Способ исследования проницаемости образцов керна с трещинами

Изобретение относится к нефтедобывающей отрасли и может быть использовано при проектировании разработки нефтяных месторождений с трещиноватым типом коллектора, на которых используется система поддержки пластового давления (ППД) в виде нагнетания воды. Проэкстрагированный и высушенный образец керна с единичной трещиной насыщают дистиллированной водой или моделью нагнетаемой воды. Образец помещают в установку для фильтрационных исследований образцов керна. Создают эффективные напряжения, соответствующие пластовым условиям, и определяют проницаемость образца при фильтрации дистиллированной воды или модели нагнетаемой воды. В процессе фильтрации воды образец подвергают циклическому воздействию увеличивающихся и уменьшающихся эффективных напряжений (минимум три цикла), а также выдержке при различном значении постоянного эффективного напряжения (минимум три выдержки). Одновременно производят отбор профильтровавшейся воды (минимум три пробы) и определяют ее химический состав. На основе динамики изменения проницаемости образца керна и химического состава профильтровавшейся воды определяют зависимость изменения проницаемости образца керна с трещиной при совместном воздействии фильтрации воды и постоянных эффективных напряжений. На основе зависимости изменения ширины трещины от изменяющихся эффективных напряжений определяют величину изменения проницаемости за счет упругих деформаций образца керна. Техническим результатом является определение закономерности изменения трещинной составляющей проницаемости при совместном воздействии фильтрующейся воды и изменяющихся эффективных напряжений. 1 табл., 3 ил.

 

Изобретение относится к нефтедобывающей отрасли и может быть использовано при проектировании разработки нефтяных месторождений с трещиноватым типом коллектора, на которых используется система поддержки пластового давления (ППД) в виде нагнетания воды.

При проектировании разработки нефтяных месторождений с трещиноватым типом коллектора появляется необходимость учета закономерностей изменения проницаемости систем трещин при изменении пластового давления. Данный факт обусловлен тем, что проницаемость трещин весьма существенно реагирует даже на небольшое изменение эффективных напряжений в пласте. Однако еще более интенсивно проницаемость трещин может изменяться при совместном воздействии фильтрации воды и эффективных напряжений, если химический состав нагнетаемой воды существенно отличается от химического состава пластовой воды. Чаще всего для нагнетания используют пресную воду из близлежащих водоемов (рек, озер) под воздействием которой скелет породы-коллектора начинает растворяться. Растворение происходит еще более интенсивно при воздействии эффективных напряжений на стенках трещин, что приводит к их постепенному смыканию и, как следствие, к уменьшению проницаемости трещиноватого коллектора в целом.

Известен способ исследования проницаемости образцов керна с трещинами, включающий совместное воздействие фильтрации воды и эффективных напряжений [1]. Однако эти исследования проводятся при постоянном эффективном напряжении и не учитывают упругую составляющую деформаций образца керна.

Технической задачей описываемого изобретения является определение закономерности изменения трещинной составляющей проницаемости при совместном воздействии фильтрующейся воды и при циклическом увеличение и уменьшении эффективных напряжений с целью учета упругой составляющей деформаций пород-коллекторов.

Поставленная техническая задача решается за счет того, что при совместном воздействии фильтрации воды и эффективных напряжений на образцы керна, исследование образцов керна проводят при циклическом увеличении и уменьшении эффективных напряжений и определяют величину изменения проницаемости трещин за счет упругих деформаций образца керна.

Сущность изобретения поясняется чертежами:

фиг. 1 - зависимость ширины трещины от коэффициента площади контактов стенок трещины;

фиг. 2 - зависимость изменения упругой составляющей ширины трещины от изменяющихся эффективных напряжений;

фиг. 3 - экспериментальная и расчетная динамика изменения проницаемости образца керна с трещиной.

Описываемый способ реализуют следующим образом.

Проэкстрагированный и высушенный образец керна с единичной трещиной насыщают дистиллированной водой или моделью нагнетаемой воды. Образец помещают в установку для фильтрационных исследований образцов керна. В установке создают эффективные напряжения, соответствующие пластовым условиям и определяют проницаемость образца при фильтрации дистиллированной воды или модели нагнетаемой воды. В процессе фильтрации воды образец подвергают циклическому воздействию увеличивающихся и уменьшающихся эффективных напряжений (минимум три цикла), а также выдержке при различном значении постоянного эффективного напряжения (минимум три выдержки). Данные циклы изменения эффективных напряжений должны соответствовать величинам изменения пластового или забойного давления. Одновременно производят отбор профильтровавшейся воды (минимум три пробы) и определяют ее химический состав.

На основе динамики изменения проницаемости образца керна определяют изменение средней ширины трещины из соотношения:

где - расстояние между трещинами; - проницаемость образца с трещиной.

Расстояние между трещинами принимают равным диаметру испытанного образца керна.

Далее определяют коэффициент площади контакта стенок трещины на основе соотношения:

где Δb/Δt - скорость изменения ширины трещины; Q - количество профильтровавшейся воды; Cp - концентрация растворенной порсды в профильтровавшейся воде; ρg - плотность твердых частиц породы.

На основе полученных значений коэффициента площади контакта стенок трещины строят зависимость ширины трещины от данного параметра, которая может быть задана в виде функции:

где Rc0 - начальный (минимальный) коэффициент площади контактов; a1, a2, a3 - определяемые константы.

С помощью эмпирической зависимости (3) получают расчетные значения величины изменения ширины трещины на каждый интервал времени:

где Vm - молярный объем твердого вещества скелета породы; σа - эффективное напряжение на контакте; σс - критическое напряжение; k+ - коэффициент растворимости минерала; R - универсальная газовая постоянная; Т - температура.

Эффективное напряжение на контакте определяют из выражения:

где - эффективные напряжения, создаваемые в эксперименте.

За величину критического напряжения принимают максимальное эффективное напряжение в эксперименте. Изменение ширины трещины включает две составляющие:

где Δbmech - упругая составляющая изменения ширины трещины под воздействием напряжений; Δbps - изменение ширины трещины под совместным воздействием постоянных эффективных напряжений и растворения породы; с1 и с2 - определяемые коэффициенты.

Величину Δbmech находят из корреляционной зависимости ширины трещины от изменяющихся эффективных напряжений. Коэффициенты c1 и c2 определяют из условия минимума отклонения расчетного и экспериментального значения ширины трещины.

В конечном итоге изменение проницаемости образца керна с трещиной определяют из выражения, обратного (1):

Пример реализации способа.

В результате проведения эксперимента образца керна с трещиной, отобранного из карбонатного коллектора при начальном насыщении и фильтрации дистиллированной воды, были получены исходные данные, приведенные в таблице 1 (столбцы 1-6).

На основе обработки экспериментальных данных с использованием формул (1)-(3) получили значения параметров ширины трещины и коэффициента площади контактов стенок трещины (столбцы 7, 10). В результате построили зависимость данных параметров друг от друга (фиг. 1). Для карбонатного коллектора константы в выражении (4) принимались следующими: Vm=2.27⋅10-5 м3/моль; σс=90 МПа; k+=2.45-15⋅10-8 моль/(м2с); ρg=2650 кг/м3.

Для определения зависимости изменения упругой составляющей ширины трещины от изменяющихся эффективных напряжений была построена корреляционная зависимость двух данных параметров друг от друга (фиг. 2).

При использовании выражений (4)-(7) получили расчетное значение ширины и проницаемости трещины, представленное на фиг. 3 и в таблице 1 (столбец 11).

При использовании описываемого способа определения зависимости изменения проницаемости образцов керна с трещинами при совместном воздействии фильтрации воды и изменяющихся эффективных напряжений появляется возможность повысить эффективность прогноза основных технологических показателей разработки нефтяных месторождений с трещиноватым коллектором и системой ППД в виде нагнетания воды.

Литература

1. Elsworth D., Yasuhara Н. Short-timescale chemo-mechanical effects and their influence on transport properties of fracture rock // Pure and applied geophysics, October 2006, Volume 163, Issue 10, pp. 2051-2070.

Способ исследования проницаемости образцов керна с трещинами, включающий совместное воздействие фильтрации воды и эффективных напряжений на образцы керна, отличающийся тем, что исследование образцов керна проводят при циклическом увеличении и уменьшении эффективных напряжений и определяют величину изменения проницаемости трещин за счет упругих деформаций образца керна.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при проектировании разработки нефтяных и газовых месторождений, на которых планируется применение кислотной обработки пласта и создание трещин гидроразрыва.

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой.

Изобретение относится к литейному производству, а именно к определению формы зерен формовочного песка на основе кварца, и может быть использовано при оценке состояния поверхности формовочного песка различных месторождений.

Изобретение относится к нефтедобывающей промышленности, а именно к определению исходных данных для проектирования разработки продуктивной залежи вмещающей, нефть с повышенным содержанием асфальтено-смолистых веществ, проявляющую неньютоновские свойства нелинейной вязкопластичной нефти.
Изобретение относится к способам определения качества металлических разнофункциональных покрытий на изделиях, получаемых обработкой давлением. Способ определения качества покрытий на изделиях, получаемых обработкой давлением, заключается в том, что образец-свидетель перед подготовкой поверхности по ГОСТ 9.301.78 и нанесением покрытия на него подвергают осадке по схеме напряженно-деформированного состояния аналогично таковой для конкретного вида обработки давлением, при котором получено изделие.
Изобретение относится к сельскому хозяйству, а именно к машинному доению коров. Сначала каждую корову доят доильным аппаратом через счетчик молока.

Изобретение относится к способам анализа образцов пористых материалов. Для определения распределения и профиля проникшего загрязнителя в пористой среде приготовляют суспензию загрязнителя, содержащего по меньшей мере один твердый компонент и окрашенного по меньшей мере одним катионным красителем.

Изобретение относится к способам и устройствам для измерения содержания растворенного газа, остающегося в нефти после сепарации, при различных давлениях и температурах в установках замера дебитов скважин.

Изобретение относится к способам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов.

Изобретение относится к области аналитической химии. Испытуемый образец золошлакового материала и пары азотной кислоты подвергают контакту в изолированной камере в течение 8-90 часов.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при проектировании разработки нефтяных и газовых месторождений. Способ заключается в том, что для эксперимента используют экстрагированные и высушенные образцы керна, отобранные из одного продуктивного объекта. Предварительно определяют открытую пористость и абсолютную проницаемость образцов по газу в стандартных условиях. Делают подборку из данных образцов таким образом, чтобы она включала образцы с максимальной, минимальной и средними значениями открытой пористости и абсолютной проницаемости (5 и более образцов). Для исследования эффективной пористости и эффективной проницаемости в образцах керна создают остаточную водонасыщенность с помощью модели пластовой воды. Для пород-коллекторов нефтяных месторождений образцы затем насыщают керосином или нефтью. Каждый образец помещают в установку, позволяющую определять изменение пористости и проницаемости по жидкости (для нефтяных месторождений) или по газу (для газовых месторождений). В установке ступенями увеличивают эффективные напряжения до величины, соответствующей начальным пластовым условиям. Выдерживают образец до тех пор, пока величина проницаемости не стабилизируется. Увеличивают эффективные напряжения до величины, соответствующей снижению пластового давления на определенное значение (например, 10 МПа), и выдерживают образец до тех пор, пока величина проницаемости не стабилизируется. Циклы увеличения и длительной выдержки образцов керна повторяют не менее трех. Затем эффективные напряжения ступенчато уменьшают с количеством ступеней не менее пяти. Техническим результатом является определение закономерностей изменения пористости и проницаемости образцов керна при фильтрации флюида и воздействии эффективных напряжений различной величины до стабилизации проницаемости образцов керна минимум на трех режимах воздействия. 3 ил.

Изобретение относится к области молекулярной физики и может использоваться для определения средней длины пробега и эффективного диаметра не только молекул воздуха, но и молекул других газов (кислород, азот, углекислый газ и др.) с соответствующими физическими поправками. Это достигается тем, что устройство дополнительно снабжено припаянным к средней боковой части стеклянного цилиндрического сосуда стеклянным трубчатым уровнемером с измерительной шкалой, отходящим от верхней боковой части стеклянного цилиндрического сосуда стеклянным вакуумным краном, припаянными к стеклянной монолитной пробке со шлифом горла тремя вращательными стеклянными «рожками», присоединенными последовательно и герметично к капилляру из нержавеющей стали гибким полимерным капилляром, стеклянным трубчатым тройником с тремя стеклянными вакуумными кранами и полимерной надуваемой-сдуваемой камерой со стеклянным вакуумным краном. Технический результат, достигаемый при реализации заявленного устройства, заключается в повышении точности прецизионного визуального измерения уровня воды в стеклянном цилиндре. 2 ил.
Изобретение относится к области медицины, в частности к онкологии, и предназначено для определения оптимального срока выполнения оперативного вмешательства после пролонгированной лучевой терапии при раке прямой кишки. В биопсийном материале опухоли прямой кишки до начала курса лучевой терапии и через 4 недели после ее окончания проводят ДНК-цитометрический анализ и определяют индекс пролиферации опухоли. Отличие индексов пролиферации в 1,3 раза и менее является показателем для окончания перерыва в лечении и выполнения операции. Отличие индексов пролиферации более чем в 1,3 раза является показателем для продления перерыва в лечении и выполнения операции через 6-8 недель после окончания курса лучевой терапии. Изобретение обеспечивает определение оптимального срока выполнения операции после окончания курса лучевой терапии и снижение затрат на лечение рака прямой кишки. 2 пр.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал. Для экономии вычислительных ресурсов моделирование предпочтительно осуществляют на стандартном элементе объема (СЭО). В некоторых вариантах осуществления способа определение многофазного СЭО может быть выполнено путем выведения параметра, связанного с пористостью, из модели пор и матрицы материала; определения многофазного распределения внутри пор материала; разделения модели пор и матрицы на несколько моделей фаз и матрицы; и выведения параметра, связанного с пористостью, из каждой модели фаз и матрицы. Затем можно определить и проанализировать зависимость параметра от фазы и насыщения для выбора подходящего размера СЭО. Технический результат – повышение точности и достоверности получаемых данных. 2 н. и 18 з.п. ф-лы, 15 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Предложен способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя. Затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя. Затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии. Причем измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала гальванического преобразователя Еmax, составляющего 0,75-0,95 от максимально возможного значения данного сигнала Ее, соответствующего переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов гальванического датчика Е1 и Е2 из диапазона (0,7-0,9)Eе соответственно на восходящей и нисходящей ветвях кривой изменения сигнала во времени, а расчет коэффициента диффузии производят по формуле: где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия. Технический результат - повышение точности и быстродействия измерения коэффициента диффузии растворителей в листовых изделиях их капиллярно-пористых материалов. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах. Технический результат - обеспечение возможности формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на поверхности металла необходимой длины. Способ формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на металлической поверхности катодной пластины в импульсном дуговом разряде при взрыве размещенной между электродами проволочки необходимой длины, включает подачу на электроды напряжения, обеспечивающего лавинный пробой разрядного промежутка, возникающий при наличии в воздухе паров испаряющейся проволочки с формированием тепловой кумулятивной струи, плавящей металл, на металлической поверхности катодной пластины, размещение на поверхности катодной пластины диэлектрической преграды на пути кумулятивной струи и перемещение диэлектрической преграды вдоль этой струи до получения необходимой длины тепловой кумулятивной струи и длины образованного ею канала проплавленного металла. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области геофизики и может быть использовано для определения трещинной пористости горных пород. Способ определения трещинной пористости горных пород включает в себя экспериментальное определение скорости (Vp) распространения упругой продольной волны каждого образца в термобарических условиях, превышающих пластовые на 10-15%, общую пористость (Кп.общ.) каждого образца в термобарических условиях, превышающих пластовые на 10-15%. После этого строят график зависимости (Vp) от (Кп.общ.), в результате чего графически определяют скорость (Vp.ск.) распространения упругой продольной волны в минеральном скелете исследуемой породы. Затем рассчитывают трещинную пористость (Кп.тр.) каждого из образцов исследуемой породы по формуле: При этом в случае получения отрицательных величин рассчитываемой трещинной пористости полученное наибольшее отрицательное ее значение приравнивают нулю и определяют уточненное значение скорости распространения упругой продольной волны в минеральном скелете (Vp.ск.ут.) по формуле: После чего вновь рассчитывают величину трещинной пористости (Кп.тр.) каждого образца исследуемой породы по формуле (1), используя для расчета полученное по формуле (2) уточненное значение скорости распространения упругой продольной волны в минеральном скелете (Vp.ск.ут). Технический результат - повышение точности проводимых исследований по определению величины трещинной пористости пород при исследовании образцов горных пород. 2 ил., 2 табл.
Наверх