Способ очистки запыленного воздуха

Изобретение предназначено для мокрой инерционной очистки спутных закрученных газовых потоков и может применяться в горной, химической, текстильной промышленности. В цилиндрическую сепарационную камеру по нижнему каналу подают первичный запыленный воздух и одновременно по верхнему каналу - вторичный воздух. Потоки, проходя через завихрители, формируют циклонирующие в одном направлении нисходящий и восходящий потоки воздуха, в процессе взаимодействия которых взвешенные частицы выпадают. Перед подачей в сепарационную камеру запыленные потоки воздуха проходят через низкоскоростную трубу Вентури, в которой воздух орошают жидкостью посредством форсунок, установленных навстречу поступающему потоку запыленного воздуха. При этом осуществляется предварительное укрупнение пылевых частиц с образованием более крупных агломератов, сепарация которых значительно увеличивается. Способ позволяет значительно повысить эффективность работы пылеулавливающего устройства и степень очистки запыленных газов, т.к. позволяет очистить их, в том числе, и от мелкодисперсных частиц пыли и частиц субмикронных размеров, а также снизить энергозатраты. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов, главным образом, от мелкодисперсных частиц и частиц субмикронных размеров.

В настоящее время одной из основных задач при очистке запыленного воздуха является снижение уноса, в особенности мелкодисперсной пыли.

При сухой очистке пылегазового потока не всегда возможно достигнуть требуемой степени очистки, особенно от мелкодисперсной пыли и пыли субмикронных размеров по ряду известных причин, связанных с уносом этой фракции.

Значительного эффекта по снижению уноса мелкодисперсных частиц пыли (с dч<0,5 мкм и субмикронных) можно достичь при мокрой очистке запыленных газов.

Известен способ, при котором в сепарационную камеру подают потоки запыленного газа, которые, проходя через завихрители, формируют в камере восходящий и нисходящий потоки газа. При взаимодействии этих циклонирующих в одном направлении потоков взвешенные частицы выпадают в бункер, через кольцевой зазор между отбойной шайбой и корпусом сепарационной камеры, а очищенный газ поступает в выходной патрубок. Стабилизация потока, которая осуществляется за счет выполненных в виде криволинейных обводов стабилизации, способствует уменьшению уноса пыли в приосевую зону паразитарными вихрями в области, расположенной после завихрителя (Патент РФ №2183497, кл. B01D 45/12, В04С 3/06, 2000). Принят за прототип.

Недостатком этого способа является низкая эффективность очистки запыленных газов от мелкодисперсных частиц и частиц субмикронных размеров.

Техническим результатом изобретения является повышение эффективности работы пылеулавливающего устройства, повышение качества очищаемого воздуха и снижение энергозатрат при очистке запыленного воздуха.

Указанный технический результат достигается тем, что в известном способе очистки запыленного воздуха, включающем одновременную подачу в цилиндрическую сепарационную камеру по каналам подачи потоков запыленного воздуха, состоящим из подводящего воздуховода, конфузора, горловины, диффузора и патрубка ввода воздуха, потока первичного воздуха, поступающего по нижнему каналу подачи запыленного воздуха и потока вторичного воздуха - по верхнему каналу подачи запыленного воздуха, которые, проходя через соответствующие завихрители, формируют циклонирующие в одном направлении нисходящий и восходящий потоки воздуха, в процессе взаимодействия которых взвешенные частицы, проходя через кольцевой зазор между отбойной шайбой и корпусом сепарационной камеры, выпадают в бункер, а очищенный воздух через выходной патрубок отводят в атмосферу, особенностью является то, что каналы подачи запыленного воздуха оснащают приспособлением в виде трубы Вентури, где запыленный поток воздуха перед его подачей в сепарационную камеру орошают жидкостью посредством форсунок, установленных навстречу поступающему потоку запыленного воздуха. При этом первичный воздух орошают жидкостью, дисперсный состав частиц разбрызгиваемой форсункой жидкости в поток воздуха составляет 10÷70 мкм, а вторичный воздух орошают жидкостью, дисперсный состав частиц разбрызгиваемой форсункой жидкости в поток воздуха составляет 2÷10 мкм. В качестве орошающей жидкости используют воду.

В предложенном способе очистку запыленного воздуха осуществляют в вихревом пылеуловителе, у которого нижний канал для подачи первичного воздуха и верхний канал для подачи вторичного воздуха оснащают приспособлением в виде низкоскоростной трубы Вентури, снабженным форсункой, которая орошает поступающие в каналы запыленные потоки воздуха. Форсунки устанавливают перед горловиной навстречу запыленному потоку воздуха. Дисперсный состав разбрызгиваемой форсункой орошающей жидкости (воды) первичного запыленного воздуха составляет 10÷70 мкм, а вторичного - 2÷10 мкм.

К патрубкам ввода первичного и вторичного воздуха запыленный поток воздуха поступает через трубу Вентури, снабженную форсункой для распыления жидкости, где осуществляется предварительное укрупнение пылевых частиц, т.е. образование более крупных агломератов, сепарация которых значительно увеличивается. Кроме того, орошение поступающих потоков запыленного воздуха приводит к образованию на внутренней поверхности сепарационной камеры жидкой пленки из орошаемой жидкости, что препятствует отскоку пылевых частиц от нее и способствует их улавливанию и смыванию в сборный бункер.

С целью снижения энергозатрат на очистку воздуха предварительная коагуляция мелкодисперсных пылевых частиц производится в орошаемых низкоскоростных трубах Вентури при скоростях потока очищаемого воздуха в горловине трубы Вентури Vг до 40 м/с. Кроме того, коэффициенты местного сопротивления конфузора и диффузора трубы Вентури приняты минимальными.

Расчет низкоскоростных труб Вентури (фиг. 2):

Скорость движения потока воздуха в трубе можно выразить функцией

Vп=f(V вит.част; ρчаст),

где Vвит.част - скорость витания частиц, м/с; ρчаст - плотность частиц, кг/м3.

Скорость движения потока воздуха в горловине принимаем в виде выражения:

где Vг - скорость движения потока воздуха в горловине, м/с;

Vп - скорость движения потока воздуха в трубе, м/с.

Принимаем lдиф≈2lкон,

где lдиф - длина диффузора, м;

lкон - длина конфузора, м.

Диаметр горловины dг определяется из условия неразрывности

где Fп - площадь сечения трубы, м2;

Vп - скорость движения потока воздуха в трубе, м/с;

Fг - площадь сечения горловины, м2;

Vг - скорость движения потока воздуха в горловине, м/с.

Из формулы (2) выражаем Fг

Выражаем площади горловины Fг и трубы Fп через известную формулу

Подставляем полученные выражения в формулу (2)

Принимаем скорость движения потока воздуха в трубе Vп=20 м/с. В этом случае согласно формуле (1) скорость движения потока воздуха в горловине Vг≈40 м/с. В этом случае формулу (6) можно записать в виде

Преобразовав формулу (7), получим

Выполнив дальнейшее преобразование, получим

Отсюда получаем

Потери давления в трубе Вентури определяются по формуле

где ΔРконф - потери давления в конфузоре, Па;

R - удельные потери давления в горловине, Па/м;

lг - длина горловины (принимаем равной dп), м;

ΔРдиф - потери давления в диффузоре, Па.

Преобразовав формулу (11), получим

где ξк - коэффициент местного сопротивления конфузора;

ξд - коэффициент местного сопротивления диффузора.

Из формулы видно, что ΔРтрубы Вентури=f(Vг) и при принятом соотношении геометрических размеров будет минимальным (Rlг мало и им можно пренебречь). Значения ξк, ξд, R приняты по Справочнику проектировщика «Внутренние санитарно-технические устройства», часть 3, «Вентиляция и кондиционирование воздуха», книга 2, М.: Стройиздат, 1992.

На фиг. 1 представлено продольное сечение вихревого пылеуловителя, где показаны: сепарационная камера 1, лопаточный завихритель 2, выходной патрубок 3, патрубок ввода вторичного воздуха 4, стабилизирующий обтекатель 5, цилиндрический обтекатель 6, отбойная шайба 7, бункерное отделение 8, стабилизирующее устройство 9, патрубок ввода первичного воздуха 10, подводящий воздуховод 11, конфузор 12, форсунка 13, горловина 14 и диффузор 15.

Вихревой пылеуловитель содержит цилиндрическую сепарационную камеру 1, в верхней части которой находится канал подачи вторичного воздуха, лопаточный завихритель 2, коаксиально расположенный выходной патрубок 3 и патрубок ввода вторичного воздуха 4, а также стабилизирующие обтекатели 5. В нижней части сепарационной камеры 1 находится бункерное отделение 8 с нижнебоковым отводом пульпы, канал подачи первичного воздуха, цилиндрический обтекатель 6 с лопаточным завихрителем 2 и отбойной шайбой 7. В бункерном отделении 8 располагается стабилизирующее устройство 9 в виде конфузора с патрубком ввода первичного воздуха 10, ниже которого расположены сопло и поворотные лопатки (не показаны). Каналы подачи первичного и вторичного воздуха состоят из подводящего воздуховода 11, форсунки 13, установленной в конфузоре 12, горловины 14, диффузора 15 и патрубка ввода воздуха.

Способ очистки запыленного воздуха осуществляется следующим образом. Запыленный поток первичного воздуха поступает в сепарационную камеру 1 по каналу подачи первичного воздуха через подводящий воздуховод 11, конфузор 12, в котором установлена форсунка 13, разбрызгивающая воду навстречу набегающему запыленному потоку первичного воздуха. Далее поток первичного воздуха проходит через горловину 14, диффузор 15 и по патрубку ввода первичного воздуха 10 подается через завихритель 2 в сепарационную камеру 1, где формируется восходящий вихревой поток. Вследствие разнонаправленного движения частиц пыли и разбрызгиваемой воды происходит активная коагуляция пылевых частиц и частиц воды.

Одновременно с первичным потоком в сепарационную камеру 1 сверху по каналу подачи вторичного воздуха подается поток вторичного воздуха. Поток вторичного воздуха, как и в первом случае, проходит через подводящий воздуховод 11, конфузор 12, в котором установлена форсунка 13, разбрызгивающая воду навстречу набегающему потоку вторичного воздуха. Затем поток вторичного воздуха проходит горловину 14, диффузор 15 и по патрубку ввода вторичного воздуха 4 через лопаточный завихритель 2 подается в сепарационную камеру 1, где формируется вторичный нисходящий поток запыленного воздуха, который перемещает частицы уловленной пыли в бункерное отделение 8, пропуская их через кольцевой зазор между отбойной шайбой 7 и корпусом сепарационной камеры 1.

Вращение двух встречных потоков (первичного и вторичного воздуха) внутри сепарационной камеры 1 имеет одно направление.

Укрупнившиеся за счет коагуляции агломераты эффективно сепарируются в сепарационной камере 1. Так как внутренняя поверхность сепарационной камеры 1 в процессе сепарации покрывается пленкой стекающей воды, то мелкодисперсные частицы пыли, движущиеся в ламинарном подслое, у внутренней поверхности сепарационной камеры 1, не отскакивают, а оседают на ней под воздействием градиентной коагуляции.

Уловленная пыль в виде пульпы стекает в бункерное отделение 8 через кольцевой зазор между отбойной шайбой 7 и корпусом сепарационной камеры 1, а очищенный воздух по выходному патрубку 3 отводится в атмосферу.

Для предотвращения «зарастания» внутренних поверхностей вихревого пылеуловителя и улучшения смыва уловленной пыли расход воды, разбрызгиваемой форсунками в поток первичного запыленного воздуха, принимают в 2-3 раза больше, чем в поток вторичного воздуха.

Дисперсный состав частиц разбрызгиваемой форсункой воды в поток первичного воздуха составляет 10÷70 мкм, что способствует лучшей их сепарации в нижней части сепарационной камеры и лучшему смыву уловленной пыли. Дисперсный состав частиц разбрызгиваемой форсункой воды в поток вторичного воздуха составляет 2÷10 мкм, что обеспечивает лучшую взаимную коагуляцию пылевых и жидких частиц во всем объеме сепарационной камеры.

Предложенный способ позволяет значительно повысить эффективность работы пылеулавливающего устройства и степень очистки запыленных газов за счет предварительного укрупнения пылевых частиц, сепарация которых значительно увеличивается. Кроме этого, орошение потоков запыленного воздуха приводит к образованию на внутренней поверхности сепарационной камеры жидкой пленки, которая препятствует отскоку пылевых частиц от сепарационной камеры и способствует их улавливанию и смыванию в сборный бункер.

Использование приспособления в виде низкоскоростной трубы Вентури позволяет снизить энергозатраты при очистке запыленных газов.

1. Способ очистки запыленного воздуха, включающий одновременную подачу в цилиндрическую сепарационную камеру по каналам подачи потоков запыленного воздуха, состоящим из подводящего воздуховода, конфузора, горловины, диффузора и патрубка ввода воздуха, потока первичного воздуха, поступающего по нижнему каналу подачи запыленного воздуха и потока вторичного воздуха - по верхнему каналу подачи запыленного воздуха, которые, проходя через соответствующие завихрители формируют циклонирующие в одном направлении нисходящий и восходящий потоки воздуха, в процессе взаимодействия которых взвешенные частицы, проходя через кольцевой зазор между отбойной шайбой и корпусом сепарационной камеры, выпадают в бункер, а очищенный воздух через выходной патрубок отводят в атмосферу, отличающийся тем, что каналы подачи запыленного воздуха оснащают приспособлением в виде трубы Вентури, где запыленный поток воздуха перед его подачей в сепарационную камеру орошают жидкостью посредством форсунок, установленных навстречу поступающему потоку запыленного воздуха.

2. Способ по п. 1, отличающийся тем, что первичный воздух орошают жидкостью, при этом дисперсный состав частиц разбрызгиваемой форсункой жидкости в поток воздуха составляет 10-70 мкм.

3. Способ по п. 1, отличающийся тем, что вторичный воздух орошают жидкостью, при этом дисперсный состав частиц разбрызгиваемой форсункой жидкости в поток воздуха составляет 2-10 мкм.

4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве орошающей жидкости используют воду.



 

Похожие патенты:

Изобретение относится к устройствам для очистки воздуха, преимущественно в окрасочных камерах, и может найти применение в окрасочном производстве различных отраслей промышленности.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к молочной промышленности, а именно к процессам очистки отработанного теплоносителя от дисперсных частиц при производстве сухого молока. Отработанный теплоноситель подается тангенциально в нижнюю часть корпуса и перемещается в вертикальном направлении с одновременным вращением.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технологии очистки газов от пыли в теплоэнергетике, в черной и цветной металлургии. Способ очистки газов от пыли включает ввод в циклон с верхним осевым выхлопным патрубком очищаемого газа, очистку газа от пыли за счет действия центробежных сил при поступательном движении вращающегося потока сверху вниз с разворотом очищенного потока вверх, сбор потока уловленной пыли в пылесборнике с пылевыпускным отверстием диаметром В, распыление в пылесборнике вспомогательной коагулирующей жидкости плотностью ρж в форме струй, ориентированных на поток уловленной пыли, с образованием смеси уловленной пыли и жидкости, брикетирование смеси уловленной пыли и жидкости на вальцовом прессе с получением брикетов плотностью ρб и размерами L.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. Насадка для скруббера выполнена в виде цилиндрического кольца, к боковой поверхности которого оппозитно друг другу прикреплены две полусферические поверхности.

Изобретение относится к экологической очистке и нейтрализации выпускных газов от тонкодисперсных, взвешенных частиц, серного ангидрида, оксидов азота, углерода и других токсичных компонентов.

Узел фильтра содержит воздушный фильтр, отсек воздушного фильтра с расположенным в нем воздушным фильтром и крышку, закрывающую отсек воздушного фильтра. Крышка имеет ребра, расположенные вдоль боковых стенок крышки.

Группа изобретений относится к способу и устройству для удаления твердых веществ в форме частиц из газового потока, в частности несущего газового потока для транспортировки твердых веществ в форме частиц.

Изобретение относится к технике сухого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике сухого пылеулавливания. .

Изобретение относится к технике сухого пылеулавливания. .

Изобретение относится к устройствам для отделения примесей от воздушного потока и может быть использовано в сельскохозяйственном производстве, в мукомольно-элеваторной и комбикормовой промышленности (например, в пневмосистеме зерно- и семяочистительных машин).

Изобретение относится к устройствам для очистки от золы и пыли и может применяться в котлах и топках. .

Изобретение относится к деаэрационному устройству для отделения твердых частиц от воздуха или другого газа. .

Изобретение относится к пылеочистке и может применяться в любой отрасли народного хозяйства. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов. Насадочный скруббер, содержащий корпус с патрубками для запыленного и очищенного газа, оросительное устройство с форсунками, опорные решетки, между которыми расположена насадка, и устройство для отвода шлама, при этом насадка выполнена тороидальной формы, имеющей в сечении круг, в котором выполнены несквозные выемки, форсунка оросительного устройства выполнена с перфорированным распылительным диском и содержит цилиндрический корпус со штуцером, имеющим цилиндрическое отверстие, соединенное с диффузором, а к корпусу посредством трех спиц подсоединен распылитель, выполненный в виде перфорированного диска, диск распылителя форсунки образован двумя поверхностями, спицы с элементами пропеллерного типа расположены радиально и по форме могут быть выполнены прямыми и изогнутыми, распылитель форсунки выполнен из твердых материалов, карбида вольфрама, при этом корпус элемента насадки выполнен в виде трех полусферических поверхностей, соединенных между собой с зазором посредством крепежного элемента через простановочные элементы в виде колец, а элементы, увеличивающие площадь контакта потока с насадкой, выполнены в виде гофрированных элементов, расположенных с зазорами относительно полусферических поверхностей корпуса элемента насадки, при этом полусферические поверхности элемента насадки выполнены перфорированными. Технический результат - повышение эффективности и надежности процесса пылеулавливания, а также снижение металлоемкости и виброакустической активности аппарата в целом. 6 ил.
Наверх