Способ ультразвукового контроля изделия

Использование: для неразрушающего ультразвукового контроля изделий. Сущность изобретения заключается в том, что осуществляют ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, при этом проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки. Технический результат: обеспечение возможности, качества, надежности и полноты ультразвукового контроля изделий. 1 ил.

 

Предлагаемое изобретение относится к области неразрушающего ультразвукового контроля изделий, например, цилиндрической формы, представляющий собой трубу из металла или стеклопластика, заполненную полимерным материалом с каналом внутри.

Известны способы ультразвукового контроля, основанные на теневом прозвучивании изделий ультразвуковыми колебаниями:

- Матаушек И. Ультразвуковая техника. М.: Металлургия, 1962, с. 357-369.

- Бергман Л. Ультразвук, М.: ПИЛ, 1957, с. 432-444.

- Шрейбер Д. Ультразвуковая дефектоскопия, М.: Металлургия, 1965, с. 79-122.

В соответствии с данными способами приемный и излучающий преобразователи, активные элементы в которых выполнены из пьезоэлектрических или магнитострикционных материалов, размещают взаимно противоположно по разные стороны контролируемого изделия и при перемещении преобразователей или изделия относительно друг друга сканируют поверхность изделия при его контроле.

Для обеспечения акустических контактов ультразвуковых преобразователей с поверхностью контролируемого изделия используют, как правило, разнообразные жидкости, например воду, глицерин, трансформаторное масло, водный раствор карбоксиметилцеллюлозы и др. в виде тонких слоев контактной жидкости. В ряде случаев контроль проводится при погружении контролируемого изделия в специальные емкости, заполненные иммерсионной жидкостью. Обеспечение акустического контакта ультразвуковых преобразователей с помощью описанных выше способов представляет определенные трудности. Погружение ультразвуковых преобразователей и изделий в жидкость, с одной стороны, усложняет и удорожает процесс контроля в связи с необходимостью разработки, изготовления и установки специального дорогостоящего оборудования, а с другой стороны, возможность погружения изделий в жидкость зависит от степени воздействия ее на физико-механические характеристики полимерного материала.

Известен также способ ультразвукового контроля (Заклюковский В.И., Карцев Г.Т. Применение пьезоэлектрических преобразователей для бесконтактного ультразвукового контроля изделий / Дефектоскопия, 1978, №3, с. 28-33). Сущность данного способа заключается в том, что ввод ультразвуковых колебаний в контролируемое изделие излучающим преобразователем и прием ультразвуковых колебаний, прошедших свод изделия, приемным преобразователем осуществляется в воздушной среде. Практическая реализация способа, выбранного за прототип, бесконтактного ультразвукового контроля изделий осуществлена в изобретении (патент №2295124).

Особенность данного способа заключается в том, что при переходе границы воздух - изделие значительная часть энергии ультразвуковых колебаний отражается и только малая ее часть проходит через эту границу. Это обстоятельство хорошо иллюстрирует известная зависимость коэффициента отражения на границе двух сред от волновых сопротивлений этих сред

, где

R - коэффициент отражения на границе двух сред;

ρ1 - плотность материала первой среды;

c1 - скорость распространения ультразвуковых колебаний в материале первой среды;

ρ2 - плотность материала второй среды;

c2 - скорость распространения ультразвуковых колебаний в материале второй среды.

И тем не менее несмотря на определенные потери ультразвуковой энергии на границах изделие - воздух данный способ дает большой выбор для реализации теневого ультразвукового контроля изделий в разных вариантах, в частности, как крупногабаритных с большими каналами (с радиальной ориентировкой приемного преобразователя в канале изделия), так и малогабаритных изделий с осевой ориентировкой приемного преобразователя.

Существенным недостатком данного способа является необходимость двухстороннего (снаружи изделия и внутри канала) доступа к изделию. Любые ограничения этого условия приводят к уменьшению возможного объема контроля изделий. Такими ограничениями могут быть как производственные условия, в которых проводится контроль изделий, так и конструктивные особенности конкретных изделий, в той или иной степени мере ограничивающие возможный объем контроля. К таким особенностям можно отнести специальные металлические кожуха, закрывающие поверхность изделий, а также теплозащитные покрытия, приклеиваемые к поверхностям изделий. Акустическая прозрачность таких изделий в значительной степени зависит от качества таких покрытий и сплошности скрепления покрытия с корпусом. Практически теплозащитное покрытие, неоднородное в разных местах вследствие как неоднородности затухания ультразвуковых колебаний по всему покрытию, так и возможных расслоений на границе покрытие - корпус, на работе изделия существенно не сказывается, но оно полностью или частично затрудняет прохождение ультразвуковых колебаний через свод изделия в местах акустической непрозрачности и практически исключает возможность получения информации о сплошности скрепления корпуса с полимерным материалом на этих участках, от состояния которой существенно зависит работа изделия.

Практический опыт бесконтактного ультразвукового контроля изделий на предприятиях отрасли показал, что процент изделий, возможность полноценного ультразвукового контроля сплошности скрепления которых на границе корпус - полимерный материал затруднен, достаточно высок. Чтобы обеспечить возможность выявления дефектов в изделиях, когда применение ультразвуковых методов невозможно, привлекают для решения данной проблемы другие методы и средства, такие, например, как неразрушающий контроль с использованием бетатронов и радиоактивных материалов, что, с одной стороны, значительно усложняет и удорожает процесс контроля изделий, а с другой, в силу меньшей чувствительности к выявлению дефектов все же не дает такой информации, особенно в отношении сплошности скрепления изделий, какую обычно дает ультразвуковой контроль.

Технической задачей предлагаемого изобретения является обеспечение возможности, качества, надежности и полноты ультразвукового контроля изделий, контроль которых известными способами был затруднителен, ограничен или невозможен, путем создания условий для увеличения эффективности контроля, в частности повышения информации в отношении сплошности скрепления корпуса с полимерным материалом.

Технический результат достигается тем, что предлагается способ ультразвукового контроля, включающий ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, отличающийся тем, что при ограничении возможности прозвучивания свода изделия в силу различных обстоятельств, например из-за наличия защитных кожухов над поверхностью корпуса или из-за имеющихся на ряде изделий внешних покрытий сверху корпуса, в которых могут быть акустически непрозрачные зоны, обусловленные большим затуханием ультразвуковых колебаний или расслоениями в покрытии, проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки.

Сущность способа поясняется представленной на фиг. 1 схемой ультразвукового контроля, на которой схематично представлены: внешнее защитное покрытие (1), корпус изделия (2), дефект (3), излучающий преобразователь (4), полимерный материал (5), приемное ультразвуковое устройство (6), изделие (7). В соответствие с этой схемой предлагаемый способ реализуется следующим образом:

1. Проводят штатный ультразвуковой контроль изделия, по результатам которого отмечают на поверхности изделия акустически прозрачные и непрозрачные места.

2. Устанавливают излучающий преобразователь (4) неподвижно на один из акустически прозрачных участков изделия (7).

3. Выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия.

4. Ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала на нем в пределах экрана без ограничения сверху.

5. При неподвижно установленном излучающем преобразователе сканируют приемным устройством поверхность канала изделия в пределах акустически непрозрачного участка и симметрично расположенного другого участка, фиксируя и сравнивая уровни сигналов на этих участках. Определяют места с пониженным относительно другого участка уровнем сигнала.

6. Выбирают следующий акустически непрозрачный участок и другой симметричный ему относительно излучающего преобразователя участок. Сканируют оба участка, сравнивают сигналы, выявляя участки с пониженным уровнем сигнала.

7. Аналогично данным пунктам проводят неразрушающий контроль всех акустически непрозрачных участков изделия.

Предложенный способ с положительными результатами апробирован в лабораторных условиях и в условиях опытного производства. Способ позволяет значительно расширить область применения ультразвукового контроля, повысить качество и надежность контроля. В результате проведенных экспериментов подтверждена эффективность предложенного способа как в отношении основных параметров контроля (чувствительность, производительность, отношение сигнал/шум аппаратуры и др.), так и в отношении информативности контроля. При контроле натурных изделий в условиях опытного производства всегда имели место четкая регистрация ультразвуковых колебаний, стабильные форма и уровень сигнала, адекватность реакции на искусственные дефекты типа расслоений, удовлетворительная чувствительность.

Полученные положительные результаты позволяют сделать вывод об эффективности применения предложенного способа для ультразвукового контроля изделий с ограниченным доступом к поверхности изделия или при наличии в изделиях покрытий с акустически непрозрачными зонами.

Способ ультразвукового контроля, включающий ввод излучающим преобразователем ультразвуковых колебаний в изделие, прозвучивание свода изделия импульсами ультразвуковых колебаний и прием прошедших свод изделия ультразвуковых колебаний в воздушной среде канала изделия устройством с приемным преобразователем, отличающийся тем, что при ограничении возможности прозвучивания свода изделия в силу различных обстоятельств, например из-за наличия защитных кожухов над поверхностью корпуса или из-за имеющихся на ряде изделий внешних покрытий сверху корпуса, в которых могут быть акустически непрозрачные зоны, обусловленные большим затуханием ультразвуковых колебаний или расслоениями в покрытии, проводят предварительный ультразвуковой контроль изделия известным способом для определения участков, на которых фиксируется прохождение ультразвуковых колебаний через свод изделия, после чего на один из таких участков устанавливают неподвижно излучающий ультразвуковой преобразователь, выбирают акустически непрозрачный участок изделия для определения на нем сплошности скрепления полимерного материала с прилегающей к нему поверхностью корпуса, а также участок изделия, симметричный ему относительно излучающего преобразователя и образующей поверхности изделия, проходящей через место контакта излучающего преобразователя с поверхностью изделия, ориентируют устройство с приемным преобразователем путем поворота и продольного перемещения относительно оси изделия на участок поверхности канала, радиально противоположный выбранному акустически непрозрачному участку, устанавливают уровень сигнала в пределах экрана без ограничения сверху, и при неподвижно установленном излучающем преобразователе сканируют ультразвуковым приемным преобразователем участки поверхности канала изделия, радиально-противоположные выбранному акустически непрозрачному участку и симметричному ему участку, и последовательно сравнивают сигналы на данных участках, выявляя участки, на которых имеет место относительное уменьшение уровня сигнала, после чего аналогичным образом проверяют другие акустически непрозрачные участки.



 

Похожие патенты:

Изобретение относится к неразрушающим методам и средствам дефектоскопии технически сложных элементов конструкции. Сущность: элемент конструкции, к которому есть доступ, нагружают переменной механической нагрузкой и вызывают его перемещения.

Изобретение относится к области исследования механических свойств проводящих и диэлектрических материалов при их обработке и может быть использовано при получении информации в процессе различных работ, связанных с токарной обработкой, сверлением, фрезерованием, шлифованием, прокаткой и другими технологическими операциями.

Использование: для неразрушающего контроля эхо-импульсным методом магистрального трубопровода. Сущность изобретения заключается в том, что контроль роста усталостной трещины производят путем одновременной передачи не менее двух сигналов в виде импульсных ультразвуковых колебаний от источников, размещенных в одной плоскости на одной общей платформе, причем сигналы формируют разной частоты и они направлены под разными углами к исследуемому объекту, а прием сигналов производят посредствам устройств, смонтированных на второй платформе в той же плоскости, что и источники импульсных ультразвуковых колебаний, при этом платформы располагают в одной плоскости на внешней стороне магистрального трубопровода, измеряют время распространения ультразвуковых колебаний в исследуемом образце и рассчитывают геометрические характеристики усталостных трещин магистральных трубопроводов.

Использование: для оценки величин дефектов в тестируемом объекте при ультразвуковом тестировании. Сущность изобретения заключается в том, что выполняют оценку величин дефектов в тестируемом объекте, реализуя следующие этапы: определение (S1) набора данных измерений тестируемого объекта; выполнение (S2) обработки способом фокусировки синтезированной апертуры (SAFT-обработки) определенного набора данных измерений; вычисление (S3) ультразвуковых эхо-сигналов для множества величин дефектов в тестируемом объекте посредством моделирования эхо-сигналов для сценария тестирования; выполнение (S4) SAFT-обработки для вычисленных ультразвуковых эхо-сигналов каждой из множества величин дефектов; оценка (S5) величины дефекта в SAFT-обработке определенного набора данных измерений посредством сопоставления SAFT-обработок вычисленных ультразвуковых эхо-сигналов.

Использование: для неразрушающего контроля степени поврежденности металлов контейнеров с отработавшим ядерным топливом. Сущность изобретения заключается в том, что на поверхность контейнера устанавливают ультразвуковые излучатели и приемники сигналов в равном количестве, которые формируют прямоугольные импульсы с соответствующей шириной, длительностью частотой.

Использование: для обнаружения дефектов ультразвуковыми методами. Сущность изобретения заключается в том, что предварительно в процессе калибровки ультразвукового дефектоскопа на эталонном образце - металлической пластине, имеющей одинаковую с водоводом толщину, геометрию и химический состав и акустически нагруженную на воду, пьезопреобразователем излучают в эталонный образец зондирующий УЗ (ультразвуковой) импульс, пьезопреобразователем принимают отраженный опорный эталонный реверберационный УЗ эхо-сигнал, который регистрируют и фиксируют, далее пьезопреобразователь устанавливают в точку контроля на поверхности металлического водовода, в контролируемый водовод пьезопреобразователем излучают зондирующий УЗ импульс, пьезопреобразователем принимают рабочий УЗ эхо-сигнал, который регистрируют и фиксируют, далее из зарегистрированного рабочего эхо-сигнала вычитают зарегистрированный ранее опорный эталонный реверберационный УЗ эхо-сигнал, полученный в результате вычитания разностный измерительный эхо-сигнал запоминают, а о глубине водяного кармана судят по измеренному времени запаздывания первого импульса разностного измерительного эхо-сигнала относительно зондирующего УЗ импульса.

Использование: для ультразвукового обнаружения микротрещин на рабочей выкружке головки рельса. Сущность изобретения заключается в том, что на поверхности катания рельса устанавливают два электроакустических преобразователя, направленных зеркально относительно плоскости поперечного сечения так, чтобы ультразвуковой зондирующий сигнал каждого из них после отражения от нижней выкружки попадал на верхнюю выкружку головки рельса, зондируют головку рельса, для чего, перемещая электроакустические преобразователи вдоль рельса, излучают каждым из них зондирующие и принимают отраженные от верхней выкружки головки рельса ультразвуковые сигналы в соответствующем временном окне, дополнительно принимают ультразвуковые сигналы, отраженные от нижних выкружек головки рельса в соответствующих временных окнах приема, чувствительность приема каждого электроакустического преобразователя во всех временных окнах приема постоянно выбирают так, чтобы получать сигналы от металлургических неровностей на нижней выкружке головки рельса, заключение о наличии и ориентации микротрещин на верхней выкружке головки рельса производят на основе совместного анализа сигналов, полученных электроакустическими преобразователями.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что на первом этапе опорный эхо-сигнал электроакустической наводки регистрируется и запоминается в блоке накопителя, при этом для формирования опорного сигнала из материала, идентичного материалу контролируемого образца, изготавливается бездефектный эталонный стандартный образец (СО), бездефектность которого гарантируется применением других методов испытаний, размер контролируемой толщины этого бездефектного эталонного образца выбирается большим, чем максимальная толщина контролируемого объекта, что гарантирует отсутствие каких-либо донных сигналов в пределах контролируемого интервала глубин; далее на втором этапе пьезопреобразователь устанавливается на поверхность контролируемого изделия, регистрируется рабочий эхо-сигнал, который подается на первый вход блока вычитания, на второй вход которого подается сигнал из блока накопителя, а сигнал с выхода блока вычитания подается на индикатор.

Использование: для оценки качества конструкций замкнутого контура с внутренней полостью, изготовленных из полимерных композиционных материалов, например углепластика или стеклоуглепластика.

Изобретение относится к области исследования материалов с помощью ультразвуковых волн акустическими контрольно-измерительными приборами и может быть использовано при неразрушающем контроле материалов и изделий в различных областях промышленности.

Изобретение относится к области испытания конструкции на воздействие подводной ударной волны и может быть использовано для регистрации сотрясений на элементах подводного аппарата при воздействии подводной ударной волны. Сущность: емкость наполняют водой, размещают в ней подводный аппарат с регистратором и подрывают заряд взрывчатого вещества. Заряд взрывчатого вещества располагают в воздухе над поверхностью воды, взрывают его, создавая воздушную ударную волну, которая при взаимодействии с поверхностью воды генерирует подводную ударную волну, покрывающую поверхность корпуса подводного аппарата. Поверхность емкости выстилают водонепроницаемой прослойкой, акустическое сопротивление которой меньше акустического сопротивления воды, а информацию о сотрясениях на элементах насыщения подводного аппарата фиксируют регистратором в режиме реального времени. Технический результат: расширение функциональных возможностей за счет создания в лабораторных условиях возможности для изучения сотрясений на элементах внутреннего насыщения полномасштабного подводного аппарата во время воздействия подводной ударной волны при использовании емкости с водой малых размеров, соизмеримых с ПА. 1 ил.

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей. Ультразвуковые преобразователи сдвигают относительно друг друга вдоль оси дефектоскопа, при этом сдвиг может составить до 700 мм. Для того чтобы иметь возможность анализировать информацию, зарегистрированную ими в одном сечении трубы, в буферной памяти должна храниться вся информация, зарегистрированная всеми ультразвуковыми преобразователями при перемещении дефектоскопа на расстояние не менее двойного расстояния между первым по ходу движения ультразвуковым преобразователем и последним. В заявляемом способе предлагается записывать в бортовой накопитель информацию, зарегистрированную на заданном расстоянии до появления признака выявления продольного сварного шва и после его окончания. Размер зоны записи должен быть не меньше 150 мм. Технический результат: повышение достоверности выявления сварных швов в процессе внутритрубного ультразвукового контроля. 5 з.п. ф-лы, 4 ил.

Использование: для дефектоскопии листов, плит и других изделий двухсторонним доступом в металлургической, машиностроительной областях промышленности. Сущность изобретения заключается в том, что излучают с одной стороны контролируемого изделия импульсы ультразвуковых колебаний, принимают с противоположной стороны изделия первый сквозной и двукратно отраженный сквозной импульсы, а также эхо-импульсы ультразвуковых колебаний, отраженных от дефекта, сканируют изделие по всей площади, обеспечивая соосность излучающего и приемного электроакустических преобразователей, анализируют огибающие амплитуд ультразвуковых колебаний первого прошедшего (сквозного) импульса и эхо-сигналы от дефекта во временном интервале между первым и вторым сквозными импульсами, дополнительно считывают координаты уменьшения прошедших через изделие сквозных импульсов, повышают чувствительность приема сигналов во временном интервале между первым и вторым сквозными импульсами, измеряют временной интервал между первым сквозным импульсом и первым эхо-сигналом от дефекта, по измеренным значениям определяют местоположение и глубину залегания дефекта. Технический результат: повышение достоверности ультразвукового контроля изделий. 5 ил.

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения. Технический результат: обеспечение возможности создания устройства для автоматизированного неразрушающего контроля металлических конструкций, которое может осуществлять точный контроль различных видов металлических конструкций, включая металлические конструкции, имеющие препятствия на своей поверхности, например, в виде стыков составляющих их пластин, а также которое может работать в автоматическом или полуавтоматическом режиме. 3 н. и 11 з.п. ф-лы, 7 ил.

Использование: для локального ультразвукового неразрушающего контроля качества труб. Сущность изобретения заключается в том, что акустический блок содержит сканирующий узел с основанием с опорными роликами, которое связано штоками с корпусом, в котором размещены демпфер, ультразвуковой эхо-пьезопреобразователь, локальная ванна для иммерсионной жидкости (воды). На внешней нижней поверхности корпуса выполнена локальная ванна. Сверху каждого выступа выполнены глухие отверстия, сопряженные с шаровыми опорами штоков, связанных с основанием. Ультразвуковой эхо-пьзопреобразователь подключен к ультразвуковому дефектоскопу, включающему в себя генератор импульсов возбуждения, синхронизатор, генератор развертки, электроннолучевую трубку, усилитель, автоматический сигнализатор дефектов. Пьезоэлемент эхо-преобразователя соединен с электронно-лучевой трубкой посредством: первой электроцепи через генератор импульсов возбуждения - синхронизатор - генератор развертки и второй электроцепи через усилитель - автоматический сигнализатор дефектов. Указанное основание выполнено в виде листового упругого элемента, установленного передним концом на ось переднего ролика, а задним концом на ось двух разнесенных задних роликов меньшего диаметра, чем передний ролик. Передний шток выполнен в виде маятникового рычага, верхняя его шаровая опора присоединена к кронштейну на основании, а нижняя - размещена в переднем выступе на корпусе. Задний шток является телескопической пружинной стойкой, верхний конец которой соединен поперечной осью с упругим элементом, а нижний конец - с выступом на корпусе. Ось пружинной стойки перпендикулярна оси листового упругого элемента в исходном положении акустического блока. Передний шток снабжен выступом с возможностью упора в листовой упругий элемент, а на основании установлена накладка для провода к пьезоэлементу и патрубка питания эхо-преобразователя иммерсионной жидкостью. Задний конец листового упругого элемента (основания) выступает консольно за пределы оси задних роликов и жестко соединен с одним концом рукоятки. Технический результат: повышение точности исследований труб разного диаметра. 1 з.п. ф-лы, 4 ил.

Использование: для определения характеристик небольших объектов, имеющих поверхность, которая искривлена в плоскости сечения. Сущность изобретения заключается в том, что выполняют по меньшей мере одно наблюдение ультразвука, проходящего через объект, причем каждое наблюдение выполняют на оси, перпендикулярной плоскости симметрии, причем каждое наблюдение получают в результате излучения ультразвука, формируемого вдоль соответствующей одной из упомянутых осей и падающего на объект вдоль упомянутой оси под углом падения, отличным от нормального, причем ультразвук падает на объект таким образом, чтобы следовать по пути, который является симметричным относительно плоскости симметрии, причем время пролета ультразвуковой волны и/или положение оси, на которой выполняются излучение и наблюдение, анализируют для описания характеристик объекта. Технический результат: обеспечение возможности определять характеристики маленького объекта. 8 з.п. ф-лы, 10 ил.

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления. Технический результат: повышение точности определения профиля внутренней поверхности изделия. 3 ил.

Способ может быть использован в машиностроении, гидроэнергетике и других отраслях промышленности, требующих применения в производстве ультразвукового контроля. Для определения температурного коэффициента скорости ультразвука используются данные об изменении акустических характеристик материала. Сущность способа заключается в том, что в недеформированном и деформированном материале при разных температурах возбуждают упругие волны, определяют скорость их распространения и по результатам измерений рассчитывают температурный коэффициент скорости ультразвука. Используя полученную аналитическую зависимость, можно определять температурный коэффициент для промежуточных значений температуры и величины пластической деформации, причем деформацию можно определять акустическим способом, измеряя параметр акустической анизотропии, не зависящий от температуры. Технический результат – повышение точности получаемых данных. 1 з.п. ф-лы, 1 ил.

Использование: для обнаружения изменений параметров заглубленного трубопровода и окружающей его среды. Сущность изобретения заключается в том, что в оболочке трубы возбуждают последовательность виброакустических импульсов через интервалы, превышающие интервал корреляции существующих в ней шумов, последовательность отсчетов регистрируемых реакций на каждое воздействие на другом конце контролируемого участка трубопровода суммируют с ранее полученными аналогичными отсчетами, модуль результирующего сигнала нормируют и принимают за плотность распределения временных интервалов отсчетов от начала до конца сформированного в сумматоре сигнала, по этому распределению вычисляют его оценки математического ожидания, среднеквадратичного отклонения, асимметрии и эксцесса, по совокупности каждого из этих моментов определяют линии регрессии их средних и отклонений от них, сравнивают эти линии с вычисленными на предыдущем шаге и при достижении результатами сравнения установленных значений прогнозируют их поведение с ростом количества суммирования для обеспечения допустимых доверительных границ вычисляемых моментов, по достижению которых судят как о наличии, так и виде изменений в трубопроводной системе в текущий момент времени. Технический результат: повышение надежности обнаружения изменений параметров в трубопроводной системе и распознавание их вида. 1 з.п. ф-лы, 8 ил.

Использование: для внутритрубного обследования трубопроводов. Сущность изобретения заключается в том, что внутритрубный ультразвуковой дефектоскоп оснащен устройством измерения скорости звука в перекачиваемой жидкости V и блоком автоматической регулировки длительности временного окна ΔT во время контроля по формуле: ΔT=ΔT°V°/V, где ΔТ° - длительность окна при контроле в жидкости с минимальной скоростью звука V°. Конструкция носителя п ультразвуковых пьезоэлектрических преобразователей обеспечивает длину пути ультразвукового импульса, от точки отражения от внутренней поверхности трубы до ближайшего элемента носителя, не менее ΔT°V°/2+ΔНп, где ΔНп - максимально допустимый износ полоза носителя ультразвуковых пьезоэлектрических преобразователей. Технический результат: расширение диапазона контролируемых толщин стенки трубы в сторону увеличения при перекачивании разнородных жидкостей и упрощение требований к конструкции носителя ультразвуковых пьезоэлектрических преобразователей. 1 з.п. ф-лы, 5 ил.
Наверх