Катод для электролиза



Катод для электролиза
Катод для электролиза
C25B11/06 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2621029:

Чукавин Андрей Игоревич (RU)
Валеев Ришат Галеевич (RU)

Изобретение относится к катоду для электролиза, содержащему покрытие из никеля толщиной 300-1000 нм, нанесенное методом магнетронного распыления на матрицу пористого оксида алюминия с размерами пор 40-120 нм и расстоянием между стенками пор 10-20 нм. Техническим результатом является повышение площади контакта материала катода с электролитом и повышение адгезии каталитического покрытия к подложке, иначе, к основе катода. 2 ил.

 

Изобретение относится к никелевому катализатору для реакции получения водорода, который может быть использован при производстве каталитического водорода, в частности в качестве катодов в электролизных установках.

Одним из путей снижения стоимости электролитического водорода является разработка и использование в электролизерах электродов – катализаторов с высокоэффективными, технологичными и недорогими каталитическими покрытиями. Железо, никель, кобальт, платина, другие 3d металлы и металлы платиновой группы, их сплавы и соединения с интерметаллидами традиционно используются в качестве катодов в электролитических реакциях выделения водорода в процессе электролиза из кислых и щелочных водных растворов. Никель и кобальт особо выделяются среди них тем, что, обладая высокой коррозионной стойкостью в кислых и щелочных средах, по сравнению с металлами платиновой группы имеют низкую стоимость и достаточно широко распространены. Эффективность реакции выделения водорода (РВВ) напрямую зависит от площади контакта материала катода с электролитом. Это связано с большим вкладом поверхностных электронных состояний металла в процессе РВВ.

Известны никелевые катоды для электролиза, например US4465580, US4238311, включающие покрытие из оксида рутения, смешанного с оксидом никеля, которые в течение длительного времени составляли более дорогую, технически превосходящую альтернативу катодам из углеродистой стали предыдущего поколения. Такие катоды, однако, отличаются довольно ограниченным сроком службы из-за плохой адгезии покрытия к подложке.

Заметное улучшение адгезии каталитического покрытия на никелевой подложке было обеспечено в катоде, описанном в ЕР298055 (выбран в качестве прототипа), который содержит никелевую подложку, активированную платиной или другим благородным металлом и соединением церия. Церий противодействует возможным примесям на основе железа, которые вредны для каталитической активности благородного металла. Будучи улучшением по сравнению с предшествующим уровнем техники, катод ЕР 298055 демонстрирует каталитическую активность и устойчивость в условиях электролиза, все еще недостаточные для требований современных промышленных процессов; в частности его покрытие имеет тенденцию серьезно повреждаться при случайных инверсиях тока, обычно происходящих в случае неисправной работы промышленных установок.

Известные решения характеризуются низкой эффективностью реакции выделения водорода вследствие малой площади контакта материала катода с электролитом.

Техническим результатом изобретения является повышение пощади контакта материала катода с электролитом и повышение адгезии каталитического покрытия к подложке, иначе, к основе катода.

Технический результат достигается в катоде для электролиза, содержащем покрытие из никеля толщиной 300-1000 нм, нанесенное методом магнетронного распыления на матрицу пористого оксида алюминия с размерами пор 40-120 нм и расстоянием между стенками пор 10-20 нм.

Изобретение поясняется чертежами:

фиг.1 - покрытие из никеля, нанесенное на матрицу пористого оксида алюминия, полученное при помощи сканирующей электронной микроскопии (увеличение в 100 тыс. раз);

фиг. 2 - схема формирования покрытия из Ni в матрице Al2O3.

Для создания композитного катода для электролиза предлагается использовать магнетронный метод нанесения вещества в матрицы пористого оксида алюминия. Магнетронное распыление материалов является простым и широко распространенным методом получения пленок широкого спектра материалов, начиная с диэлектриков и заканчивая полупроводниками и металлами.

На диэлектрик осадить металл возможно в основном физическими методами. Но можно использовать метод электрохимического осаждения, т.н. никелирование, для этого необходимо сначала нанести проводящий подслой, в основном, это медь. При этом используются растворы солей никеля, которые могут загрязнять материал катода.

Возможно использовать метод вакуумного электронно-лучевого осаждения (ЭЛО). Но метод ЭЛО не позволяет осаждать на поверхности большой площади (до 2 м2). Магнетронное осаждение позволяет использовать мишени большого размера, и практически любой формы. Добиться хорошей равномерности толщины покрытия по площади образца методом ЭЛО очень сложно.

Катод для электролиза содержит каталитическое покрытие из никеля толщиной 300-1000 нм, нанесенное методом магнетронного распыления на матрицу пористого оксида алюминия (далее - матрица) с размерами пор 40-120 нм (средний диаметр пор) и расстоянием между стенками пор 10-20 нм (минимальная толщина перемычек между соседними порами в матрице).

При толщине слоя никеля менее 300 нм невозможно достигнуть необходимой сплошности слоя, электролит будет проникать к материалу матрицы и растворять ее. При толщине более 1000 нм не будет наследоваться рельеф матрицы-основы, что приведет к формированию сплошной пленки никеля и существенно понизит площадь контакта материала катода с электролитом и понизит эффективность реакции выделения водорода.

Аналогично, чем больше размер (диаметр) пор и больше расстояние между их стенками, тем менее развитая будет поверхность. Поэтому необходимо найти баланс между этими двумя характеристиками. Оптимальным является диаметр пор около 80 нм и расстоянием между стенками пор - 10 нм.

Указанная конструкция катода позволяет увеличить площадь контакта материала катода (никеля) с электролитом за счёт высокоразвитой поверхности (меньше 120м2/г), а также позволит создавать наночастицы Ni, размер (от 40 до 120 нм) которых можно контролируемо изменять за счёт изменения структурных параметров оксидной матрицы и режимов магнетронного распыления, что позволит достигнуть высокой каталитической активности разрабатываемых композитных материалов, при использовании их в качестве катодов в электролитических реакциях выделения водорода.

Процесс изготовления катода для электролиза включает в себя следующие основные этапы (схема показана на фиг.2):

- создание матрицы пористого оксида алюминия, которое проводится широко распространенным и хорошо исследованным методом электрохимического окисления пластин алюминия в растворах кислот с последующим удалением сплошного слоя алюминия. В качестве электролита используется 0,3 М раствор щавелевой кислоты. Синтез проводится в двухэлектродной электрохимической ячейке в диапазоне температур от 0 до 5°C с использованием источника постоянного тока с регулируемым напряжением и током анодирования;

- магнетронное осаждение никеля проводится в камере вакуумного напыления, оснащенного приставкой для магнетронного распыления материалов.

Готовое изделие представляет собой композитный материал с наноструктурным покрытием из никеля. После запыления пор образуются массивы шарообразных структур, диаметр которых зависит от диаметра пор матрицы и расстояний между стенками пор. Их топография в конечном счете определяет площадь поверхности, то есть развитость. Чем больше удельная площадь поверхности никеля с рельефом относительно площади образца гладкого, тем более развитая поверхность.

Технология формирования пористых пленок анодного оксида алюминия масштабируема, так, могут быть изготовлены матрицы различной формы площадью до 2 м2.

Катод для электролиза, содержащий покрытие из никеля толщиной 300-1000 нм, нанесенное методом магнетронного распыления на матрицу пористого оксида алюминия с размерами пор 40-120 нм и расстоянием между стенками пор 10-20 нм.



 

Похожие патенты:

Изобретение относится к способу получения никотината цинка гидрата путем электролиза водно-органического раствора никотиновой кислоты с цинковыми электродами при постоянном токе, включающему отделение полученного осадка, промывку осадка и его сушку.

Изобретения относятся к области осветления и обесцвечивания природных вод и могут быть использованы в процессах водоподготовки для питьевых и технических целей. Осветление и обесцвечивание природных вод осуществляют при помощи водозаборно-очистного устройства.

Изобретение относится к способам очистки сырой нефти, содержащей меркаптаны и серосодержащие примеси, включающим контактирование сырой нефти с очищающим раствором, содержащим раствор гипохлорита, в течение 30 с – 2 мин, при которых меркаптановая сера окисляется и превращается по меньшей мере в одну оксокислоту серы или ее соль, образуя на выходе очищенную сырую нефть, содержащую менее 50 ч/млн меркаптановой серы и остаточные хлориды.

Изобретение относится к области технологии неорганических веществ, в частности к утилизации загрязненного шламом белого фосфора. Способ осуществляется путем окисления белого фосфора кислородом до пятиокиси фосфора с последующей ее гидратацией, причем загрязненный шламом белый фосфор помещают в реакционную камеру трехкамерного электролизера, на электроды подают постоянный электрический ток, образующийся в результате электролиза воды кислород окисляет белый фосфор до пятиокиси фосфора, поглощаемой водой до образования фосфорной кислоты, при этом шлам откладывается в анодной камере электролизера, после полного окисления фосфора электролизер автоматически отключается от электрической сети.

Изобретение относится к способу получения электрохимического гипохлорита натрия, включающему получение водного раствора хлорида натрия путем смешивания воды с солью в определенной концентрации и электролиз.

Изобретение относится к двум вариантам устройства генерирования водорода, а также способу использования устройства. Устройство по одному из вариантов включает в себя: анод; катод; корпус, имеющий внутреннюю полость и по меньшей мере одно отверстие; цилиндрическую металлическую гильзу, введенную скольжением и размещенную во внутренней полости, металлическая гильза имеет по меньшей мере одно отверстие, выровненное с по меньшей мере одним отверстием корпуса; перфорированную стенку внутри внутренней полости возле ее конца, электрически соединенную с анодом или катодом и отделяющую концевую часть внутренней полости от основной части внутренней полости; и по меньшей мере одну электропроводящую клемму, выступающую наружу из внутренней полости через выровненные отверстия гильзы и корпуса и находящуюся в электрическом контакте с анодом; и воду в корпусе, непрерывно проходящую из основной части внутренней полости через перфорированную стенку в концевую часть внутренней полости.

Изобретение относится к способу получения высокодисперсной алюмоциркониевой оксидной системы. Способ включает анодное растворение металлического алюминия в растворе хлорида натрия с концентрацией 29±0,5 г/л в коаксиальном электролизере с отличающимися на два и более порядка площадями электродов при анодной плотности тока 20-160 А/м2 в присутствии ионов циркония в количестве, обеспечивающем содержание оксида циркония в образующемся осадке от 5 до 20 мас.%, выдерживание полученного осадка в маточном растворе в течение не менее 48 часов, фильтрацию и сушку осадка.

Изобретение относится к способу получения перфтор-3-метоксипропионилфторида, который является исходным продуктом получения перфтор-3-метоксипропилвинилового эфира (мономера М-60МП), обеспечивающего его сополимерам - фторкаучукам повышенную морозостойкость за счет снижения их температуры стеклования.

Изобретение относится к электрохимической модульной ячейке для обработки растворов электролитов, содержащей герметичный корпус, в котором расположены цилиндрические, вертикально установленные, коаксиально расположенные по отношению друг к другу противоэлектроды, отделенные друг от друга посредством коаксиальной им микропористой диафрагмы.

Изобретение относится к области углехимии, к технологии извлечения углеводородов из каменного угля и может быть использовано при производстве электродов для электролизного алюминиевого производства.

Изобретение относится к электролизеру для получения водорода и кислорода из воды, состоящему из корпуса с размещенными в нем катодом в виде полого цилиндра из пористого гидрофобизированного материала и анодом в виде трубы из металла, находящегося между ними сепаратора в виде газозапорной мембраны, с образованием катодной газовой полости между внешней стенкой катода и внутренней стенкой корпуса, анодной полости внутри анода, с нанесенными на поверхность анода и поверхность катода катализатором. Электролизер характеризуется тем, что анод выполнен из перфорированного металлического листа с присоединенной по его наружной поверхности металлической сеткой с нанесенным на нее катализатором, катод изготовлен из пористого гидрофобизированного материала с нанесенным на его наружную поверхность со стороны водородной полости катализатором, а с внутренней стороны с присоединенной к нему сеткой с нанесенным на нее катализатором, сепаратор состоит из газозапорной мембраны из пористого гидрофильного материала, окруженной с обеих сторон одним или несколькими слоями сепарационного материала, герметизация полости водорода относительно полости кислорода осуществляется при сборке электролизера как за счет фланцев, выполненных из электроизоляционного материала и имеющих кольцевые канавки с прокладками для создания уплотнения по торцам катода в местах соприкосновения с фланцами, так и за счет обжатия при сборке электролизера верхнего и нижнего концов сепаратора, выступающих за пределы анода и сеток, присоединенных к катоду и аноду, между внешними концевыми конусообразными поверхностями соответствующих фланцев и соответствующими внутренними концевыми конусообразными поверхностями катода. Использование предлагаемого устройства позволяет минимизировать энергетические затраты на собственные нужды и, как следствие, повысить КПД заявляемого электролизера, повысить надежность работы электролизера и чистоту вырабатываемых газов. 8 з.п. ф-лы, 3 ил.

Изобретение относится к способу отслеживания отказных ситуаций, связанных с потоком сырьевого газа и/или очистительным потоком в электролитических элементах, батареях или системах, причем указанный процесс отслеживания сочетают с предупредительными мерами, которые должны быть приняты в случае таких отказных ситуаций. При этом (a) ток и/или напряжение отслеживают и управляют на одиночной батарее, на всех батареях или на одной или более выбранных батареях в электролитической системе, (b) в случае, когда ток, напряжение или отношение напряжения к току пересекают свое заданное пороговое значение, обнаруживается отказной режим и передается сообщение в систему управления и (c) уровни напряжения системы регулируют с обеспечением нахождения внутри безопасных пределов (пределов безопасного режима), при этом для отслеживания как тока, так и напряжения с целью обнаружения сбоев в работе и перехода в случае сбоя к защитным уровням напряжения использован один и тот же блок питания, причем защитное напряжение между 600 и 1500 мВ на элемент подают на каждый элемент батареи, а дополнительную защиту обеспечивают путем осуществления одного или более из следующих действий: (1) продувание потенциально окисляемых электродов свободными от кислорода газами, (2) постепенное охлаждение электролитического элемента батареи либо продуванием газов, либо пассивным выводом тепла из системы и (3) поддерживание электролитического напряжения на каждом элементе множества элементов и батарей по меньшей мере до тех пор, пока их температура не опустится ниже порога окисления электродов электролитического элемента. Предложенное изобретение позволяет эффективно отслеживать отказные операции, связанные с сырьевым или продувочным газовым потоком. 10 з.п. ф-лы, 2 пр., 6 ил.
Изобретение относится к углеродистой композиции, пригодной для изготовления электрода суперконденсатора в контакте с водным ионным электролитом, причем композиция основана на угольном порошке, способном сохранять и высвобождать электроэнергию, и включает гидрофильную связующую систему. Указанная система содержит: согласно массовой доле в композиции от 3% до 10%, по меньшей мере, одного первого сшитого полимера, имеющего среднечисленную молекулярную массу Mn, составляющую более чем 1000 г/моль, и содержащего спиртовые группы, и согласно массовой доле в композиции от 0,3% до 3%, по меньшей мере, одного второго полимера, по меньшей мере, одной кислоты, который имеет рКа от 0 до 6 и среднечисленную молекулярную массу Mn, составляющую более чем 500 г/моль, причем указанный, по меньшей мере, один первый полимер термически сшит в присутствии указанного, по меньшей мере, одного второго полимера. Изобретение также относится к пористому электроду, способу изготовления электрода и суперконденсаторному элементу. Технический результат заключается в обеспечении энергетической эффективности за счет оптимизации емкости и потенциала суперконденсатора. 4 н. и 13 з.п. ф-лы, 5 табл., 10 пр.

Изобретение относится к электролитическому способу получения наноразмерных порошков силицидов лантана, включающему синтез силицидов редкоземельного элемента из расплавленных сред в атмосфере очищенного и осушенного аргона. Способ характеризуется тем, что синтез проводят из галогенидного расплава, в качества источника лантана используют безводный хлорид лантана, в качестве источника кремния - фторсиликат натрия, в качестве растворителя - эквимольную смесь хлоридов калия и натрия, при следующем соотношении компонентов, мас.%: хлорид лантана 1,0÷4,0, фторсиликат натрия 1,0÷5,0; остальное - эквимольная смесь хлоридов калия и натрия, причем процесс ведут при температуре 700°С и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,6 до -2,8 В. Техническим результатом является: получение наноразмерных порошков силицидов лантана; получение целевого продукта в чистом виде, за счет хорошей растворимости эквимольного расплава хлорида калия и хлорида натрия в воде и растворимости образующегося фторида лантана фторидом калия. 3 пр., 6 ил.
Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия. Способ характеризуется тем, что дополнительно вводят фторид натрия, а также для повышения чистоты и снижения температуры электролиз ведут при следующем соотношении компонентов, мас.%: хлорид калия 15,60, фторид натрия 7,84, молибдат натрия 1,00, оксид бора от 1,00 до 3,0, хлорид натрия - остальное, при температуре 750°С и напряжении на ванне U=2,8 В. Использование предлагаемого способа позволяет повысить чистоту продукта, в частности снизить загрязнение целевого продукта другими металлами (алюминием), и снизить температуру процесса. 3 пр.
Изобретение относится к электрохимическому способу получения порошка силицида вольфрама, включающий электролиз расплава при температуре 850-950°С, содержащего хлорид натрия, вольфрамат натрия и диоксид кремния. Способ характеризуется тем, что дополнительно вводят фторид натрия при следующем соотношении компонентов, мас.%: хлорид натрияот 56,75 до 57,33; фторид натрия от 40,75 до 41,17; вольфрамат натрия от 0,80 до 1,20; диоксид кремния от 0,80 до 1,20. С целью повышения дисперсности электролиз ведут при напряжении на ванне 2,8 В. Технический результат изобретения заключается в возможности получения порошка силицида вольфрама с использованием доступных солей, исключающих возможность загрязнения другими металлами (алюминием) и с размером частиц порошка 2-20 мкм. 3 пр.

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, отличающемуся тем, что электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством. Также изобретение относится к каскаду электролизеров. Использование предлагаемого изобретения позволяет снизить удельный расход электроэнергии на производство водорода, увеличить ресурс работы электролизера и возможность эффективного использования предлагаемого технического решения в установках разделения изотопов водорода. 2 н.п. ф-лы, 3 ил.

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в электролите в течение 12-24 ч, разделение последующих партий гидроксида алюминия и электролита, промывку последующих партий гидроксида алюминия дистиллированной водой и их термическую обработку, которая осуществляется посредством предварительной сушки в течение 12-24 ч при температуре 200-250°С и окончательного прокаливания в течение 15-18 ч при температуре не менее 1100°С, при этом при прокаливании каждые 3 ч производится перемешивание продукта. Изобретение позволяет получать альфа-оксид алюминия с содержанием основного компонента 99,995-99,998 мас.% и со средней дисперсностью 40-45 мкм. 4 з.п. ф-лы, 1 пр., 3 табл.

Изобретение относится к области химической технологии, в частности к способам электрохимического окисления железа для получения реагента-окислителя феррата (VI) FeO42-. В способе используют устройство для электрохимического синтеза ферратов щелочных металлов с по меньшей мере двумя электрохимическими реакторами, каждый из которых состоит из вертикально расположенного внутреннего анода - цилиндрического стержня на основе железа, внешнего цилиндрического титанового катода и размещенной между ними цилиндрической керамической ионопроницаемой диафрагмой, которые образуют замкнутые объемы анодной и катодной камер электрохимического реактора за счет наличия у него верхних и нижних втулок, имеющих в нижней и верхней частях входы и выходы. При этом нижние входы анодных камер всех электрохимических реакторов соединены с нижним анодным коллектором, в который насосом-дозатором подают раствор гидроксида щелочного металла. Верхние выходы анодных камер всех электрохимических реакторов соединены с верхним анодным коллектором, из которого продукты электрохимического разложения водного раствора гидроксида щелочных металлов проходят через сепаратор, отделяющий газообразную и жидкую фазы продуктов электрохимического разложения. При этом газообразную фазу в виде кислорода отводят в атмосферу, а жидкую фазу, содержащую феррат щелочного металла, отводят для дальнейшего использования. Технический результат заключается в сокращении энергопотребления на единицу продукции и обеспечении получения феррата щелочных металлов в одну стадию путем разложения гидроксидов щелочных металлов в электрохимическом реакторе. 2 ил.

Изобретение относится к способу получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод. Способ характеризуется тем, что в качестве катода используют пористый алюминий с содержанием окиси кальция 1,5%, помещают его в раствор с содержанием щелочи от 0,2% до 1% и ведут реакцию при температуре от 15°C до 70°C, с использованием воды с pН от 7 до 12. Использование предложенного способа позволяет увеличить производство водорода более чем в 1,5 раза по сравнению с известным способом. 5 пр., 5 табл.
Наверх