турбины, содержащая корпус опоры с установленными внутри корпуса внешним и внутренним упругими элементами с щелевой масляной полостью между ними, а также разделяющую масляную и воздушную полости обечайку, при этом внешняя поверхность корпуса опоры выполнена цилиндрической с установленным на ней телескопически в осевом направлении внутренним фланцем обечайки с уплотнительным элементом в кольцевой канавке, а щелевая масляная полость соединена равномерно расположенными по окружности каналами с кольцевыми канавками подвода масла в двух радиальных плоскостях. Изобретение позволяет исключить появление в разделительной обечайке изгибных напряжений вследствие различных температурных деформаций конструктивных элементов опоры, повысить надежность упругодемпферной опоры, обеспечить равномерный подвод масла в осевом и в радиальном направлениях в щелевую масляную полость, а также позволяет обеспечить заданные демпфирующие свойства опоры. 2 ил.
Наверх