Способ утилизации отходов алюмохромового катализатора

Изобретение относится к способу утилизации отходов алюмохромового катализатора, включающему их введение в состав легкоплавких глинистых шихт для изготовления строительной керамики и последующее капсулирование при термической обработке в теле обожженного керамического черепка. Технический результат - повышение прочности и водонепроницаемости строительной керамики за счет введения в состав шихты на основе легкоплавкой глины 0,5-12 мас.% отходов алюмохромового катализатора. Компоненты шихты смешивают путём совместного мокрого помола в шаровой мельнице, проводят пластическое формование увлажненной смеси с последующими сушкой до остаточной влажности 4% и обжигом при подъёме температуры со скоростью 1-2°С/мин до 1160°С и выдержкой при максимальной температуре 2-3 часа. Отход алюмохромового катализатора имеет насыпную плотность 1,3-1,5 г/см3 и состав, мас. %: хром в пересчете на Cr2O3 0-25, Al2O3 (гамма модификация) 73-89, K2O 1-2, SiO2 0-6, примеси железа до 0,5-0,7, примеси никеля, меди, цинка, титана до 0,2. В шихте используют легкоплавкую глину следующего химического состава, мас. %: SiO2 60-70, TiO2 0,5-1, Al2O3 10-15, Fe2O3 2-7, MnO 0,1-1, CaO 2-4, MgO 1-5, Na2O 1-4, K2O 2-5, P2O5 0,1-0,5, SO3 0,09, п.п.п. 6, 10. 4 пр., 2 табл., 1 ил.

 

Изобретение относится к способу утилизации отходов алюмохромового катализатора, включающему их введение в состав легкоплавких глинистых шихт и последующего капсулирования при термической обработке в теле обожженного керамического черепка.

Технический результат - повышение прочности, водонепроницаемости строительной керамики за счет введения в состав шихты отходов алюмохромового катализатора (далее АХО) и регулирования температуры обжига.

Известен способ обезвреживания хромсодержащих отходов гальванического производства, включающий их пропускание через электролизер с анодами из железа или алюминия. Под действием постоянного тока ионы анодов переходят в раствор и в результате гидролиза образуют нерастворимые в воде гидроокиси, выполняющие роль коагулянта. В электролизе происходят процессы восстановления хрома, коагуляции и отделения образующегося осадка с последующим осветлением воды от взвеси в отстойнике.

Это техническое решение имеет недостаточную безопасность (выделение в процессе электролиза взрывоопасных газовых смесей), необходимость использования громоздкого оборудования, а также недостаточно целесообразную схему процесса, при котором осуществляется связывание одних компонентов с образованием других, хотя и менее токсичных.

Известен способ обработки радиоактивных отходов (РАО) путем их внедрения в бетон или битум.

Наибольший недостаток этого недорогого и простого способа введения в бетон РАО состоит в высокой скорости выщелачивания радионуклидов из отвержденного продукта. Битуминированные продукты имеют более низкую степень растворимости в грунтовых или соленых морских водах, но процесс битуминирования РАО более сложен и рискован из-за опасности воспламенения. Из-за опасности радиационного разогрева способ характеризуется низким содержанием РАО в единице отвержденного объема.

Известен также способ обезвреживания хромсодержащих отходов гальванического производства, включающий их обезвоживание и последующее восстановление металлосодержащих окислов осадка путем термического воздействия на них углеродом.

Недостатком этого технического решения является неполное извлечение хрома из отходов (извлекается порядка 85% хрома, содержащегося в осадке). Кроме того, при наличии окислов токсичных металлов (например, кадмия) неизбежно их восстановление. Таким образом, потребуются дополнительные операции по очистке получаемого продукта от токсичных примесей.

Известна керамическая масса для изготовления кирпича, включающая, мас. %: глину 92-98, отходы обогащения медных руд 2-8. (Патент РФ №2099306, МПК6 C04B 33/00, опубл. 20.12.1997).

К недостаткам изобретения относится то, что изделия из известной керамической массы обладают невысокими прочностными характеристиками.

Наиболее близким техническим решением к предлагаемому изобретению является способ утилизации отходов алюмохромового катализатора с получением керамики из легкоплавких глин (патент №1682348, кл. C04B 33/00, дата публикации 07.10.1991, авторы Женжурист И.А. и др., SU, прототип). Известный способ включает смешение легкоплавкой глины (суглинка), бентонита и отхода алюмохромового катализатора, содержащего шестивалентный хром, приготовление формовочной смеси, прессование и обжиг изделий при 1050°С. Прочность получаемых изделий составляет до 20 МПа.

Заявленный способ отличается от известного тем, что в шихте содержится меньше алюмохромового катализатора (0,5-12 мас. %), а также тем, что изделия изготавливают методом пластического формования. При этом достигается повышение прочности изделий.

Задачей предлагаемого изобретения является нейтрализация опасного шестивалентного хрома (далее Cr(VI)), содержащегося в многотоннажных отходах алюмохромового катализатора, который по степени опасности относится к I группе, согласно ГОСТ 12.1.007-76, путем капсулирования Cr(VI) в теле обожженной керамики на основе легкоплавких шихт. При этом обеспечивается полная экологическая чистота готового продукта, например, в виде облицовочной фасадной керамической плитки. Технический результат, получаемый при осуществлении изобретения, выражается в получении высокопрочного керамического заполнителя тяжелых бетонов, клинкерной плитки и кирпича, отличающихся экологической чистотой с очень низким содержанием Cr(VI) и высокими физико-механическими характеристиками.

Поставленная задача решается тем, что способ обезвреживания отходов алюмохромового катализатора (далее АХО), включающий их введение в состав глиняной шихты и последующий обжиг, отличается тем, что предварительно сухая легкоплавкая глина размалывается в лабораторной шаровой мельнице при соотношении «шары:глина=1:1-5» в течение 15-30 минут до фракции менее 16 мм, затем в шихту добавляется 0,5-12 мас. % АХО и повторно производится перемешивание шихты «глина+АХО» в шаровой мельнице при соотношении «шары:(глина+АХО)=1:1» в течение 5-10 минут с последующим приготовлением пластичной сырьевой смеси с добавлением воды в количестве 19-23%, выдержке полученной сырьевой смеси в герметичных полиэтиленовых мешках в течение 24 часов при температуре 25-35°С, изготовлением керамического изделия пластического формования при давлении прессования 1,5-2,0 МПа, сушке сформованного керамического изделия в течение 24 часов при комнатной температуре, а затем в течение 12-24 часов при температуре 30-100°С до остаточной влажности менее 4%, обжиге при подъеме температуры со скоростью 1-5°С/мин до 960-1160°С, выдержке при максимальной температуре в течение 2-3 часов с последующим остыванием в течение 24 часов со скоростью 1°С/мин.

Отличием изобретения от прототипа является следующее:

- используется двухкомпонентная смесь, в которой в качестве добавки используется отход алюмохромового катализатора в количестве 0,5-12 мас. %, что позволяет снижать себестоимость получаемого готового изделия;

- сырцы сушатся в течение 12-14 часов при температуре 30-100°С до остаточной влажности 4%;

- при этом состав шихты сформирован в следующем соотношении, мас. %:

глина 88-99,5

отход алюмохромового катализатора 0,5-12.

В отличие от заявляемого изобретения в прототипе шихта представляет из себя двухкомпонентную смесь, состоящую из легкоплавкой глины следующего химического состава: SiO2 - 60-70, TiO2 - 0,5-1, Al2O3 - 10-15, Fe2O3 - 2-7, MnO - 0,1-1, СаО - 2-4, MgO - 1-5, Na2O - 1-4, K2O - 2-5, P2O5 - 0,1-0,5, SO3 - 0,09, п.п.п. - 6,10 и 0,5-12 мас.% и отхода алюмохромового катализатора следующего химического состава, мас.%: Cr2O3 - 10-25, γ-Al2O3 - 73-89, K2O - 1-2, SiO2 - 0-6, примеси железа - до 0,5-0,7, примеси никеля, меди, цинка, титана - до 0,2, насыпной плотностью 1,3-1,5 г/см3, влажностью 0,9-5,0%. Многокомпонентный состав шихты в прототипе обуславливает сложную воспроизводимость физико-механических свойств. В результате использования в прототипе природных сырьевых материалов, доставка которых требует дополнительных транспортных расходов, повышается себестоимость готового изделия.

С целью оценки физико-механических характеристик были изготовлены контрольные образцы цилиндры размером 16×16 мм, сформованные на основе шихт, состоящих из легкоплавкой глины Сарай-Чекурчинского месторождения (далее глина С-Ч) и добавки в виде отходов АХО, которые вводились в количестве 0,5; 1,5; 6 и 12 мас.% от расхода глины. Формовочная влажность шихты составляла 19-23%. Исследуемые составы приведены в таблице 1.

Анализ результатов проведенных исследований влияния добавки АХО на водопоглощение керамического черепка показал, что при 960°С небольшая дозировка АХО, равная 0,5 мас. %, способствует снижению водопоглощения черепка с 15,4 до 11,5% (на 25,32%). При дальнейшем увеличении дозировки АХО до 1,5; 6 и 12% водопоглощение несколько увеличивается, но остается меньше, чем для состава без АХО, соответственно на 16,23; 12,34 и 5,84%. Повышение температуры до 1060°С и количества АХО от 0,5 до 12% приводит почти к линейному увеличению водопоглощения с 9,8 до 13,3%. Можно констатировать, что при низких температурах (960 и 1060°С) АХО практически не вступает в твердофазовые превращения с глинистыми минералами и продуктами их разрушения.

При увеличении температуры до 1160°С характер результатов резко меняется. При увеличении дозировки АХО до 12% водопоглощение увеличивается до 3,3%. Следовательно, одним из эффективных приемов регулирования водопоглощения является температура обжига, т.к. ее увеличение с 960 до 1060°С в среднем приводит к снижению водопоглощения примерно в 1,15-1,2 раза, а при 1160°С в 8 раз. Увеличение обжига от 1060 до 1160°С приводит к снижению водопоглощения в 4-8,7 раз.

Данные водопоглощения образцов взаимосвязаны с показателями плотности и предела прочности при сжатии черепка.

При 960°С с увеличением дозировки от 0 до 12% наблюдается снижение плотности с 1,91 до 1,81 г/см3. При 1060°С при увеличении дозировки до 12% наблюдается снижение плотности с 1,93 до 1,73 г/см3. Наибольшая плотность черепка (2,13 г/см3) достигается с 6% АХО при 1160°С. Это, видимо, связано с тем, что огнеупорная добавка в виде отхода катализатора начинает спекаться при более высоких температурах, чем 960 и 1060°С.

Анализ результатов показал, что введение добавки АХО способствует повышению прочности во всем интервале дозировок от 0 до 12%. При этом при 0,5% наблюдается скачкообразное увеличение прочности: с 47,7 МПа до 87,4 МПа (на 83,22%). В интервале (1,5-12%) АХО прочность образцов остается выше контрольного на 28,72-56,81% и равна 61,4-74,8 МПа.

Таким образом, можно утверждать, что за счет введения в легкоплавкую шихту на основе глины С-Ч добавки АХО в интервале от 0,5 до 12 мас. % от расхода глины, можно целенаправленно регулировать изменения водопоглощения, средней плотности и прочности обожженных образцов. При этом установлено, что наилучшие свойства образцов обеспечиваются при температуре обжига 1160°С. Оптимальная дозировка АХО равна 0,5 мас.%, обеспечивающая наивысшую прочность черепка (87,41 МПа).

Такая высокая прочность черепка позволила изготовить на основе разработанных оптимальных составов шихт с добавкой АХО образцы фасадной клинкерной плитки и кирпича марок по прочности «500», «600», «700».

Для оценки экологической чистоты разработанных материалов у контрольных образцов было определено содержания Cr(VI), приведенные в таблице 2.

Если учесть, что в самих отходах АХО концентрация Cr(VI) составляет 25 мг/г, т.е. превышение нормы ПДК в сто раз, то за счет их введения в состав легкоплавкой шихты на глине С-Ч в количестве (0,5-12) мас. % от расхода глины и последующего капсулирования в теле обожженной при 960-1160°С керамики содержание Cr(VI) снижается в 102-424 раза.

Из данных, приведенных в таблице 2, видно, что наличие Cr(VI) обнаружено во всех образцах, даже в тех, в составы шихт которых добавка АХО не вводилась. Видимо, в исходном сырье - легкоплавкой С-Ч глине - также имеются включения Cr(VI), которые в температурном интервале 960-1160°С не полностью капсулируются в обожженном черепке даже при 1160°С. Кроме того, для образцов на основе шихт из чистых легкоплавких глин с увеличением температуры обжига с 960°С до 1160°С почти в два раза снижается содержание Cr(VI). Во всех образцах, обожженных при 960-1160°С, содержание Cr(VI) в 2-4 раза превышает нормативные ПДК.

Несколько иная картина наблюдается при введении в состав шихты на легкоплавкой глине добавки АХО. При этом увеличение дозировки АХО с 1,5% до 12 мас. % способствует увеличению Cr(VI) в образцах с 0,142 до 0,244 мг/г или в 1,72 раза.

Конкретное осуществление изобретения иллюстрируют следующие примеры.

Пример 1. Глина в количестве 88 мас. % смешивается с АХО в количестве 12 мас. % в шаровой мельнице в течение 5-10 минут с последующим приготовлением пластичной сырьевой смеси с добавлением воды в количестве 19-23%, выдержке полученной сырьевой смеси в герметичных полиэтиленовых мешках в течение 24-36 часов при температуре 25-35°, изготовлением керамического изделия пластического формования при давлении прессования 1,5-2,0 МПа, сушке сформованного керамического изделия в течение 18-24 часов при комнатной температуре, а затем в течение 12-24 часов при температуре 30-100°С до остаточной влажности менее 4%, обжиге при подъеме температуры со скоростью 1-2°С/мин до 960°С, выдержке при максимальной температуре в течение 2-3 часов с последующим остыванием в течение 18-24 часов со скоростью 1-5°С/мин. Полученное по такому способу керамическое изделие обладает прочностью 15-20 МПа.

Пример 2. Технология, аналогичная технологии, приведенной в примере 1, за исключением только того, что глина в количестве 94 мас.% смешивается с АХО в количестве 6 мас.%, а сформованное изделие обжигается при температуре до 1060°С. Полученное таким способом керамическое изделие обладает прочностью 25-30 МПа, что на 55-60% выше показателя в примере 1. Так же образцы, полученные по указанному способу обладают средней плотностью 1,83-1,88 г/см.

Пример 3. Технология, аналогичная технологии, приведенной в примере 1, за исключением только того, что глина в количестве 98,5 мас. % смешивается с АХО в количестве 1,5 мас.%, а сформованное изделие обжигается при температуре до 1160°С. Полученное таким способом керамическое изделие обладает прочностью 70-75 МПа, что в 4-4,5 раза выше результата, полученного в примере 1. Показатель водопоглощения образцов по массе составляет 13%.

Пример 4. Технология, аналогичная технологии, приведенной в примере 1, за исключением только того, что глина в количестве 88 мас. % смешивается с АХО в количестве 12 мас. %, а сформованное изделие обжигается при температуре до 1160°С. Полученное таким способом керамическое изделие обладает прочностью 60-65 МПа, что в 3,5-4 раза выше результата, полученного в примере 1. Образцы, полученные по указанному способу обладают средней плотностью 2,04-2,08 г/см3, что на 11% выше плотности образцов, указанных в примере 2. Показатель водопоглощения образцов по массе составляет 14-15%, что на 15% выше показателя, полученного в примере 3.

Как видно из приведенных примеров, прочность и водонепроницаемость образцов, полученных по предлагаемому составу и технологии приготовления, превосходят соответствующие показатели образцов прототипа.

Более высокие физико-механические характеристики образцов керамики по сравнению с образцами прототипа обусловлены тем, что в процессе обжига продукты разложения глинистой составляющей шихты взаимодействуют с оксидами алюминия, кальция, железа и магния, которые присутствуют в добавочных материалах и отходах. Это способствует частичному появлению пиропластичной фазы, которая ускоряет протекание твердофазных реакций с преимущественным формированием муллита, гематита, анортита, авгита и др. Сравнивая рентгенограммы РФА для образцов из чистой С-Ч глины, обожженных при трех различных температурах, можно сделать вывод, что с увеличением температуры обжига наблюдается более полное наполнение структуры черепка и стеклофазы кристаллами муллита, гематита и уменьшение доли кремнезема и полевых шпатов ввиду частичного их оплавления по контуру минерала и перехода в стеклофазу (рисунок 1).

Более высокие показатели водонепроницаемости образцов керамики данного изобретения по сравнению с образцами прототипа обусловлены тем, что с увеличением дозировки АХО от 1,5 до 12% общее количество пор снижается, следовательно, структура становится более плотной. Так, при отсутствии добавки АХО средняя плотность черепка, обожженного при 1160°С, равна 2,05 г/см3, при 0,5% АХО - 2,07 г/см3, при 1,5% АХО - 2,09 г/см, при 6% АХО достигает 2,17 г/см3. Это связано, во-первых, с большим объемом кристаллических новообразований, формирующихся при высокотемпературном обжиге легкоплавкой шихты в присутствии добавки АХО, во-вторых, с более полным наполнением межзернового пространства новообразованиями, в третьих, с увеличением плотности стеклофазы за счет ее армирования кристаллами. Следует отметить, что дальнейшее увеличение АХО до 12% снижает плотность до 2,06 г/см3.

Способ утилизации отходов алюмохромового катализатора, заключающийся в получении высокопрочной керамики на основе легкоплавких глин и отходов алюмохромового катализатора, отличающийся тем, что керамику изготавливают из шихты в виде смеси 88-99,5 мас. % легкоплавкой глины и 0,5-12 мас. % отходов алюмохромового катализатора методом пластического формования, включающим следующие этапы:

- на первом этапе сухая легкоплавкая глина размалывается в шаровой мельнице в течение 15-30 минут до фракции менее 16 мм;

- на втором этапе производится смешение глины с 0,5-12 мас. % отходов алюмохромового катализатора путем совместного помола в шаровой мельнице в течение 5-10 минут;

- на третьем этапе приготавливается пластичная сырьевая смесь с добавлением воды в количестве 19-23%;

- на четвертом этапе осуществляется формование из полученной сырьевой смеси полуфабриката методом пластического формования при давлении прессования 1,5-2,0 МПа;

- на пятом этапе производится сушка полученных полуфабрикатов при температуре 30-100°С до остаточной влажности менее 4%;

- на шестом этапе производится обжиг при подъеме температуры со скоростью 1-2°С/мин до 1160°С, выдержке при максимальной температуре в течение 2-3 часов с последующим остыванием в течение 24 часов со скоростью 1°С/мин,

при этом легкоплавкая глина имеет следующий химический состав, мас. %: SiO2 - 60-70, TiO2 - 0,5-1, Al2O3 - 10-15, Fe2O3 - 2-7, MnO - 0,1-1, CaO - 2-4, MgO - 1-5, Na2O - 1-4, K2O - 2-5, P2O5 - 0,1-0,5, SO3 - 0,09, п.п.п. - 6,10; отходы алюмохромового катализатора имеют следующий химический состав, мас. %: Cr2O3 - 10-25, γ - Al2O3 - 73-89, K2O - 1-2, SiO2 - 0-6, примеси железа - до 0,5-0,7, примеси никеля, меди, цинка, титана - до 0,2, насыпную плотность 1,3-1,5 г/см3 и влажность 0,9-5,0%.



 

Похожие патенты:

Изобретение относится к области производства строительных материалов и может быть использовано для производства керамического кирпича. Сырьевая смесь для изготовления керамического кирпича, включающая глину, кварцевый песок модулем крупности 2,0-2,2, выгорающую добавку, дополнительно содержит кремнеземсодержащие шламовые отходы процесса переработки отработанного ванадиевого катализатора сернокислотного производства, а в качестве выгорающей добавки содержит смесь древесных опилок, крошки резинового регенерата процесса переработки утилизируемых автомобильных шин, гидроксипропилцеллюлозы при соотношении указанных составных частей выгорающей добавки: 1:0,1-0,3:0,01-0,02 при следующем соотношении компонентов, мас.%: глина 73,0-87,0, указанный кварцевый песок 9,0-16,0, шлам процесса переработки отработанного ванадиевого катализатора 2,0-5,0, указанная выгорающая добавка 2,0-6,0.

Изобретение относится к составам керамических масс, которые могут быть использованы в производстве облицовочной плитки, изразцов. Керамическая масса для изготовления облицовочной плитки, изразцов, включающая глинистое сырье, керамический бой, нефелиновый концентрат, отличающаяся тем, что в качестве глинистого сырья содержит беложгущуюся глину, причем размолотые до порошкообразного состояния компоненты находятся при следующем соотношении, мас.%: беложгущаяся глина 50,0-55,0; керамический бой 10,0-25,0; нефелиновый концентрат 25,0-35,0.

Изобретение относится к области промышленности строительных материалов, в частности к составам керамических масс, которые могут быть использованы для изготовления бытовой керамики.

Изобретение относится к составам керамических масс, которые могут быть использованы для изготовления фасадной плитки. Керамическая масса для изготовления фасадной плитки, включающая глину огнеупорную, бентонит, содержит мусковит и кварцит, при следующем соотношении компонентов, мас.

Изобретение относится к составам керамических масс, которые могут быть использованы в производстве фасадной плитки. Керамическая масса включает, мас.

Изобретение относится к составам керамических масс, которые могут быть использованы в производстве фасадной плитки. Керамическая масса включает, мас.%: глина беложгущаяся 74,0-78,0; вспученный перлит 4,0-6,0; доменный гранулированный шлак 2,0-4,0; бентонит 2,0-4,0; тальк 2,0-4,0; циркон 4,0-6,0; кварцевый песок 4,0-6,0.

Изобретение относится к производству строительных материалов и может быть использовано в технологии изделий стеновой керамики, в частности керамических кирпича и камней.

Изобретение относится к составам керамических масс и может быть использовано для производства кирпичей и камней, преимущественно пустотелых. Керамическая масса включает суглинок, керамзитовую глину, железосодержащую добавку и выгорающую добавку.

Изобретение относится к промышленности керамических материалов, преимущественно к составам масс для получения керамического стенового материала. Технический результат заключается в повышении морозостойкости и прочности при сжатии керамического стенового материала.

Настоящее изобретение относится к строительным материалам и может быть использовано при производстве керамических изделий, например кирпича. Керамическая масса, содержащая кембрийскую глину и отощитель, отличающаяся тем, что в качестве отощителя содержит шлак от алюминотермитной сварки рельсов с модулем крупности Мкр=2,8, более 90% содержащий герцинит, представленный железистой шпинелью, и оксид алюминия при следующих соотношениях компонентов, мас.

Изобретение относится к составам масс для производства кирпича. Технический результат – повышение морозостойкости кирпича. Масса для производства кирпича содержит, мас.%: глина 73,0-74,5; пегматит 3,0-4,0; подмыльный щелок 0,5-1,0; опока 10,0-12,0; кварцевый песок 10,0-12,0. 1 табл.

Изобретение относится к промышленности строительных материалов, в частности к производству облицовочной плитки. Керамическая масса для изготовления облицовочной плитки включает, мас.%: кирпичную глину 54,4-60,4, размолотый до прохождения через сетку 0,14 плиточный бой 0,1-0,5, размолотый до прохождения через сетку 0,14 нефелиновый концентрат 11,0-13,0, размолотый до прохождения через сетку 0,14 трепел 28,0-32,0, расплавленный природный асфальт 0,1-0,5. Технический результат – снижение температуры обжига плитки, полученной из керамической массы. 1 табл.

Изобретение относится к области утилизации гальванических шламов в производстве стеновых строительных материалов из малопластичных глин и может быть использовано при изготовлении изделий для облицовки фасадов и внутренних стен. Технический результат: повышение прочности на сжатие и морозостойкости, снижение водопоглощения и теплопроводности керамики на основе глин, в т.ч. малопластичных, утилизация гальванического шлама с получением экологически безопасного материала. Указанный технический результат достигается за счет введения в керамическую массу, включающую глину, гальванический шлам, образующийся при реагентной очистке сточных вод гальванического цеха гидроксидом кальция, содержащий, мас.%: Zn(OH)2 - 11,3; Ni(OH)2 - 2,6; Cu(OH)2 - 2,4; Cr(OH)3 - 9,3; CaOC3 - 40,3; Са(ОН)2 - 16,5; SiO2 - 7,0, и борную кислоту, дополнительно диоксида титана при следующем соотношении компонентов, мас.%: глина - 80,0; гальванический шлам - 5,0; диоксид титана - 10,0; борная кислота - 5,0. 1 табл.

Изобретение относится к промышленности строительных материалов и касается составов керамических масс для изготовления стеновых материалов: лицевого кирпича, блоков. Керамическая масса для изготовления стеновых материалов содержит следующие компоненты, мас. %: монтмориллонитовая глина 10,0-15,0; каолин 59,5-64,0; кварцевый песок 10,0-15,0; подмыльный щелок 0,5-1,0; тальк 10,0-15,0. Технический результат изобретения – повышение морозостойкости изделий. 1 табл.
Изобретение относится к области производства легких заполнителей для бетонов. Способ изготовления заполнителя для бетона включает подготовку массы на основе легкоплавких глин, способных вспучиваться в условиях термической обработки, введение в количестве 2-8% от ее объема молотого и просеянного через сито № 063 боя силикатного кирпича, увлажнение битумной и/или дегтевой эмульсией до 17-26%, формование гранул, сушку гранул до влажности 1-6%, обжиг гранул при температуре 900-1100°C и охлаждение гранул до температуры 20-50°C. Технический результат – интенсификация процесса обжига заполнителя, образование развитой пористой структуры. 3 пр.

Изобретение относится к промышленности строительных материалов, в частности к производству облицовочной плитки. Керамическая масса для изготовления облицовочной плитки включает, мас.%: кирпичная глина 50,0-56,0, плиточный бой 0,1-0,5, нефелиновый концентрат 9,0-11,0, трепел 25,9-31,9, парафин и/или стеарин 0,1-0,5, фосфорит 6,5-8,5. Технический результат – снижение температуры обжига плитки, полученной из керамической массы. 1 табл.

Изобретение относится к производству строительных материалов на основе природного минерального сырья, а именно к составам для изготовления керамической облицовочной плитки для внутренних и наружных отделочных работ. Керамическая масса для изготовления облицовочной плитки включает, мас.%: вмещающую породу месторождения хромовых руд и платиновой минерализации, содержащую, мас.%: авгит 57,7-67,2; энстатит 23,7-32,0; форстерит 4,3-5,8; серпентин 4,7-4,8, 20–70, бой щелочно-силикатных стекол 20–30, легкоплавкую глину – остальное. Вмещающая порода месторождения хромовых руд и платиновой минерализации имеет следующий химический состав, мас.%: SiO2 47,40-50,50; TiO2 0,26-0,27; Al2O3 1,50-1,57; Fe2O3 1,90-4,28; FeO 4,17-4,59; MnO 0,16-0,18; MgO 21,80-22,54; CaO 12,05-15,30; Na2O 0,35-0,37; K2O<0,01-0,02; H2O 0,47-1,14; ппп. 2,51-5,06. Технический результат – получение керамической плитки с пониженными показателями усадки и водопоглощения, утилизация отходов. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области производства керамических материалов, преимущественно клинкерного и кислотоупорного кирпича, кислотоупорных плиток для кладки и облицовки в агрессивных средах и в средах с влажным режимом. Технический результат: повышение прочности на сжатие, кислотостойкости и морозостойкости при сохранении остальных свойств на уровне, соответствующем требованиям для клинкерного кирпича по ГОСТ 530-2012, при снижении энергоемкости производства за счет снижения удельного давления прессования с 20 до 15 МПа и расширения ресурсной базы за счет использования малопластичных глин и утилизации гальванического шлама с получением экологически безопасного материала. Указанный технический результат достигается за счет применения малопластичной глины и гальванического шлама, образующегося при реагентной очистке сточных вод гальванического цеха гидроксидом кальция и содержащего (мас. %): Zn(OH)2 - 11,3; Ni(OH)2 - 2,6; Cu(OH)2 - 2,4; Cr(OH)3 - 9,3, СаСО3 - 40,3, Са(ОН)2 - 16,5 и SiO2 - 7,0. Перед использованием гальванический шлам просушивается при Т = 130°С и подвергается тонкому измельчению до степени перетира не более 40 мкм (по ГОСТ 6589-74). Шихта для изготовления кислотоупорных керамических изделий содержит, (в мас. %): малопластичную глину - 85,0; гальванический шлам - 5,0; оксид лантана - 5,0; борную кислоту - 5,0. 1 табл.
Изобретение относится к промышленности строительных материалов и касается составов шихты и сырьевых смесей для изготовления кирпича как лицевого, так и обычного, а также при производстве золокерамических камней. Технический результат от использования предложенного изобретения состоит в повышении прочности и снижении влагопроницаемости глинозольного кирпича, полученного из шихты на основе дешевого сырья в виде глины и топливной золы угольных электростанций. При этом утилизация золы угольных ТЭС обеспечивает решение актуальной задачи ее комплексного использования в строительной индустрии при получении сравнительно недорогих и высококачественных изделий в виде золокерамических камней и кирпича. Шихта для получения глинозольного кирпича, содержащая глину и топливную золу, согласно изобретению, включает глину монтмориллонитовую и топливную золу угольных электростанций, очищенную от примеси углерода и оксидов железа до значений 2-4 мас.%, при следующем соотношении компонентов, мас.%: топливная зола угольных электростанций, очищенная от примеси углерода и оксидов железа 45-55; глина монтмориллонитовая - остальное.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении керамических стеновых изделий и плитки. Техническим результатом изобретения является повышение прочности при сжатии и изгибе получаемых керамических строительных материалов, повышение эффективности извлечения сапонитового продукта и обесшламливания оборотных вод алмазодобывающих предприятий, расширение сырьевой базы и улучшении экологической обстановки за счет использования техногенных отходов. Исходный сапонитовый продукт подвергают электрохимической сепарации с получением концентрата - сгущенного сапонитового продукта и обесшламленных техногенных вод. Получаемый концентрат электрохимической сепарации - сгущенный сапонитовый продукт содержит 580-620 г/дм3 твердой фазы. Влажность сгущенного сапонитового продукта доводят до 7-9% путем сушки при 100-110°С в течение 7-8 ч. Полусухое прессование ведут при давлении 16-24 МПа. Обжиг изделий ведут при температуре 800-900°С в течение 1,0-1,2 ч. 1 табл., 8 пр.
Наверх