Способ зарядки емкостного накопителя электроэнергии и устройство для его реализации в самолетных электроимпульсных комплексах



Способ зарядки емкостного накопителя электроэнергии и устройство для его реализации в самолетных электроимпульсных комплексах
Способ зарядки емкостного накопителя электроэнергии и устройство для его реализации в самолетных электроимпульсных комплексах
H03K3/57 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2620600:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) (RU)

Изобретение относится к электротехнике и импульсной силовой электронике и предназначено для использования в самолетных электроимпульсных комплексах, в частности - в противообледенительных системах и системах питания бортовых проблесковых огней предупреждения. Техническим результатом предложения является сохранение качества электроэнергии, потребляемой от источника электропитания, за счет непрерывности и равномерности потребляемого тока. Указанные технические результаты обеспечиваются тем, что в способе зарядки емкостного накопителя электроэнергии, по которому на первом этапе каждого высокочастотного цикла накапливают дозы энергии в балластном дросселе и промежуточном индуктивном накопителе, подключая их с помощью первого и второго ключей к источнику питания, а на втором этапе передают их в емкостный накопитель и в снабберный конденсатор вместе с дозой энергии источника, причем регулируют соотношение длительностей этапов в зависимости от напряжения емкостного накопителя, вводят третий этап, на котором сохраняют энергию индуктивного накопителя, шунтируя его вспомогательным ключом, причем длительность шунтирования регулируют в зависимости от среднециклического значения его потокосцепления. Кроме того накопленную к началу третьего этапа дозу энергии балластного дросселя вместе с дополнительной дозой энергии источника передают емкостному накопителю через последовательно с ним соединенный снабберный конденсатор, который затем на первом этапе следующего цикла передает накопленную им при этом дозу энергии индуктивному накопителю через первый основной ключ. Кроме того, в устройство для реализации указанного способа, содержащее входные выводы (1, 2), емкостный накопитель (3), первый блокирующий диод (4), индуктивный накопитель (5), балластный дроссель (6), снабберный конденсатор (7), второй блокирующий диод (8), первый и второй основные ключи (9, 10) и блок управления (11) с основными импульсно-модуляторными выходными выводами (12, 13), вводят вспомогательный ключ (14), третий и четвертый блокирующие диоды (15, 16), а блок управления снабжён вспомогательным выходным выводом (17). 2 н. и 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнике и импульсной силовой электронике и предназначено для использования в самолетных электроимпульсных комплексах, в частности в противообледенительных системах и системах питания бортовых проблесковых огней предупреждения.

Известен способ зарядки емкостного накопителя электроэнергии и устройство для его реализации в самолетных электроимпульсных комплексах - импульсных маяках (аналог), по которому на первом полупериоде напряжения источника переменного тока накапливают электроэнергию, поступающую от источника через первый выпрямительный диод, в первом дозирующем конденсаторе, на втором полупериоде накапливают энергию, поступающую от источника и первого дозирующего конденсатора через второй выпрямительный диод, во втором дозирующем конденсаторе с удвоенным зарядным напряжением и так далее, умножая таким образом зарядное напряжение на каждом последующем конденсаторе, последний из которых является емкостным накопителем, разряжаемым на импульсную лампу светового маяка, а реализующее этот способ устройство представляет собой диодно-конденсаторную многоступенчатую схему умножения (Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / под ред. С.А. Грузкова. - М.: Издательство МЭИ, 2005-2008. Том 2. Элементы и системы электрооборудования - приемники электрической энергии. - М.: Издательский дом МЭИ, 2008. - 552 с., стр. 496, рис. 12.30).

К недостаткам указанного известного способа и устройства для его реализации (аналога) относятся: низкая функциональная надежность из-за большого количества используемых дозирующих конденсаторов и числа последовательных каскадов преобразования, а также ухудшение качества питающей электроэнергии из-за больших искажений синусоидальной формы потребляемого от источника тока.

Наиболее близким по технической сути к предлагаемому изобретению является способ зарядки емкостного накопителя электроэнергии и устройство для его реализации в самолетных электроимпульсных комплексах (прототип), по которому на первом этапе каждого высокочастотного цикла накапливают дозы электромагнитной энергии в балластном дросселе и промежуточном индуктивном накопителе, подключая их к источнику питания, а на втором этапе передают их в емкостный накопитель и в снабберный конденсатор вместе с дозой энергии источника, причем регулируют соотношение длительностей этапов в зависимости от напряжения емкостного накопителя, а устройство для его реализации содержит входные выводы, емкостный накопитель, индуктивный накопитель, балластный дроссель, снабберный конденсатор, блокирующие диоды, три основных электронных ключа и блок управления с импульсно-модуляторными выходными выводами (С. Резников, В. Бочаров, Е. Парфенов, Н. Гуренков, А. Корнилов. Электроэнергетическая и электромагнитная совместимость вторичных источников импульсного питания с автономными системами электроснабжения переменного тока. Силовая электроника, №4, 2009 г., с. 74-78, стр. 75, рис. 3а).

К недостаткам известного способа зарядки емкостного накопителя электроэнергии и устройства для его реализации в самолетных электроимпульсных комплексах (прототипа) относятся: ухудшение качества электроэнергии, потребляемой от источника электропитания, из-за прерывистого потребляемого тока, низкая функциональная надежность устройства из-за статической неустойчивости управления процессами и необходимости наличия в составе источника питания энергоемкого емкостного фильтра на базе электролитического конденсатора с низкими показателями термостойкости, безотказности и срока службы. Указанные недостатки снижают показатели безопасности полетов самолета.

Основным техническим результатом предложения является сохранение качества электроэнергии, потребляемой от источника электропитания, за счет непрерывности и равномерности потребляемого тока.

Дополнительными техническими результатами предложения являются повышение функциональной надежности устройства для реализации способа за счет обеспечения устойчивости управления процессами и исключения из состава источника питания емкостного фильтра на базе электролитического конденсатора с низкими показателями термостойкости, безотказности и срока службы. Благодаря указанным результатам повышается безопасность полетов.

Указанные технические результаты обеспечиваются благодаря тому, что в способе зарядки емкостного накопителя электроэнергии, по которому на первом этапе каждого высокочастотного цикла накапливают дозы энергии в балластном дросселе и промежуточном индуктивном накопителе, подключая их с помощью первого и второго ключей к источнику питания, а на втором этапе передают их в емкостный накопитель и в снабберный конденсатор вместе с дозой энергии источника, причем регулируют соотношение длительностей этапов в зависимости от напряжения емкостного накопителя, вводят третий этап, на котором сохраняют энергию индуктивного накопителя, шунтируя его вспомогательным ключом, причем длительность шунтирования регулируют в зависимости от среднециклического значения его потокосцепления, и благодаря тому, что накопленную к началу третьего этапа дозу энергии балластного дросселя вместе с дополнительной дозой энергии источника передают емкостному накопителю через последовательно с ним соединенный снабберный конденсатор, который затем на первом этапе следующего цикла передает накопленную им при этом дозу энергии индуктивному накопителю через первый основной ключ, а также благодаря тому, что в устройство для реализации указанного способа, содержащее входные выводы, емкостный накопитель, первый блокирующий диод, индуктивный накопитель, балластный дроссель, снабберный конденсатор, второй блокирующий диод, первый и второй основные ключи и блок управления с основными импульсно-модуляторными выходными выводами, ведены вспомогательный ключ, третий и четвертый блокирующие диоды, а блок управления снабжен вспомогательным выходным выводом.

Экспериментальные исследования лабораторного макета и компьютерное моделирование устройства для реализации предложенного способа подтвердили его работоспособность и целесообразность широкого промышленного использования.

На чертеже (Фиг.) приведены принципиальная силовая схема и каналы управления устройства для реализации в самолетных электроимпульсных комплексах предлагаемого способа зарядки емкостного накопителя электроэнергии.

Устройство для реализации способа зарядки емкостного накопителя электроэнергии в самолетных электроимпульсных комплексах содержит входные выводы 1, 2 для подключения источника электропитания постоянного тока, емкостный накопитель 3, первый блокирующий диод 4, индуктивный накопитель 5, балластный дроссель 6, конденсаторно-диодную цепочку, состоящую из снабберного конденсатора 7 и второго блокирующего диода 8, первый и второй основные электронные ключи 9, 10 и блок управления 11 с основными импульсно-модуляторными выходными выводами 12, 13. Устройство содержит также вспомогательный электронный ключ 14, третий и четвертый блокирующие диоды 15 и 16. Блок управления снабжен также вспомогательным импульсно-модуляторным выходным выводом 17.

Балластный дроссель 6 и индуктивный накопитель 5 могут быть выполнены с общим магнитопроводом (показанным на чертеже пунктиром) и включенными при этом согласно относительно направления проводимости основного ключа 9.

Первый основной ключ 9 зашунтирован конденсаторно-диодной цепочкой 7-8, своим первым силовым выводом через балластный дроссель 6 подключен к первому входному выводу 1 устройства, а своим вторым силовым выводом через последовательно соединенные между собой индуктивный накопитель 5, первый блокирующий диод 4 и емкостный накопитель 3 - ко второму входному выводу 2 устройства. Второй основной ключ 10 своими силовыми выводами шунтирует цепочку, состоящую из первого блокирующего диода 4 и емкостного накопителя 3. Вспомогательный электронный ключ 14 своим первым силовым выводом подключен к общим выводам первого блокирующего диода 4 и индуктивного накопителя 5 и к соединенному с ними силовому выводу второго основного ключа 10, а своим вторым силовым выводом подключен к среднему выводу конденсаторно-диодной цепочки 7-8. Третий блокирующий диод 15 включен между вторым силовым выводом третьего ключа 14 и вторым входным выводом 2 устройства. Четвертый блокирующий диод 16 включен последовательно с балластным дросселем 6.

Блок управления 11 своими основными импульсно-модуляторными выходными выводами 12 и 13 подключен к управляющим выводам первого и второго основных ключей 9 и 10, а своим вспомогательным импульсно-модуляторным выходным выводом 17 - к управляющему выводу вспомогательного ключа 14.

Устройство для реализации способа зарядки емкостного накопителя электроэнергии работает следующим образом.

К входным выводам 1, 2 устройства подключают источник электропитания постоянного тока, например самолетную сеть постоянного повышенного напряжения 270 В. На основных и вспомогательных импульсно-модуляторных выходных выводах 12, 13 и 17 блока управления 11 формируются высокочастотные импульсы с постоянным периодом (Тшим) и широтно-импульсной модуляцией в зависимости от соотношения напряжений на емкостном накопителе и источника питания (на выходах 12, 13) и от среднеимпульсного значения потокосцепления индуктивного накопителя.

В исходном состоянии снабберный конденсатор 7 заряжен с полярностью, показанной на чертеже, от источника питания по цепи тока его колебательной зарядки: 1-16-6-7-8-5-4-3-2, а емкостный накопитель 3 практически разряжен (так как имеет относительно большую электроемкость по сравнению со снабберным конденсатором).

В первой стадии процесса зарядки емкостного накопителя 3 с напряжением U3, не превышающим напряжения U1-2 источника питания (U3≤U1-2), схема работает в режиме понижающего импульсного конвертора. На первом этапе каждого из высокочастотно-периодически чередующихся циклов (периодов Тшим) накапливают дозы электромагнитной энергии в балластном дросселе 6 и промежуточном индуктивном накопителе 5, подключая их с помощью первого основного ключа 9 к источнику питания постоянного тока через емкостный накопитель 3 на время импульса: tи1Тшим, где γ1 - относительная длительность (коэффициент заполнения) импульса управления на выходе 12 блока управления 11. При этом второй и вспомогательный ключи 10 и 14 выключены. Затем ключ 9 выключается, после чего на втором этапе цикла накопленную индуктивным накопителем 5 дозу энергии передают емкостному накопителю 3 по цепи частично (или полностью) спадающего тока: 5-4-3-15-8-5, поддерживаемого за счет ЭДС самоиндукции, а накопленную балластным дросселем 6 дозу энергии вместе с дозой электроэнергии источника питания передают в снабберный конденсатор 7 по цепи частично спадающего тока: 1-16-6-7-(8-5-4-3)-(или/и проводящего диода 15)-2. При этом обеспечивается непрерывность потребляемого от источника тока, а, следовательно, повышение качества потребляемой электроэнергии. Доза энергии, накопленная при этом снабберным конденсатором, передается индуктивному накопителю 5 и емкостному накопителю 3 на первом этапе следующего цикла по цепи тока его разрядки: 7-9-5-4-3-15-7. Длительность указанного второго этапа составляет t2.

На третьем этапе цикла приблизительно сохраняют (за вычетом тепловых потерь) энергию индуктивного накопителя 5, шунтируя его вспомогательным ключом 14 при выключенных основных ключах 9, 10. При этом ток индуктивного накопителя 5 незначительно спадает по цепи: 5-14-8-5, поддерживаясь за счет его ЭДС самоиндукции в течение длительности: t33Тшимшим-t1-t2, где γ3 - относительная длительность (коэффициент заполнения) импульса управления на выходе 17 блока управления 11. При этом входной ток не прерывается, протекая по цепи: 1-16-6-7-8-5-4-3-2.

Далее указанные процессы высокочастотно-периодически качественно повторяются с постоянным периодом Тшим, осуществляя зарядку емкостного накопителя 3 до напряжения, равного (или близкого) напряжению источника питания (U1-2).

На второй стадии процесса зарядки емкостного накопителя 3 с напряжением U3, превышающим напряжения U1-2 источника питания (U3>U1-2), схема работает в режиме повышающего импульсного конвертора. На первом этапе каждого из циклов Тшим накапливают дозы электромагнитной энергии в балластном дросселе 6 и промежуточном индуктивном накопителе 5, подключая их с помощью одновременно включенных первого и второго основных ключей 9 и 10 к источнику питания (к выводам 1-2) на время импульса: t11Тшим. При этом их общий ток нарастает по цепи: 1-16-6-9-5-10-2, а кроме него нарастает ток разрядки снабберного конденсатора 7 по цепи: 7-9-5-10-15-7, отдающего накопленную на предыдущем цикле дозу энергии индуктивному накопителю 5.

На втором этапе длительностью t2 того же цикла второй ключ 10 выключается, а первый ключ 9 остается включенным, и накопленные в 5 и 6 дозы энергии передаются емкостному накопителю 3 вместе с дозой электроэнергии источника питания по цепи частично спадающего тока: 1-16-6-9-5-4-3-2 под действием разности между напряжением емкостного накопителя и ЭДС самоиндукции 5 и 6, сложенной с напряжением источника (U1-2).

На третьем этапе того же цикла в течение длительности: t33Тшимшим-t1-t2, энергия индуктивного накопителя приблизительно сохраняется (за вычетом тепловых потерь) с помощью шунтирования его вспомогательным ключом 14 при выключенных ключах 9 и 10. При этом ток индуктивного накопителя 5 незначительно спадает по цепи: 5-14-8-5, поддерживаясь за счет ЭДС самоиндукции, а ток балластного дросселя 6 не прерывается, осуществляя зарядку снабберного конденсатора 7 через емкостный накопитель 3, благодаря чему повышается качество питающей электроэнергии.

Далее указанные процессы высокочастотно периодически качественно повторяются с постоянным периодом Тшим, осуществляя зарядку емкостного накопителя 3 до заданного максимального предразрядного напряжения (U3.max). Затем емкостный накопитель 3 разряжается на импульсную нагрузку (импульсную газоразрядную лампу или противообледенительный электромагнитный вибратор), после чего вновь повторяются две рассмотренные выше стадии процесса его зарядки предложенным способом.

В течение циклически низкочастотно повторяющихся зарядных процессов с помощью блока управления 11, имеющего цепи обратных связей по напряжениям на входе и выходе и по току индуктивного накопителя, производится регулирование (стабилизация) входного тока и среднеимпульсного значения потокосцепления индуктивного накопителя (а, следовательно, регулирование его электромагнитной энергии), причем независимо от глубины возможных пульсаций питающего напряжения.

Регулируемыми параметрами при управлении являются два взаимонезависимых параметра γ1 и γ3 - относительные длительности первого и третьего этапов постоянного периода Тшим. Указанное дуально-инвариантное управление обеспечивает статическую и динамическую устойчивость процессов.

Таким образом, предлагаемые способ зарядки емкостного накопителя и устройство для его реализации в самолетных электроимпульсных комплексах обеспечивают основной технический результат: сохранение качества электроэнергии, потребляемой от источника электропитания, за счет непрерывности и равномерности потребляемого тока, а также дополнительные технические результаты: повышение функциональной надежности устройства для реализации способа за счет обеспечения устойчивости управления процессами и исключения из состава источника питания емкостного фильтра на базе электролитического конденсатора с низкими показателями термостойкости, безотказности и срока службы. Благодаря указанным результатам повышается безопасность полетов самолета.

1. Способ зарядки емкостного накопителя электроэнергии, по которому на первом этапе каждого из высокочастотно-периодически чередующихся циклов накапливают дозы электромагнитной энергии в промежуточном индуктивном накопителе и в балластном дросселе, подключая их с помощью первого и второго основных ключей к источнику питания постоянного тока, а на втором этапе того же цикла передают накопленные ими дозы энергии в емкостный накопитель и в снабберный конденсатор вместе с дозой электроэнергии источника питания, подключая к нему с помощью первого основного ключа последовательно между собой соединенные балластный дроссель, индуктивный накопитель и емкостный накопитель при включенном втором основном ключе, причем регулируют соотношение длительностей указанных этапов в зависимости от соотношения напряжений емкостного накопителя и источника питания, отличающийся тем, что в каждый из указанных циклов вводят третий этап, на котором приблизительно сохраняют энергию индуктивного накопителя, шунтируя его вспомогательным ключом при выключенных основных ключах, причем длительность указанного этапа регулируют в зависимости от среднециклического значения потокосцепления индуктивного накопителя.

2. Способ зарядки емкостного накопителя электроэнергии по п. 1, отличающийся тем, что на третьем этапе каждого из указанных циклов накопленную к началу этого этапа дозу энергии балластного дросселя вместе с дополнительной дозой электроэнергии источника питания передают последовательно с дросселем между собой подсоединенным к источнику питания емкостному накопителю и снабберному конденсатору, который затем на первом этапе следующего цикла передает накопленную им при этом дозу энергии индуктивному накопителю через первый основной ключ.

3. Устройство для реализации способа зарядки емкостного накопителя электроэнергии в самолетных электроимпульсных комплексах по п. 1 или 2, содержащее входные выводы для подключения источника электропитания постоянного тока, емкостный накопитель, первый блокирующий диод, индуктивный накопитель, балластный дроссель, конденсаторно-диодную цепочку, состоящую из снабберного конденсатора и второго блокирующего диода, первый и второй основные электронные ключи и блок управления с основными импульсно-модуляторными выходными выводами, подключенными к управляющим выводам указанных ключей, первый из которых зашунтирован конденсаторно-диодной цепочкой и своим первым силовым выводом через балластный дроссель подключен к первому входному выводу устройства, а своим вторым силовым выводом через последовательно между собой соединенные индуктивный накопитель, первый блокирующий диод и емкостный накопитель - ко второму входному выводу устройства, а второй ключ своими силовыми выводами шунтирует цепочку, состоящую из первого блокирующего диода и емкостного накопителя, отличающееся тем, что в него введены вспомогательный электронный ключ, третий и четвертый блокирующие диоды, а блок управления снабжен вспомогательным импульсно-модуляторным выходным выводом, подключенным к управляющему выводу вспомогательного электронного ключа, первый силовой вывод которого подключен к общим выводам первого блокирующего диода и индуктивного накопителя и к соединенному с ними силовому выводу второго основного ключа, а второй силовой вывод непосредственно подключен к среднему выводу конденсаторно-диодной цепочки и через третий блокирующий диод - ко второму входному выводу устройства, а четвертый блокирующий диод включен последовательно с балластным дросселем.



 

Похожие патенты:

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ путем формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов.

Изобретение относится к области электротехники и может найти применение в различных отраслях техники в качестве электрического генератора. Магнитный усилитель содержит замкнутый магнитопровод с рабочей обмоткой и источник н.с.

Изобретение относится к области электротехники и может быть использовано в контактном электрошоковом оружии (ЭШО) и дистанционном электрошоковом оружии (ДЭШО), а именно в нелетальном электрошоковом оружии дистанционного действия, для правоохранительных служб и граждан.

Изобретение относится к области приборостроения и может быть использовано при разработке средств формирования эталонных сигналов частоты. Технический результат – расширение функциональных возможностей - обеспечен на основе использования эффекта постоянства скорости распространения света в определенной светопроводящей среде, обеспечивающего возможность формирования стабильных по частоте импульсов за счет уменьшения факторов внутренней нестабильности.

Изобретение относится к импульсной технике и может быть использовано для формирования мощных СВЧ-импульсов заданной формы в составе передатчиков радиолокационных станций, использующих СВЧ-приборы с сеточным управлением.

Изобретение относится к области автоматики и вычислительной техники. Технический результат - повышение надежности гистерезисного триггера, используемого в самосинхронных схемах для построения индикатора окончания в них переходных процессов за счет реализации отказо- и сбоеустойчивости; относительно отказов и сбоев транзисторов; относительно обрывов проводов входов-выходов; относительно отказов источника питания, а также за счет интегрированной отказо- и сбоеустойчивость относительно отказов и сбоев транзисторов, обрывов проводов входов-выходов и отказов источника питания.

Изобретение относится к области микроэлектроники. Технический результат заключается в расширении диапазона допустимых значений напряжений питания, повышении быстродействия и снижении энергопотребления синхронных триггеров.

Изобретение относится к генераторам импульсов. Достигаемый технический результат – осуществление управления количеством энергии, отводимой от накопителя энергии для формирования на выходной нагрузке серий производительных электрических импульсов с переменной амплитудой.

Rs-триггер // 2604682
Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления и передачи цифровой информации.

Изобретение относится к радиотехнике и может быть использовано для решения задач преобразования частоты в напряжение. Техническим результатом изобретения является повышение точности преобразования частоты в напряжение за счет формирования характеристики преобразования частоты в напряжение, близкой к линейной при больших значениях крутизны наклона.

Изобретение относится к электронной технике в области преобразователей сигналов. Формирователь импульсов содержит микроконтроллеры, блок гальванической развязки, преобразователи питания, регуляторы напряжения, входы напряжения питания и входы сигнала тахометрических датчиков. Также формирователь содержит программируемые микроконтроллеры и управляемые ключи, при этом микроконтроллеры производят анализ входного сигнала и устанавливают определенный порог срабатывания в зависимости от результата анализа. Технический результат заключается в повышении гибкости функционирования формирователя импульсов таходатчика путем обеспечения адаптации порога срабатывания в зависимости от входного сигнала. 3 з.п. ф-лы, 1 ил.

Изобретение относится к импульсной технике и может быть использовано для формирования импульсов управления СВЧ-приборами с сеточным управлением. Техническим результатом является упрощение модулятора импульсов и повышение его надежности. Модулятор импульсов содержит СВЧ-прибор с сеточным управлением, модуляторную лампу, генератор управляющих импульсов, импульсный трансформатор, источник смещения управляющей сетки модуляторной лампы, источники открывающего и закрывающего напряжений СВЧ-прибора, диодную сборку, источник коллекторного напряжения СВЧ-прибора, диодно-индуктивную сборку, два согласующих резистора. 4 ил.

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении быстродействия специализированных вычислителей таких как многозначный триггер. Указанный результат достигается за счет использования многозначного триггера, который содержит первый логический элемент с первым и вторым токовыми входами, а также первым и вторым токовыми выходами, второй логический элемент с первым и вторым токовыми входами, а также первым и вторым токовыми выходами, причем первый токовый вход второго логического элемента соединен с первым токовым выходом первого логического элемента, второй токовый вход первого логического элемента соединен с первым входом предустановки логического элемента памяти, второй вход второго логического элемента связан со вторым входом предустановки состояния устройства, второй токовый выход первого логического элемента связан с первым токовым выходом состояния устройства, второй токовый выход второго логического элемента связан со вторым токовым выходом состояния устройства. 3 з.п. ф-лы, 13 ил., 2 табл.

Изобретение относится к области и предназначено для получения последовательности случайных чисел с заданными статистическими характеристиками. Технический результат - повышение независимости вырабатываемой последовательности случайных чисел от параметров источника шума и получение последовательности случайных чисел с заданными статистическими характеристиками. В способе для получения последовательности случайных двоичных чисел используют источник случайных событий - полупроводниковый шумовой диод. Формируют аналоговый сигнал, характеризующий наступление указанных событий, производят обработку сформированного аналогового сигнала и преобразование его в цифровую форму. Задают интервал времени, в течение которого определяют число знакоперемен (0 и 1). В полученном числе выявляют младший бит и записывают его. Из последовательности указанных младших битов формируют выходную последовательность случайных двоичных чисел. 2 н. и 9 з.п. ф-лы, 1 ил.

Изобретение относится к области импульсной техники и может использоваться для питания обмоток возбуждения реверсивного двигателя возвратно-поступательного движения. Технический результат – упрощение устройства путем исключения одного источника питания и одного накопительного конденсатора. Генератор импульсов тока содержит зарядное устройство, накопительный конденсатор, два основных тиристора, две индуктивные нагрузки, коммутирующий конденсатор, два вспомогательных тиристора, два диода. 4 ил.

Изобретение относится к преобразовательной технике и может быть использовано в системах электроснабжения. Технический результат заключается в повышении коэффициента усиления напряжения. Индуктивно-емкостный преобразователь содержит проводящие обкладки, свернутые в спираль и разделенные диэлектриком, выполненным из первой и второй секций, причем начало первой проводящей обкладки первой секции подключено к началу первой проводящей обкладки второй секции, конец первой проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции, начало второй проводящей обкладки первой секции подключено к началу второй проводящей обкладки второй секции, конец второй проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции. 2 з.п. ф-лы, 9 ил.

Изобретение относится к области радиотехники и связи и может быть использовано для улучшения линейности усиления многочастотных сигналов. Технический результат заключается в снижении динамического диапазона многочастотных сигналов. Предложенный способ позволяет определить начальные фазы гармонических колебаний многочастотного сигнала, обеспечивающие снижение динамического диапазона его огибающей и, как следствие, улучшение линейности усиления. 2 ил.

Предлагаемый способ относится к области измерительной техники и предназначен для преобразования напряжения в частоту следования импульсов. Технический результат заключается в уменьшении абсолютной погрешности дискретности преобразования в код выходной частоты следования импульсов и расширение диапазона входных напряжений. В способе интегрируют преобразуемое напряжение и определяют в моменты синхронизации повторяющиеся периодически результаты интегрирования, и при условии, что в момент синхронизации результат интегрирования преобразуемого напряжения станет меньше заданного уровня, начинают интегрировать импульс стабильной площади, знак которого противоположен знаку преобразуемого напряжения, причем среднее значение площади импульса больше по абсолютной величине, чем любое преобразуемое напряжение из заданного диапазона, импульс стабильной площади действует в течение целого числа N периодов синхронизации, при этом N>1. 5 ил.

Изобретение относится к области высоковольтной импульсной техники. Генератор включает зарядную цепь, ограничитель и нагрузку. Зарядная цепь введена в генератор Маркса, содержащий также N1 - звеньев, состоящих из ключей с конденсаторами, соединенных по каскадной схеме умножения напряжения Аркадьева-Маркса. Конденсатор генератора Маркса первого звена подключен к общей шине, а зарядная цепь генератора Маркса подключена к общей шине и к точкам соединения конденсаторов и ключей в каждом из N1 - звеньев. Между последним ключом генератора Маркса и общей шиной последовательно подключены дроссель и импульсный диод с малым временем обратного восстановления. Ограничитель включает зарядную цепь и N2 - звеньев, состоящих из соединенных последовательно дрейфовых диодов и конденсаторов. Конденсатор ограничителя первого звена подключен к общей шине. Зарядная цепь ограничителя подключена к общей шине и к точкам соединения конденсаторов и дрейфовых диодов в каждом звене из N2 - звеньев. Последний дрейфовый диод из N2 - звеньев ограничителя подключен к точке соединения нагрузки и импульсного диода с малым временем обратного восстановления. Параметры зарядных цепей генератора Маркса и ограничителя и количество их звеньев N1 и N2 должны удовлетворять заданным условиям. Технический результат заключается в повышении КПД генератора. 2 ил..

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления и передачи информации. Технический результат заключается в возможности в рамках одной и той же архитектуры реализовывать две пороговые логические функции «Ограничение снизу» и «Ограничение сверху» двух многозначных входных переменных ("х", "хогр"). Токовый элемент ограничения многозначной выходной логической переменной содержит: первый (1) и второй (4) источники входного логического тока, соответствующие первой многозначной логической переменной "х", третий (5) источник входного логического тока, соответствующий второй логической переменной "хогр", устанавливающей уровень ограничения выходного тока устройства, первый (8) и второй (9) входные транзисторы, первую (2) и вторую (6) шины источника питания и источник вспомогательного напряжения (10). В схему введены первый (11), второй (12), третий (13) и четвертый (14) дополнительные транзисторы и первый (15) дополнительный источник входного логического тока, соответствующий второй логической переменной "хогр". 4 ил.
Наверх