Воздушно-реактивная стартовая система космической ракеты

Изобретение относится к авиационно-космической технике. Воздушно-реактивная стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся опорные штанги для космической ракеты. Верхнее кольцо содержит систему управления воздушно-реактивного стартовой системы и батареи ее электроснабжения. Верхнее кольцо опирается на нижнее вращающееся кольцо посредством системы магнитного подвеса. К нижнему кольцу радиально крепятся одним своим концом лопасти, служащие для создания подъемной силы воздушно-реактивной стартовой системы и баками для топливных компонентов, а на другом конце к лопастям прикреплены воздушно-реактивные двигатели для вращения лопастей вокруг оси перпендикулярной плоскости подвижного кольца. Техническим результатом изобретения является повышение надежности и оперативности запуска. 7 ил.

 

Изобретение относится к авиационно-космической технике, а именно к воздушным стартовым системам для запуска космических ракетоносителей и воздушно-космических самолетов, к авиационным ракетно-космическим комплексам - средствам выведения космических объектов.

Аналогом изобретения является известный «Авиационный ракетный комплекс», Патент №2401779 РФ, B64G 5/00, B64D 3/00, B64G 1/14, 04.05.2009, который включает планер, трос-фал, самолет, приспособленный для буксировки планера с помощью троса-фала, ракету-носитель для выведения космического аппарата. Ракета-носитель содержит головной обтекатель, внутри которого смонтирован космический аппарат, сопряженный с корпусом ракеты-носителя, наземную транспортно-разгонную платформу, снабженную двигательной установкой, для погрузки на нее планера, а также обеспечения взлета самолета и планера, системы, обеспечивающие их функционирование. Ракета-носитель размещена внутри фюзеляжа планера, имеющего нижнюю часть, отделяемую от его верхней части перед отделением от этой верхней части и пуском ракеты-носителя. Трос-фал сопряжен с корпусом головного обтекателя ракеты-носителя. Космический аппарат сопряжен с корпусом головного обтекателя ракеты-носителя с возможностями отделения троса-фала от планера, космического аппарата и корпуса головного обтекателя от корпуса ракеты-носителя для последующего втягивания их вовнутрь фюзеляжа самолета через задний грузовой люк самолета с помощью троса-фала и лебедки, сопряженной с тросом-фалом, установленной в фюзеляже самолета. Достоинство этого изобретения состоит в сохранении космического аппарата в случае срыва запуска ракеты-носителя.

Но недостатком является необходимость длительного времени для подготовки старта. Кроме того, ограничен вес космической ракеты, которая может быть запущена с его помощью.

Другим аналогом изобретения является известная «Комплексная система для запуска тяжелых воздушно-космических самолетов многоразового использования на околоземную орбиту, супертяжелый реактивный самолет-амфибия для нее (варианты) и способ осуществления запуска», Патент №2397922 РФ, B64G 1/14, В64С 35/00, B64D 5/00, 30.07.2008, которая относится к области авиационно-космической техники, а именно к комплексной системе для запуска тяжелых воздушно-космических самолетов многоразового использования на околоземную орбиту, к тяжелому реактивному самолету-амфибии для комплексной системы и к способу введения в действие комплексной системы запуска тяжелых воздушно-космических самолетов на околоземную орбиту. Комплексная система содержит самолет подъема с отделяющимся разгонным блоком, находящимся на нем воздушно-космическим самолетом, инфраструктуру наземного базирования и обеспечения. В качестве самолета подъема использован супертяжелый реактивный самолет-амфибия бесконтактного взлета и посадки, двигатели которого переведены на природный газ. Инфраструктура наземного обеспечения включает в себя несколько прибрежных стояночных площадок с гидроспусками, размещенными в независимых по метеоусловиям автономных пунктах экваториального побережья океана вблизи пустынных районов суши. Такая комплексная система обеспечивает уменьшение загрязнения экологии Земли при запуске супертяжелых элементов системы в космос. Недостатками этого изобретения являются необходимость длительного времени для подготовки старта, низкая надежность и сложные требования к обеспечению места подготовки старта и пуска летательного аппарата.

Прототипом изобретения является известная «Система воздушного пуска космических ракет», Патент №2268209 РФ, B64G 5/00, 16.04.2003, которая относится к стартовым сооружениям ракет-носителей космического назначения. Такая система содержит жесткую пространственную решетку, например, состоящую из нескольких секций, одновременно горизонтально смещаемых относительно вертикальной оси симметрии решетки. На верхних узловых точках решетки смонтированы многолопастные вертолетные винты регулируемого шага с электромеханическим высоковольтным приводом. На общей с ними оси установлены немноголопастные винты с реактивным приводом, а по периметру решетки - воздушные винты с изменяемым направлением тяги, также снабженные электромеханическим приводом. С краю от оси симметрии решетки (в частности, на отдельно летящей решетке с несущими винтами) закреплены высоковольтные провода токоподвода, а на противоположном краю смонтирована шумозащищенная кабина управления. К нижним узловым точкам решетки прикреплены стропы, нижние концы которых присоединены с возможностью отделения к приспособлению для удержания космической ракеты. Технический результат изобретения направлен на повышение надежности пуска тяжелых и сверхтяжелых космических ракет с расчетной высоты их подъема в тропосфере. Однако недостатком такой системы является необходимость длительного времени для подготовки старта, ее сложность, что обуславливает снижение ее надежности и экономичности в эксплуатации.

Целью настоящего изобретения является повышение надежности, экономичности и уменьшение времени запуска космической ракеты. Поставленная цель достигается простотой технического решения, экономичностью его реализации и времени на подготовку и пуск космической ракеты. Для этого воздушно-реактивная стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся опорные штанги для космической ракеты. Невращающееся кольцо содержит систему управления воздушно-реактивной стартовой системы космической ракеты и батареи ее электроснабжения. Оно опирается на нижнее вращающееся кольцо посредством системы магнитного подвеса. К нижнему кольцу радиально крепятся одним своим концом лопасти, служащие для создания подъемной силы воздушно-реактивной стартовой системы космической ракеты и баками для топливных компонентов. К другим концам лопастей прикреплены воздушно-реактивные двигатели для создания вращения лопастей вокруг оси перпендикулярной плоскости подвижного кольца.

Сущность изобретения поясняется чертежами:

Фиг. 1 - Воздушно-реактивная стартовая система космической ракеты;

Фиг. 2 - Воздушно-реактивная стартовая система космической ракеты на наземной площадке вертикального взлета;

Фиг. 3 - Вид спереди в разрезе основания воздушно-реактивной стартовой системы космической ракеты;

Фиг. 4 - Вид сверху основания воздушно-реактивной стартовой системы космической ракеты;

Фиг. 5 - Вид сверху воздушно-реактивной стартовой системы космической ракеты;

Фиг. 6 - Воздушно-реактивная стартовая система космической ракеты с уходящей с нее ракетой;

Фиг. 7 - Воздушно-реактивная стартовая система космической ракеты, снижающаяся для посадки после ухода с нее ракеты.

Перечень элементов на прилагаемых чертежах следующий:

1 - основание;

2 - лопасти;

3 - воздушно-реактивные двигатели;

4 - шарнир опорной штанги;

5 - опорная штанга;

6 - космическая ракета;

7 - ферма опоры ракеты;

8 - наземная площадка;

9 - верхнее невращающееся кольцо;

10 - нижнее вращающееся кольцо;

11 - топливный компонент;

12 - магнитный подвес невращающегося кольца;

13 - магнитный подвес вращающегося кольца;

14 - рабочий зазор системы магнитного подвеса;

15 – реактивные двигатели космической ракеты.

Работа воздушно-реактивной стартовой системы космической ракеты описывается следующим образом. Воздушно-реактивная стартовая система космической ракеты (см. Фиг. 1), состоящая из основания 1, включающего в себя (см. Фиг. 3 и Фиг. 4) нижнее вращающееся кольцо 10 с его магнитным подвесом 13 и верхнее вращающееся кольцо 9 с его магнитным подвесом 12, устанавливают на наземной площадке вертикального взлета (см. Фиг. 2), включающей в себя фермы опоры ракеты 7 и наземную площадку 8. Загружают в нее на опорные штанги 5 космическую ракету 6. Затем заправляют топливными компонентами космическую ракету 6 и емкости в лопастях 2. При готовности всех систем воздушно-реактивной стартовой системы космической ракеты и космической ракеты 6 дают команду на пуск воздушно-реактивной стартовой системы космической ракеты. По этой команде включаются воздушно-реактивные двигатели 3, прикрепленные к концам лопастей 2, другие концы которых прикреплены к нижнему вращающемуся кольцу 10 основания 1 (см. Фиг. 5). Создаваемая расположенными под углом к горизонтальной плоскости основания 1 воздушно-реактивными двигателями 3 тяга приводит к вращению лопастей 2, создающих подъемную силу в атмосфере, и созданию реактивной силы подъема воздушно-реактивной стартовой системы космической ракеты вместе с космической ракетой 6. Система магнитного подвеса, состоящая из магнитного подвеса невращающегося кольца 12 и магнитного подвеса вращающегося кольца 13, обеспечивает практически без трения движение нижнего вращающегося кольца 10. При достижении воздушно-реактивной стартовой системой космической ракеты стратосферы Земли воздушно-реактивные двигатели 3с управляемым вектором реактивной тяги изменяют свой вектор тяги по направлению к поверхности планеты. Разреженность атмосферы в стратосфере обеспечивает уже незначительную подъемную силу воздушно-реактивной стартовой системы космической ракеты. Космическая ракета 6 по инерции продолжает движение вверх (см. Фиг. 6), а воздушно-реактивная стартовая система космической ракеты отстает от нее под действием изменившейся реактивной тяги. Через несколько секунд, на расстоянии примерно километра космической ракеты 6 от воздушно-реактивной стартовой системы космической ракеты, происходит включение реактивных двигателей 15 космической ракеты 6, под действием которых она продолжает полет к орбите вокруг Земли. Воздушно-реактивная стартовая система космической ракеты под действием воздушно-реактивных двигателей 3 совершает приземление на его опорные штанги 5 (см. Фиг. 7) с помощью его системы управления в режиме, например, авторотации.

Таким образом, воздушно-реактивная стартовая система космической ракеты позволяет экономично, с повышенной надежностью и оперативно осуществлять запуск космических ракет.

Воздушно-реактивная стартовая система космической ракеты, отличающаяся тем, что содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся опорные штанги для космической ракеты, содержащего систему управления воздушно-реактивной стартовой системы космической ракеты и батареи ее электроснабжения, и опирающегося на нижнее подвижное вращающееся кольцо посредством системы магнитного подвеса, к которому радиально крепятся одним своим концом лопасти, служащие для создания подъемной силы воздушно-реактивной стартовой системы космической ракеты и баками для топливных компонентов, а на другом конце к лопастям прикреплены воздушно-реактивные двигатели для создания вращения лопастей вокруг оси перпендикулярной плоскости подвижного кольца.



 

Похожие патенты:

Изобретение относится к авиационно-космической технике. Воздушно-реактивная с электрическим запуском стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся одними своими концами опорные штанги для космической ракеты.

Группа изобретений относится к технологиям осуществления сверхбыстрых полетов в атмосфере планет. Конструкция и рабочие режимы летательных аппаратов для этой цели обеспечивают высокую синергию теплофизических и газодинамических процессов взаимодействия с атмосферой.

Изобретение относится к воздушно-космической технике. Летательный аппарат содержит блок управления с возможностью выдачи импульсных или непрерывных напряжений, прямоугольную камеру с амортизатором внутри с закруглениями между стенками.

Использование: в области электротехники при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите.

Изобретение относится к области космической техники и может быть использовано при разработке ускоренного режима восстановления ориентации орбитального космического аппарата (КА) с применением астродатчика.

Изобретение относится к конструкции космической техники. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения.

Группа изобретений относится к ракетной технике. Ракета-носитель (РН) содержит как минимум одну возвращаемую ступень с крыльями и хвостовым оперением, маршевую и управляющую двигательные установки.

Изобретение относится к космической технике, а именно к способам старта ракет. В способе старта тяжелой ракеты разгоняется ракета на стартовой тележке по наклонной прямой с направляющими рельсами.

Группа изобретений относится к космической технике. Способ запуска микро- и наноспутников заключается в том, что после установки запускаемого спутника с одноосным гироскопом на основании и после выбора с помощью электромеханической системы ориентации заданного направления производится раскрутка гироскопа и запуск аппарата.

Изобретение относится к многоступенчатым космическим ракетам. Ракета состоит из разгонного блока с жидкостными или твердотопливными реактивными двигателями и космического модуля с продольным каналом, имеющего торообразную форму с цилиндрическим наружным корпусом.

Изобретение относится к космической технике. В узле крышки транспортно-пускового контейнера (ТПК), состоящем из поворотной крышки, закрепленной на неподвижном элементе ТПК, размещено по меньшей мере по одному установленному на оси вращения поворотному упору с выступами, один из которых плоский, а другой сферический. Плоский выступ с одной стороны взаимодействует с элементом фиксации, размещенным на поворотной крышке, а с другой стороны - с малым космическим аппаратом (МКА), сферический выступ размещен выше оси вращения поворотного упора и взаимодействует в рабочем положении с пластиной, установленной на поворотной крышке, причем ось вращения пластины смещена относительно оси вращения поворотной крышки. Техническим результатом изобретения является обеспечение начала движения МКА. 2 з.п. ф-лы, 9 ил.

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел крепления к корпусу космического корабля, телескопический шток с механизмом выдвижения, шарнирно связанную с телескопическим штоком опорную тарель. Посадочная опора снабжена тросами из высокомодульного материала. Пневматический раздвижной упор штоком соединен с главным цилиндром, а корпусом – с поперечной балкой, закрепленной в нише посадочной опоры. Техническим результатом изобретения является увеличение области устойчивости к опрокидыванию космического корабля при его посадке. 3 ил.

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной двигательной установки (ДУ). Несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие – корпусные. Боковые панели скреплены между собой по периметру в чередующейся последовательности. По периметру каждой боковой панели расположены каркасные уголки, скрепленные разъемными элементами. На внешней поверхности второй торцевой панели закреплена панель ДУ. Бак хранения топлива закреплен с помощью кронштейнов на панели ДУ со стороны внутренней плоскости и размещен в вырезе второй торцевой панели. На внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением. Техническим результатом изобретения является уменьшение массы КМ. 7 ил.

Изобретение относится к способам управления движением ракет космического назначения (РКН). Способ управления угловым движением РКН заключается в управлении углами тангажа и рыскания путем отклонения в двух взаимно-перпендикулярных плоскостях установленной в карданном подвесе камеры сгорания основного двигателя, в управлении углом крена с помощью двух пар газовых сопел и двух аэродинамических рулей, отклоняемых с помощью своих электрогидравлических сервоприводов (ЭГС). Определяют рассогласования между командным сигналом на отклонение аэродинамических рулей и фактическими углами их отклонения. При превышении по абсолютной величине любым из двух рассогласований заранее выбранного предельно-допустимого значения формируют признак отказа ЭГС аэродинамического руля. В случае формирования признака отказа ЭГС дополнительно отклоняют камеру сгорания основного двигателя по тангажу и аэродинамический руль с исправным ЭГС, дополнительно управляют углом рыскания с помощью пар газовых сопел. Техническим результатом изобретения является повышение вероятности успешного завершения полета РКН в случае отказа одного из исполнительных органов системы управления. 4 ил.

Изобретение относится к конструктивным элементам средств выведения полезных нагрузок (ПН), в частности, микроспутников. Адаптер включает ферму с двумя ярусами треугольных решеток: верхний ярус выполнен в форме цилиндра, а нижний - в форме усеченного конуса. Опорные узлы (4, 8) образуют верхний и нижний пояса. Ярусы стыкуются через опорные узлы промежуточного пояса. Первые средства (10) крепления попутных ПН (41) содержат корпуса в виде ящиков. Их донные панели могут быть снабжены выступами для установки блоков управления (42) отделением ПН (41). Вторые средства (20) крепления попутных ПН (41) содержат каркас в виде прямой треугольной призмы, закрепленный на нижнем ярусе фермы. Средства (10, 20) крепления обеспечивают отделение ПН (41) в боковом, по отношению к оси (40), направлении. Техническим результатом изобретения является снижение массы адаптера для выведения значительного числа микроспутников класса «Кубсат», при наличии точечного стыка адаптера с разгонным блоком и основной ПН. 4 з.п. ф-лы, 17 ил.

Изобретение относится к многосредным транспортным средствам и может применяться, в частности, для исследований в ближнем и дальнем космосе. Аквааэрокосмический летательный аппарат включает в себя корпус в виде двояковыпуклой линзы, накрытой снизу и сверху полусферами титановых обтекателей. Корпус подкреплен несущей стальной рамой с элементами жесткости, на которой смонтирована силовая установка. Эта установка содержит четыре группы двигателей: четыре подъемно-маршевых турбореактивных двухконтурных двигателя, два маршевых ракетных двигателя, четыре ракетных двигателя вертикальной тяги и два водометных двигателя. Летательный аппарат имеет стойки шасси. Для стыковки и сообщения с межпланетной космической станцией (МКС) служит герметизируемый люк шлюза. На корпусе аппарата установлены фары освещения задней полусферы и бортовые аэронавигационные огни. Техническим результатом изобретения является создание многорежимного многофункционального аппарата для исследований и других операций в ближнем и дальнем космосе, с использованием для его дозаправки МКС и небесных тел, например планет и их спутников. 10 з.п. ф-лы, 11 ил.

Изобретение относится к ракетно-космической технике, а именно к способам доставки полезного груза - комплекса научной аппаратуры к небесным телам (планетам, астероидам, кометам и др.) для их исследования и пенетраторам - устройствам с полезным грузом, отделяемым от основного космического аппарата и представляющим собой ударный проникающий зонд, внедряющийся в грунт небесного тела для исследования его параметров и параметров его грунта. В данном изобретении предложен способ доставки полезного груза к небесному телу и устройства его реализации, по которому полезный груз помещают внутрь балласта, служащего для полезного груза дополнительным защитным телом, а в качестве материала для балласта используют высокопрочные модификации льда: льда-VII или льда-VIII или льда-Х. После ударного внедрения в грунт пенетратора освобождают балласт с содержащимся в нем комплексом научной аппаратуры из защитного корпуса, удаляют балласт, освобождая полезный груз, и проводят исследования грунта небесного тела. Технический результат - повышение ударостойкости полезного груза и повышение точности измерений параметров грунта и небесного тела. 4 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к ракетной технике и может найти применение в конструкциях систем разделения объектов летательных аппаратов (ЛА), где требуется снижение ударных нагрузок и импульса от действия средства разделения на точность выведения конечных ступеней объекта, в частности в заднем узле крепления разгонных блоков крылатых ракет. Узел стыковки разделяемых объектов ЛА содержит корпус с фиксаторами для крепления отделяемого элемента по сферической поверхности. Каждый фиксатор представляет собой гильзу, содержащую плунжер-упор, удерживаемый в гильзе шариковым замком. Плунжер-упор базируется в гильзе по сопрягаемым диаметрам, образующим дифференциальную площадь привода снятия фиксации узла стыковки разделяемых объектов. Срабатывание фиксаторов обеспечивается одновременной подачей давления в шариковые замки, которые освобождают плунжеры-упоры. Разделение объектов осуществляется перемещением плунжеров-упоров. Технический результат - надежная стыковка объектов ЛА без напряжений от допускаемых и возможных отклонений стыкуемых объектов. 2 ил.

Изобретение относится к области ракетно-космической техники. Способ управления движением ракеты космического назначения при выведении космических объектов на орбиту заключается в том, что в заданные моменты времени определяют текущее положение ракеты космического назначения с помощью навигационной системы, прогнозируют с помощью бортовой цифровой вычислительной машины оставшуюся траекторию полета с прежним управлением и определяют выполнимость условия обеспечения с заданной точностью терминальных условий полета и, при невыполнимости этих условий, выбирают новое управление и реализуют его с помощью исполнительных органов до следующего, заданного момента времени полета, кроме того, выбирают новые терминальные условия, находящиеся в области достижимости ракеты космического назначения, и новое управление движением ракеты космического назначения и реализуют его с помощью исполнительных органов до следующего, заданного момента времени полета. Техническим результатом изобретения является повышение эффективности функционирования выводимого космического объекта. 1 ил.
Изобретение относится к области обеспечения долговременного устойчивого развития космической деятельности и может быть использовано для предупреждения столкновений космического аппарата с преднамеренно сближающимся активным объектом. Cпособ защиты космического аппарата от столкновения с преднамеренно сближающимся активным объектом, согласно которому экран выпускают при обнаружении непрерывной последовательности сигналов с нарастающей амплитудой, а направление движения экрана определяют по данным о пространственной ориентации детекторов с максимальными показаниями амплитуды регистрируемых сигналов среди набора плоских детекторов на поверхности двух сферических оболочек, которые устанавливают на защищаемом космическом аппарате и на малом космическом аппарате, сопровождающем защищаемый космический аппарат. Техническим результатом является обеспечение высокой надежности идентификации потенциально опасных ситуаций и повышение оперативности выполнения защитных мероприятий.
Наверх