Порошковая проволока для наплавки

Изобретение может быть использовано для дуговой наплавки металлургического и другого инструмента, работающего в условиях интенсивного абразивного изнашивания при температурах до 600°С. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%: феррохром 24,0-26,0, ферромолибден 3,8-4,2, диборид титана 2,9-3,7, графит 1,3-3,3, никель 1,0-1,3, железный порошок 0,2-2,2, кремнефтористый натрий 0,8-1,0, ультрадисперсный порошок нитрида титана 0,25-0,60, стальная оболочка остальное. Металл, наплавленный порошковой проволокой с данным составом, обладает высокими значениями твердости и износостойкости, что позволяет повысить ресурс работы наплавленных деталей машин, оборудования и инструментов. 2 табл.

 

Изобретение относится к наплавочным материалам, в частности к порошковым проволокам (ПП) для дуговой наплавки металлургического и другого инструмента, работающего в условиях интенсивного абразивного изнашивания при температурах до 600°С.

Известна ПП (авторское свидетельство СССР на изобретение №551150, В23К 35/368, опубл. БИ №11, 1977 г.) для дуговой и электрошлаковой наплавки деталей машин, работающих при повышенных до 550°С температурах в условиях абразивного и ударно-абразивного изнашивания, состоящая из металлической оболочки и порошкообразной шихты, содержащей карбид бора, феррованадий, ферротитан, железный порошок, никель металлический, борид хрома, алюминий и ферромолибден при следующем соотношении компонентов, масс. %:

карбид бора 2-3
феррованадий 0,5-5
ферротитан 2,2-8
железный порошок 1-12
никель металлический 2-4
борид хрома 9-12
алюминий 1,1-3
ферромолибден 2-7,5
малоуглеродистая стальная
оболочка остальное

Недостатком ПП такого состава является низкая износостойкость и термическая стойкость наплавленного с ее использованием металла в условиях интенсивного абразивного изнашивания при рабочих температурах до 600°С. Повышенное содержание бора в наплавленном металле способствует образованию в его структуре большого количества хрупких боридных эвтектик, что способствует снижению его ударной вязкости и термической стойкости. Получение необходимого содержания хрома в наплавленном металле за счет его введения в шихту проволоки в составе борида хрома в количестве 9-12 масс. % нецелесообразно и приводит к увеличению стоимости проволоки.

Известна ПП (патент RU, №2518211, В23К 35/368, опубл. БИ №16, 2014 г.) для наплавки металлургического оборудования, работающего в условиях сжатия и абразивного износа при температурах до 600°С. Проволока состоит из стальной оболочки и порошкообразной шихты, содержащей ферровольфрам, ферромарганец, ферросилиций, феррохром, феррованадий, никель, углеродфторсодержащую пыль электрофильтров алюминиевого производства и железный порошок в следующем соотношении компонентов, масс. %:

стальная оболочка 67,00-68,00
ферровольфрам 10,00-13,75
ферромарганец 0,76-1,41
ферросилиций 0,26-1,34
феррохром 3,38-5,38
феррованадий 0,40-1,00
никель 0,10-1,00
углеродфторсодержащая пыль
электрофильтров алюминиевого
производства 0,80-2,58
железный порошок остальное

Наплавка с использованием данной проволоки позволяет получить бездефектный износостойкий металл за счет снижения загрязненности стали неметаллическими оксидными включениям и предотвращения образования холодных трещин. Недостатками изобретения являются пониженная износостойкость наплавленного металла вследствие нерационального соотношения содержания в составе его наполнителя большого числа карбидообразующих элементов: вольфрама, ванадия, хрома и углерода, что обусловливает недостаточное количество карбидной фазы, а также низкая жаростойкость металла вследствие малого содержания хрома. ПП имеет высокую стоимость из-за повышенного содержания ферровольфрама.

В качестве прототипа выбрана ПП (авторское свидетельство СССР на изобретение №449790, В23К 35/30, В23К 35/36, опубл. БИ №42, 1974 г.) для электродуговой наплавки изделий, работающих при больших удельных давлениях и повышенных температурах, состоящая из стальной оболочки и порошкообразный шихты при следующем соотношении компонентов, масс. %:

феррохром 6,0-8,0
ферромолибден 5,5-8,0
феррованадий 0,8-1,8
ферросилиций 0,5-2,0
ферромарганец 0,2-1,0
графит 0,05-0,25
кремнефтористый натрий 1,5-3,5
ферровольфрам 3,5-5,0
железный порошок 3,0-14,0
оболочка остальное

ПП обеспечивает получение качественного низкоуглеродистого наплавленного металла без трещин и пор, стойкого против истирания при трении металла по металлу в условиях повышенных температур и обладающего высокой стойкостью к образованию трещин термической усталости.

Однако низкое содержание в шихте ПП графита не обеспечивает формирование в наплавленном металле достаточного количества карбидной фазы, создающей препятствия для разрушающего воздействия абразивных частиц, что не позволяет получить высокий уровень стойкости к абразивному изнашиванию. Низкое содержание хрома в наплавленном металле обусловливает его пониженную жаростойкость. Кроме того, предельно высокие содержания в шихте компонента Na2SiF6 приводит к нарушению стабильности электродугового процесса из-за выделения обладающего повышенной электроотрицательностью фтора в реакционной зоне сварки.

Технический результат заявляемого изобретения заключается в повышении износостойкости наплавленного металла при температурах до 600°С.

Технический результат достигается за счет того, что порошковая проволока для наплавки, состоящая из стальной оболочки и порошкообразной шихты, включающей феррохром, ферромолибден, графит, кремнефтористый натрий, железный порошок, дополнительно содержит никель, диборид титана и ультрадисперсный порошок (УДП) нитрида титана при следующем соотношении компонентов, масс. %:

феррохром 24,0-26,0
ферромолибден 3,8-4,2
диборид титана 2,9-3,7
графит 1,3-3,3
никель 1,0-1,3
железный порошок 0,2-2,2
кремнефтористый натрий 0,8-1,0
УДП нитрида титана 0,25-0,60
стальная оболочка остальное

Указанный состав ПП обеспечивает следующий химический состав наплавленного металла, масс. %: углерод 2,0…4,0; хром 12,0…13,0; молибден 2,0…2,5; никель 0,8…1,1; титан 0,8…1,5; бор 0,45…0,65.

Введение диборида титана TiB2 в количестве 2,9…3,7 масс. % в шихту проволоки позволяет существенно повысить коэффициенты перехода бора и особенно титана в металл при дуговой наплавке.

Титан, наряду с хромом и молибденом, в присутствии углерода, бора и азота участвует в формировании мелкодисперсных труднорастворимых химических соединений, способствующих увеличению термической стойкости, горячей твердости и износостойкости наплавленного металла.

При легировании металла бором образуются твердые бориды и карбобориды, которые значительно повышают его износостойкость и твердость в условиях нормальной и повышенных температур. Формирующийся в структуре сплава каркас из карбоборидных эвтектик воспринимает и рассредоточивает по большей площади поверхности часть нагрузки в условиях высоких давлений, а также увеличивает стойкость металла к появлению задиров в процессе истирания. Введение в наполнитель проволоки TiB2 в указанном количестве позволяет получить в наплавленном металле 0,45…0,65 масс. % бора, что обеспечивает высокий уровень сопротивления металла воздействию абразивных частиц и достаточную для условий работы без ударных нагрузок пластичность. Содержание бора свыше 0,65 масс. % приводит к значительному охрупчиванию сплава и выкрошиванию упрочняющих частиц из малопластичной матрицы сплава. Содержание бора менее 0,45 масс. % не обеспечивает высокий уровень износостойкости металла.

Введение в состав шихты проволоки УДП нитрида титана TiN позволяет повысить твердость и износостойкость наплавленного металла при нормальной и повышенных температурах. Частицы TiN, обладая высокой термодинамической стабильностью, лишь частично растворяются в металлическом расплаве и находятся в нем в виде суспензии, воздействуя на кинетику кристаллизации наплавленного металла. Это обусловливает диспергирование железохромистых карбоборидов, а также инициирование выделения карбидов (Ti, Mo)C1-x, которые кристаллизуются на частицах TiN при их взаимодействии с молибденом, титаном и углеродом из металлического расплава.

Оптимальное содержание порошка TiN в проволоке составляет 0,25-0,60 масс. %. Увеличение содержания TiN свыше 0,6 масс. % не приводит к существенному увеличению износостойкости наплавленного металла, но при этом повышает стоимость проволоки, а также увеличивает вероятность появления пор в металле. Введение в шихту проволоки менее 0,25 масс. % TiN не обеспечивает заметного повышения износостойкости.

Введение в состав шихты никеля в количестве 1,0…1,3 масс. % стабилизирует аустенит в структуре наплавленного сплава, способствует повышению пластичности и ударной вязкости металла за счет увеличения подвижности дислокации и снижения сопротивления их движению со стороны кристаллической решетки железа. С увеличением содержания никеля изменяется количество и распределение эвтектических карбидов и увеличивается количество твердого раствора в структуре, соответственно повышается пластичность наплавленного металла. Содержание никеля в данном типе наплавленного металла свыше 1,3 масс. % нежелательно по причине уменьшения твердости металла как при нормальной, так и при повышенных до 600°С температурах, а содержание менее 1,0 масс. % не обеспечивает достаточного уровня пластичности металла.

Углерод, образуя карбиды хрома, молибдена, титана, железа и участвуя в образовании карбоборидов, определяет не только количество, состав и морфологию твердой фазы, но и строение матрицы сплава. Так, увеличение содержания углерода в сплаве способствует повышению количества остаточного аустенита и приводит к появлению карбоборидной эвтектики на основе аустенита в нем. Введение в состав шихты проволоки графита в количестве 1,3…3,3% обеспечивает формирование повышенной объемной доли упрочняющей фазы, что обусловливает высокую (до 60 HRC) твердость, износостойкость и термическую стабильность сплава в условиях интенсивного абразивного изнашивания при температуре до 600°С. Содержание углерода в шихте ПП менее 1,3% не обеспечивает достаточного количества упрочняющих фаз, а содержание более 3,3% создает твердую, но хрупкую матрицу, не способную удерживать упрочняющие фазы от выкрошивания.

Молибден, введенный в наполнитель проволоки в количестве 3,8…4,2 масс. %, взаимодействуя с углеродом, может образовывать дисперсные карбиды Мо2С, Мо23С6, (Ti, Mo)C и др., которые способствуют повышению жаропрочности и теплостойкости наплавленного металла, а также уменьшает склонность к отпускной хрупкости.

Введение феррохрома в шихту проволоки в количестве 24,0…26,0 масс. % обеспечивает достаточный уровень жаростойкости, коррозионной и термической стойкости наплавленного металла. С повышением содержания хрома растворимость углерода в матрице сплава уменьшается, что облегчает выделение карбидных фаз и увеличивает износостойкость металла. При повышенном содержании углерода, а также наличии бора в металле формируется большое количество твердых карбоборидов состава (Fe, Cr)7(C, B)3, более стойких против коагуляции при нагреве, чем карбиды типа Fe3C, и оказывающих значительное влияние на износостойкость. При содержании феррохрома в составе шихты менее 24,0 масс. % снижается жаро- и коррозионная стойкость наплавленного металла, а при увеличении свыше 26,0 масс. % возможно снижение пластичности наплавленного металла.

Кремнефтористый натрий в количестве 0,8…1,0 масс. % в составе шихты проволоки способствует уменьшению поро- и трещинообразования в наплавленном металле, обусловленном наличием водорода. Содержание кремнефтористого натрия выше 1,0% приводит к снижению устойчивости горения дуги, а содержание ниже 0,8 масс. % - повышает вероятность образования пор и трещин в металле.

Железный порошок вводится в шихту проволоки для получения расчетного коэффициента ее заполнения и обеспечения требуемого химического состава металла.

Пример. Опытные образцы проволок диаметром 3 мм различных составов (табл. 1) изготавливали по известной в технике технологии с использованием ленты размером 0,5×12 мм из стали 08 кп, а также порошков: феррохрома ФХ010 (ГОСТ 4757-91), ферромолибдена ФМо58 (ГОСТ 4759-91), диборида титана (ТУ 15-66), графита серебристого ГСМ-2 (ГОСТ 181-91), никеля ПНЭ-1 (ГОСТ 9722-97), кремнефтористого натрия Na2SiF6 (ГОСТ 8777-98), железа ПЖВ1 (ГОСТ 9849-86) и нитрида титана. Порошок нитрида титана, полученный плазмохимическим синтезом, представлял собой смесь нано- и микрочастиц размерами от 10 нм до 50 мкм. Коэффициент заполнения проволок порошкообразной шихтой составлял 0,37…0,38.

Дуговую наплавку на пластины из стали Ст3пс осуществляли в среде аргона и углекислого газа. Размеры пластин составляли 80×150 мм при толщине 14 мм (в соответствии с ГОСТ 26101-84). Основные параметры режима: сварочный ток (постоянный, полярность обратная) - 290-310 А, напряжение на дуге - 25-26 В, скорость наплавки - 25 м/ч. Температура предварительного подогрева пластин составляла 250°С.

Стойкость наплавленного металла к абразивному изнашиванию при температуре 600°С определяли трением образца по металлическому контртелу через абразивную прослойку в виде смеси порошков железной окалины и корунда в соотношении (масс. %) 50:50. Образец нагревали проходящим током, контртело - электрическим нагревателем сопротивления. Износостойкость наплавленного металла оценивали по величине потери массы. Результаты сравнительных испытаний приведены в таблице 2.

Как видно из таблицы, наилучшими показателями износостойкости обладает металл, наплавленный порошковой проволокой состава 3, входящего в заявляемый диапазон содержаний компонентов.

Формирование наплавленного металла отличное, поры и трещины отсутствуют. Структура металла состоит из высокодисперсной карбоборидной эвтектики, твердая фаза которой представлена преимущественно карбоборидами (Fe, Cr)7(C, B)3, и равномерно распределенных по объему металла мелких (1…4 мкм) карбидов (Ti, Mo)C1-x, в центре которых расположены частицы TiN, как кубической, так и округлой формы. Это свидетельствует о том, что частично растворившиеся в металлическом расплаве частицы TiN из состава шихты проволоки, а также частицы TiN, выделившиеся из расплава, становятся центрами для кристаллизации карбидов (Ti, Mo)C1-x. Формирование мелкозернистой композиционной структуры металла, упрочненной большим количеством термостабильных твердых фаз, обусловливает увеличение его твердости и стойкости к абразивному изнашиванию при нормальных и повышенных до 600°С температурах.

Металл, наплавленный порошковыми проволоками с соотношениями компонентов, выходящими за предлагаемые границы, при испытаниях показал более низкие эксплуатационные свойства, при этом в нем возможно образование дефектов в виде трещин и пор.

Таким образом, предложенная порошковая проволока позволяет в 1,5-2 раза повысить стойкость наплавленного ей металла к абразивному изнашиванию при температуре до 600°С по сравнению с прототипом.

Порошковая проволока для наплавки металлургического инструмента, состоящая из стальной оболочки и порошкообразной шихты, содержащей феррохром, ферромолибден, графит, кремнефтористый натрий и железный порошок, отличающаяся тем, что порошкообразная шихта дополнительно содержит никель, диборид титана и ультрадисперсный порошок нитрида титана при следующем соотношении компонентов проволоки, мас.%:

Феррохром 24,0-26,0
Ферромолибден 3,8-4,2
Диборид титана 2,9-3,7
Графит 1,3-3,3
Никель 1,0-1,3
Железный порошок 0,2-2,2
Кремнефтористый натрий 0,8-1,0
Ультрадисперсный порошок
нитрида титана 0,25-0,60
Стальная оболочка остальное



 

Похожие патенты:

Группа изобретений относится к трубчатой сварочной проволоке, способу ее изготовления и сварке деталей с ее использованием. Трубчатая сварочная проволока содержит оболочку и гранулированную сердцевину, расположенную внутри оболочки, содержащую больше чем приблизительно 2,4% по весу активатора стекловидного шлака, в виде одного или более компонентов, выбранных из группы, содержащей диоксид кремния, диоксид титана, борат или оксид натрия, а также газообразующие, легирующие, раскисляющие и денитрифицирующие компоненты.

Предлагаемое изобретение относится к машиностроению и может быть применено при механизированной и автоматической подводной сварке и наплавке металлических деталей.

Изобретение может быть использовано для сварки нержавеющих сталей, в частности сталей серии 400, сварочной проволокой с флюсовой сердцевиной. Нержавеющая хромистая сталь трубчатой оболочки содержит, вес.%: 10-18 Cr, менее 5 Ni.

Предлагаемое изобретение относится к машиностроению и может быть применено при механизированной и автоматической сварке и наплавке металлических деталей под водой.

Изобретение может быть использовано при наплавке порошковой проволокой рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости.

Порошковая проволока может быть использована при механизированной и автоматической подводной сварке и наплавке металлических деталей. Порошковая проволока состоит из стальной оболочки и размещенной внутри нее шихты.

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей. На внешней и/или внутренней поверхности металлической оболочки порошковой проволоки выполнено нанокомпозиционное покрытие в виде металлической матрицы с распределенной в ней смесью наноразмерных частиц фторида металла и редкоземельных металлов.

Изобретение может быть использовано при механизированной и автоматической сварке и наплавке металлических деталей под водой мокрым способом. В стальной оболочке проволоки размещена шихта, содержащая компоненты в следующем соотношении, мас.%: рутиловый концентрат 25-37; плавиковый шпат 8-17; железный порошок 32-45; ферромарганец 5-9; никель 1-3; карбонат щелочного металла 3-7; комплексный фторид щелочного металла 3-13.

Порошковая проволока может быть использована при механизированной и автоматической сварке и наплавке металлических деталей под водой мокрым способом. В стальной оболочке размещена шихта, содержащая компоненты в следующем соотношении, мас.%: рутиловый концентрат 23-42; гематит 18-27; железный порошок 28-42; ферромарганец 3-8; никель 3-5; комплексный фторид щелочного металла 5-18.
Изобретение относится к области металлургии, в частности к порошковой проволоке для получения жаростойкого покрытия дуговой металлизацией, и может быть использовано для защиты поверхности деталей, работающих в условиях высокотемпературной газовой коррозии.

Изобретение относится к области металлургии, а именно к металлу сварного шва, применяемому в сварных конструкциях. Металл сварного шва, содержащий в мас. %: С от 0,02 до 0,10, Si от 0,10 до 0,60, Mn от 0,90 до 2,5, Ni от 0,20 до 2,00, Cr от 0,05 до 1,0, Мо от 0,10 до 1,50, Ti от 0,040 до 0,15, В от 0,0010 до 0,0050, О от 0,030 до 0,100, и N 0,015 или менее, железо и неизбежные примеси – остальное. Средний диаметр эквивалентной окружности карбидов, имеющих диаметр эквивалентной окружности 0,40 мкм или более, среди присутствующих на границах зерен металла сварного шва карбидов, составляет 0,75 мкм или менее. Металл сварного шва имеет высокие значения низкотемпературной ударной вязкости при более низких температурах, прочности после SR-отжига, а также при применении дуговой сварки в защитном газе с использованием проволоки с флюсовой сердцевиной. 2 н. и 3 з.п. ф-лы, 4 ил., 6 табл., 1 пр.

Изобретение может быть использовано при наплавке порошковой проволокой рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта для порошковой проволоки содержит пыль электрофильтров алюминиевого производства и вольфрамовый концентрат КШ-4, при следующем соотношении компонентов, мас. %: вольфрамовый концентрат 19-81, пыль электрофильтров алюминиевого производства 19-81. Порошковая проволока с упомянутой шихтой обеспечивает снижение стоимости сварочного процесса за счет оптимизации состава шихты и повышение качественных показателей наплавляемого металла. 2 табл.

Изобретение может быть использовано для дуговой наплавки. Металлическая оболочка выполнена из стали. Сердечник выполнен из шихты, содержащей компоненты в следующем соотношении, мас.%: графит 28,0-30,0, двуокись циркония 9,6-12,5, двуокись кремния 9,00-12,25, окись алюминия 0,16-0,25, вольфрамат кальция 35,2-39,0, известь – остальное. Технический результат заключается в получении наплавленного слоя, обеспечивающего долговечную работу деталей в трущихся парах в условиях контактной динамической нагрузки. 4 табл., 3 пр.

Изобретение относится к области металлургии, а именно к сварочной проволоке с флюсовым сердечником для дуговой сварки в защитном газе, и может быть использована при сварке трубопровода. Сварочная проволока состоит из стальной оболочки и флюсового сердечника и содержит относительной общей массы проволоки, мас.%: Mn 1,5-3,1, Ni 0,2 до менее чем 1,00, Si 0,3-1,0, причем в качестве источника кремния использовано по меньшей мере одно из кремния, оксида кремния и Si-сплава, Ti 0,05-0,29, С 0,06-0,30, В 0,0030-0,0090, причем в качестве источника бора использовано по меньшей мере одно из бора, оксида бора и B-сплава, S 0,005-0,040, Al 0,10 или менее, К и Na в сумме 0,20 или менее, причем в качестве источника калия и натрия использованы соединения калия и натрия, и F 0,20 или менее, причем в качестве источника фтора использовано соединение фтора, Fe и примеси – остальное. Сварочная проволока обеспечивает высокую технологичность участка сварки, в том числе высокие значения предела прочности и величины поглощенной энергии при низкой температуре в металле сварного шва в состоянии после сварки и после отжига для снятия напряжений. 6 з.п. ф-лы, 1 ил., 8 табл.

Изобретение может быть использовано для износостойкой наплавки самозащитной порошковой проволокой деталей, работающих в коррозионных средах в условиях интенсивного абразивного изнашивания в сочетании с ударными нагрузками. Порошковая проволока состоит из малоуглеродистой стальной оболочки и порошкообразной шихты при коэффициенте заполнения 35-40%. Шихта содержит следующие компоненты, мас. %: феррохром 40,0-50,0, ферросилиций 2,0-4,0, ферромарганец 2,0-4,0, феррованадий 18,0-20,0, графит 2,0-4,0, карбид титана, полученный методом самораспространяющегося высокотемпературного синтеза (СВС) 20,0-30,0, алюминиевый порошок 1,0-2,0 и мрамор 2,0-4,0. Порошковая проволока обеспечивает повышение твердости, коррозионной стойкости и износостойкости наплавленных покрытий при отсутствии в наплавленном металле трещин, пор и других дефектов. 1 табл.
Наверх