Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит пропиленгликоль, воду, аммоний фтористый кислый, этиловый спирт, сахарозу. Предлагаемый гель для травления обладает малой токсичностью за счет снижения концентрации активных ионов фтора и относительно высокой равномерностью травления. Использование геля обеспечивает возможность травления стеклянной оболочки со скоростью - 0,52-0,56 мкм/ч до шероховатости не более 100 нм, а также полное снятие стеклянной оболочки без образования язв и неравномерного травления микропровода, при этом гель обладает меньшей токсичностью за счет снижения концентрации активных ионов фтора. 3 пр.

 

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов.

Известна паста для травления стекла (Патент RU 2449000 C2 МПК C09K 13/00 C03C 15/00) следующего состава, мас. %: гидрофторид аммония - 10; сульфат бария - 17; серная кислота - 2; изоамилацетат - 1; фторид щелочноземельного металла - 34; вода - остальное.

Недостатком применения данной пасты является высокая шероховатость при растворении стекла - до 65 мкм, которая превышает диаметр микропроводов.

Также известна композиция для травления стекла (Патент US 6807824 В1). Композиция включает в себя, в различном соотношении, небольшое количество бифторида аммония; гликоли, глицерин, спирты и поверхностно-активные вещества, которые используются для косметической и фармацевтической продукции, и сахарозы.

Недостатком композиции, составы которой предназначены для художественной обработки стекла и изделий из него, является невозможность получения равномерно протравленной поверхности с шероховатостью менее 100 нм глубиной до 10 мкм.

Техническим результатом изобретения является достижение равномерности травления стеклянной оболочки микропровода, т.е. снижение шероховатости, а также снижение токсичности.

Технический результат достигается следующим образом.

Гель для травления содержит пропиленгликоль, воду, аммоний фтористый кислый, этиловый спирт, сахарозу при следующем соотношении компонентов, мас. %: пропиленгликоль 60,3-60,9; аммоний фтористый кислый 7,27-7,88; этиловый спирт 4,24-4,85; сахароза 2,12-2,73; вода - остальное.

Проводят полное погружение микропровода в гель для травления и выдерживают в течение времени рассчитываемого по формуле:

где τ - время выдержки, ч;

h - толщина стеклянной оболочки.

После выдержки в геле микропровод промывают в проточной дистиллированной воде в течение 10 мин и выдерживают на воздухе до полного высыхания.

Предлагаемый гель для травления обладает малой токсичностью за счет снижения концентрации активных ионов фтора и относительно высокой равномерностью травления. Использование геля обеспечивает возможность травления стеклянной оболочки со скоростью - 0,52-0,56 мкм/ч и с шероховатостью не более 100 нм, а также полное снятие стеклянной оболочки без образования язв и неравномерного травления микропровода.

Аммоний фтористый кислый обеспечивает, за счет гидролиза, образование фтороводородной кислоты, которая растворяет стеклянную оболочку микропровода. По мере расходования фтороводородной кислоты при растворении стеклянной оболочки протекает дальнейший гидролиз аммония фтористого кислого, пополняя гель фтороводородной кислотой.

Уменьшение концентрации аммония фтористого кислого ниже 7,27 мас. % нецелесообразно в связи уменьшением скорости протравленного слоя и в ряде случаев, при толщине стеклянной оболочки более 10 мкм, связано с недостижением полного удаления оболочки. Увеличение концентрации аммония фтористого кислого более 7,88 мас. % приводит к увеличению скорости травления и получению локально перетравленных участков и, как следствие, неоднородную поверхность микропровода.

Пропиленгликоль и сахароза выполняют роль загустителя (гелеобразователя) и снижают испарение фтористоводородной кислоты. Уменьшение их концентрации приведет к увеличению испарения фтористоводородной кислоты и увеличению токсичности геля, а увеличение концентрации - к неполному растворению компонентов геля и образованию осадка.

Добавка этилового спирта увеличивает длительность использования и хранения геля, обеспечивая равномерность распределения компонентов в геле и предотвращая его расслаивание.

Вода необходима для гидролиза аммония фтористого кислого и сахарозы, и значение ее концентрации рассчитано исходя из пределов растворимости веществ. Уменьшение концентрации воды приведет к неполному растворению веществ, а увеличение концентрации приведет к испарению фтористоводородной кислоты.

Приготовление геля при следующем соотношении компонентов, мас. %: пропиленгликоль 60,3; аммоний фтористый кислый 7,27; этиловый спирт 4,24; сахароза 2,12; вода - остальное, осуществляют следующим образом.

1. Приготовить раствор 1. Для этого измельчить 24 г аммония фтористого кислого и растворить его в 68 мл воды при температуре 25°C.

2. Приготовить раствор 2. Для этого растворить 7 г сахарозы в 18 мл воды, добавить 14 мл этилового спирта. Смесь сахарозы, воды и этилового спирта влить в предварительно разогретые на водяной бане до 50-60°C 199 мл пропиленгликоля. Остудить раствор 2 до температуры 25°C.

3. Смешать Раствор 1 и Раствор 2.

Приготовление геля при следующем соотношении компонентов, мас. %: пропиленгликоль 60,9; аммоний фтористый кислый 7,88; этиловый спирт 4,85; сахароза 2,73; вода - остальное, осуществляют следующим образом.

4. Приготовить раствор 1. Для этого измельчить 26 г аммония фтористого кислого и растворить его в 64 мл воды при температуре 25°C.

5. Приготовить раствор 2. Для этого растворить 9 г сахарозы в 14 мл воды, добавить 16 мл этилового спирта. Смесь сахарозы, воды и этилового спирта влить в предварительно разогретые на водяной бане до 50-60°C 201 мл пропиленгликоля. Остудить раствор 2 до температуры 25°C.

6. Смешать Раствор 1 и Раствор 2.

Приготовление геля при следующем соотношении компонентов, мас. %: пропиленгликоль 60,6; аммоний фтористый кислый 7,58; этиловый спирт 4,54; сахароза 2,42; вода - остальное, осуществляют следующим образом.

7. Приготовить раствор 1. Для этого измельчить 25 г аммония фтористого кислого и растворить его в 66 мл воды при температуре 25°C.

8. Приготовить раствор 2. Для этого растворить 8 г сахарозы в 16 мл воды, добавить 15 мл этилового спирта. Смесь сахарозы, воды и этилового спирта влить в предварительно разогретые на водяной бане до 50-60°C 201 мл пропиленгликоля. Остудить раствор 2 до температуры 25°C.

9. Смешать Раствор 1 и Раствор 2.

Предлагаемым гелем были обработаны следующие микропровода со стеклянной оболочкой.

Пример 1. Микропровод с толщиной стеклянной оболочки 7,375 мкм полностью погружали в гель для травления на 13 часов 40 мин. Измерение толщины стеклянной оболочки проводили с использованием сканирующего электронного микроскопа TESCAN VEGA 3SBH. Определяли диаметр микропровода (D) и диаметр жилы микропровода (d), значение толщины стеклянной оболочки микропровода (h) определяли по формуле:

В результате экспозиции микропровода с толщиной стеклянной оболочки 7,375 мкм в геле при следующем соотношении компонентов, мас. %: пропиленгликоль 60,3; аммоний фтористый кислый 7,27; этиловый спирт 4,24; сахароза 2,12; вода - остальное в течение 14 ч 11 мин, стеклянная оболочка полностью растворилась. Скорость травления составляет 0,52 мкм/ч, а шероховатость поверхности микропровода не превышает 100 нм.

Пример 2. Микропровод с толщиной стеклянной оболочки 8,47 мкм полностью погружали в гель для травления на 15 ч 7 мин 30 с. Измерение толщины стеклянной оболочки проводили по методике, описанной в примере 1. В результате экспозиции микропровода с толщиной стеклянной оболочки 8,47 мкм в геле при следующем соотношении компонентов, мас. %: пропиленгликоль 60,9; аммоний фтористый кислый 7,88; этиловый спирт 4,85; сахароза 2,73; вода - остальное, в течение 15 ч 7 мин 30 с, стеклянная оболочка полностью растворилась. Скорость травления составила 0,56 мкм/ч, а шероховатость поверхности микропровода не превышает 100 нм.

Пример 3. Микровод с толщиной стеклянной оболочки 8,105 мкм полностью погружали в гель для травления на 15 ч. В результате экспозиции микропровода с толщиной стеклянной оболочки 8,105 мкм в геле при следующем соотношении компонентов, мас. %: пропиленгликоль 60,6; аммоний фтористый кислый 7,58; этиловый спирт 4,54; сахароза 2,42; вода - остальное, стеклянная оболочка полностью растворилась. Скорость травления составила 0,54 мкм/ч, а шероховатость поверхности микропровода не превышает 100 нм.

На поверхности микропроводов после травления отсутствуют непротравленные области стеклянной оболочки, а также глубокие язвы, шероховатость поверхности микропровода не превышает 100 нм, что в 650 и 4-6 раз меньше показателей известных прототипов. Это позволяет использовать гель для создания ГМИ-датчиков, предназначенных для сканирования объектов с высоким пространственным разрешением. Предлагаемый гель обладает меньшей токсичностью за счет снижения концентрации активных ионов фтора.

Гель для травления стеклянной оболочки микропровода, содержащий пропиленгликоль, воду, аммоний фтористый кислый, этиловый спирт, сахарозу при следующем соотношении компонентов мас.%:

пропиленгликоль 60,3-60,9
аммоний фтористый кислый 7,27-7,88
этиловый спирт 4,24-4,85
сахароза 2,12-2,73
вода остальное



 

Похожие патенты:
Изобретение относится к области микроэлектроники и применимо в фотолитографических процессах. Предложена композиция для химического травления пленок диоксида кремния в фотолитографическом процессе, включающая поливиниловый спирт в качестве полимерной основы и фторид аммония в качестве травящего компонента, а также дополнительно растворитель - воду при следующем соотношении компонентов, мас.%: поливиниловый спирт - 10; фторид аммония - 0,7-2,0; вода - 88,0-89,3.

Изобретение может быть использовано при производстве интегральных микросхем и других электронных устройств, использующих планарную технологию их изготовления, основанную на фотолитографических процессах.
Изобретение относится к сельскому хозяйству, в частности к составу для мульчирования различных видов почв, газонов, парковых территорий. .

Изобретение относится к материалам для обработки поверхностей стекла, ситалла и кварца и может быть использовано в оптико-электронной промышленности при изготовлении оптических деталей.
Изобретение относится к составам композиций для регенерации сеткотрафаретных печатных экранов, полученных с помощью фоторезистов, и может быть использовано в полиграфической, электронной и радиотехнической промышленности.

Изобретение относится к снижению отложений сульфида железа в трубах. .

Изобретение относится к составу для травления поверхности резины перед металлизацией и может быть использовано в машиностроении, в частности, при нанесении композиционных, антифрикционных и защитных полимерных покрытий на резинотехнические изделия (РТИ) методом электроосаждения.

Изобретение относится к химической промышленности, в частности к получению травителя порошкообразных электролюминофоров постоянного тока на основе сульфида цинка.

Изобретение относится к составам для химической активности поверхности политетрафторэтилена. .

Травильный раствор для обработки поверхности стеклянных изделий, содержащий бифторид аммония, кремнефтористоводородную кислоту, воду, дополнительно содержит глицерин при следующем соотношении компонентов, мас.%: бифторид аммония 35,0-40,0; кремнефтористоводородная кислота 15,0-20,0; глицерин 2,5-3,2; вода - остальное.

Изобретение относится к составам травильных растворов, которые могут быть использованы для обработки стекол. Травильный раствор для обработки стекла, содержащий фтористоводородную кислоту, азотную кислоту, полиакриламид, воду, дополнительно содержит соляную кислоту и глицерин при следующем соотношении компонентов, мас.%: фтористоводородная кислота 50,0-60,0; азотная кислота 20,0-30,0; полиакриламид 2,0-3,0; соляная кислота 9,0-11,0; глицерин 1,0-2,0; вода 5,0-7,0.

Изобретение относится к изготовлению полой трехмерной структуры в объеме пластины фоточувствительного стекла. Технический результат изобретения заключается в сокращении длительности изготовления полой трехмерной структуры в объеме пластины стекла и повышении производительности.

Изобретение относится к технологии мультиферроиков. Технический результат - получение нанокомпозитов со свойствами мультиферроиков.

Изобретение относится к производству высококачественных оптических материалов, в частности материалов, обладающих стойкостью к оптическому повреждению. Способ предотвращения повреждения, наносимого оптическим компонентам высокоинтенсивными источниками света, включает травление оптического компонента в травильном растворе, содержащем фтористо-водородную кислоту, фторид-ионы и бифторид-ионы.

Изобретение относится к волоконной оптике, в частности к технологии химического травления труб из кварцевого стекла, используемых для производства волоконных световодов (ВС) модифицированным методом химического парофазного осаждения (MCVD).

Изобретение относится к материалам для обработки поверхностей стекла, ситалла и кварца и может быть использовано в оптико-электронной промышленности при изготовлении оптических деталей.
Изобретение относится к составам растворов для травления листового стекла. .
Изобретение относится к составам растворов для обработки стекла. .
Изобретение относится к составам растворов для травления стекла. .

Изобретение относится к способу получения термообработанных изделий с покрытием из алмазоподобного углерода. Способ получения изделия с покрытием включает подготовку стеклянной основы – флоат-стекла, содержащей первую и вторую главные поверхности. Первая главная поверхность является воздушной стороной флоат-стекла. Первая главная поверхность протравлена мягкой травильной кислотой. Слой, содержащий алмазоподобный углерод (DLC), наносят на первую главную поверхность. Затем наносят защитную пленку поверх DLC, причем защитная пленка содержит по меньшей мере разделительный и кислородонепроницаемый слои, причем разделительный и кислородонепроницаемый слои состоят из разных материалов и/или имеют разный стехиометрический состав. Проводят термообработку стеклянной основы с содержащим DLC слоем и защитной пленкой на нем при температуре, достаточной для термозакалки, термического упрочнения и/или горячей гибки, без значительного выгорания содержащего DLC слоя. Удаляют защитную пленку. Способ позволяет уменьшить помутнение после термообработки. 11 з.п. ф-лы, 15 ил.
Наверх