Устройство для определения периодов процесса сушки зернистых материалов в вакуумной сушильной установке

Изобретение относится к пищевой, фармакологической и другим отраслям промышленности и служит для определения периодов процесса сушки зернистых материалов в вакуумной сушильной установке. Устройство (датчик) для определения периодов процесса сушки зернистого продукта установлено непосредственно в толще материала и состоит из двух электродов: нижнего - сплошного и верхнего - сетчатого, связанных друг с другом диэлектрическими стойками и соединенных с измерительным блоком, отображающим изменения электрического сопротивления высушиваемого материала. Моменты резкого изменения электрического сопротивления зернистого продукта являются точками перехода одного периода сушки в другой и сигналом для корректировки параметров режимов сушки. График изменения сопротивления, построенный на основании полученных данных, опосредованно представляет кривую сушки, наглядно демонстрирует точку перехода одного периода сушки в другой и позволит изменить программу сушки, снизив температуру и не допустив перегрева зернистого материала. Изобретение позволит оперативно следить за изменением влажности материала посредством измерения его электрического сопротивления и регулировать технологические параметры сушки в вакуумных сушильных установках. 1 ил.

 

Изобретение относится к пищевой, фармакологической и другим отраслям промышленности и служит для определения периодов процесса сушки зернистых материалов в вакуумной сушильной установке.

Известно, что периоды постоянной скорости и падающей скорости сушки определяют по динамике изменения влажности обрабатываемого материала в зависимости от времени сушки w=f(τ) (Лыков А.В. Теория сушки /А.В. Лыков. - М: Энергия, 1968 - 471 с.), однако этот способ невозможно осуществить при сушке сыпучих влажных материалов в вакуумной сушильной установке, так как измерение влажности материала в условиях вакуума проблематично.

Определение начала и окончания периодов сушки необходимо для регулирования температуры теплоносителя с целью оптимизации процесса сушки.

Из патентной литературы известен способ автоматического контроля влажности зерна в потоке зерносушилки и устройство для его осуществления (патент №2277212, авторы Козлов В.П., Ращуков А.С., Ежов А.Ф., Гнеденко В.Н.) Изобретение относится к технологии и техническим средствам измерения влажности зерна в потоке зерносушилки, преимущественно при автоматическом регулировании и контроле процесса сушки зерна путем измерения электрической емкости. Способ автоматического контроля влажности зерна в потоке зерносушилки характеризуется измерением емкостным датчиком-влагомером текущей влажности зерна, корректировкой показателей влажности в зависимости от влияния внешних воздействующих факторов и при достижении кондиционной влажности - выгрузкой зерна из зерносушилки, а при превышении влажности зерна кондиционного значения прекращением выгрузки зерна и продолжением его сушки. Недостатком данного способа и устройства является то, что невозможно использовать данный способ в вакуумных сушильных установках.

Также известен датчик-влагомер (патент №2273018, авторы Козлов В.П., Ращуков А.С., Ежов А.Ф., Гнеденко В.Н., Шорохов В.В., Макаров А.И., Горохов А.Л.). Изобретение относится к измерительной технике и может быть использовано в сельском хозяйстве для определения влажности зерна в потоке при его сушке. Достигаемый изобретением технический результат заключается в повышении прочностных характеристик датчика-влагомера и возможности его использования в потоке зерна при его сушке, а также в повышении точности измерения влажности в потоке зерна. Датчик-влагомер для зерносушилки содержит две параллельные металлические пластины, образующие конденсатор, и измерительный блок, преобразующий значения емкости конденсатора в аналоговый сигнал по данной зерновой культуре. Недостатком данного устройства является невозможность его использования в вакуумных сушильных установках и наличие верхней сплошной металлической пластины, препятствующей свободному испарению влаги из материала при его сушке не в потоке.

В качестве зернистого материала при исследовании возможности применения способа определения периодов сушки в вакуумных сушильных установках использовались пророщенные зерна сельскохозяйственных культур. В процессе сушки они должны сохранить свои питательные свойства, поэтому повышение температуры внутри пророщенных семян выше 50°С недопустимо, так как это приведет к снижению качества готового материала. В связи с этим регулирование температурных параметров при сушке указанного зернистого материала является необходимостью, а оно осуществимо только зная моменты начала испарения свободной влаги (период постоянной скорости сушки) и момента начала удаления связанной влаги (период падающей скорости сушки).

Таким образом для получения качественного готового материала и снижения энергетических затрат необходимо своевременное получение информации о динамике процесса сушки. Предлагаемое устройство для определения периодов процесса сушки зернистого продукта позволит зафиксировать момент начала и окончания испарения свободной влаги и начала испарения связанной влаги и скорректировать температурные параметры сушки.

На фиг. 1 показано устройство для определения периодов процесса сушки зернистого продукта и фиксирования момента начала и окончания испарения свободной влаги и начала испарения связанной влаги. Для достижения указанного результата используется датчик контроля измерения сопротивления в зернистом материале в вакуумных сушильных установках, состоящий из двух электродов 1 и 2, связанных между собой диэлектрическими стойками 3. Нижний электрод 1 - сплошной, верхний 2 - сетчатый. Сетчатый электрод позволяет беспрепятственно удаляться парам влаги из материала. В плане электроды могут быть любой геометрической формы. Устройство для определения периодов процесса сушки зернистого продукта помещается в зернистый материал. Необходимо, чтобы верхний сетчатый электрод был полностью закрыт зернистым материалом. К разъемам на верхнем и нижнем электроде крепятся провода 4, которые в свою очередь через кабельный разъем выводятся из сушильной камеры к измерительному блоку. После включения измерительного блока в сеть устройство готово к работе, происходит соответствующее изменение в значении сопротивления самого зернистого материала, которое отражается на измерительном блоке. Моменты резкого изменения электрического сопротивления зернистого продукта являются точками перехода одного периода сушки в другой и сигналом для корректировки параметров режимов сушки

График изменения сопротивления, построенный на основании полученных данных, опосредованно представляет кривую сушки, наглядно демонстрирует точку перехода одного периода сушки в другой и позволит изменить программу сушки, снизив температуру и не допустив перегрев зернистого материала.

Технический результат - определение периодов процесса сушки зернистых материалов в вакуумной сушильной установке, которое осуществляется с помощью датчика измерения электрического сопротивления высушиваемого материала. Датчик установлен непосредственно в вакуумной сушильной камере и позволяет непрерывно контролировать изменение электрического сопротивления в зернистом материале (соответственно с возможностью определения моментов начала и окончания испарения свободной влаги и начала испарения связанной влаги из высушиваемого материала).

Пример.

Сушка пророщенных зерен пшеницы производилась в вакуумной сушильной установке с инфракрасными излучателями ВДСУ-2М. Перед сушкой на противень с пророщенными зернами был установлен датчик, состоящий из двух электродов прямоугольной формы: нижний - сплошной, верхний - сетчатый. Расстояние между электродами за счет определенной длины диэлектрических стоек было меньше толщины слоя материала. С целью исключения контакта датчика с металлическим поддоном нижняя поверхность сплошного электрода была покрыта диэлектрическим материалом. Сетчатый электрод был полностью закрыт влажными пророщенными зернами пшеницы. К разъемам на верхнем и нижнем электроде были подсоединены кабели, которые выводились к измерительному блоку. С течением времени сушки были получены данные по изменению сопротивления. По полученным значениям сопротивления строился график. На графике точка изменения линейной функции на показательную функцию является точкой перехода периода постоянной скорости сушки в период падающей скорости сушки. В этот момент корректировалась программа сушки и соответственно температура на нагревателях.

Устройство для определения периодов процесса сушки зернистого продукта, состоящее из двух электродов произвольной формы: нижнего - сплошного, верхнего - сетчатого, связанных друг с другом диэлектрическими стойками и соединенных с измерительным блоком, отображающим изменения электрического сопротивления высушиваемого материала в процессе сушки в вакуумных сушильных установках.



 

Похожие патенты:

Изобретение касается способа оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями в процессе эксплуатации. Сущность способа заключается в том, что проводят поминутное растяжение с постоянной скоростью образцов синтетических нитей с одновременным воздействием электрическим током.

Изобретение относится к измерительной технике. Твердотельный электрохимический датчик определения парциальных давлений паров воды в произвольно выбранной газовой смеси согласно изобретению представляет собой один из элементов планарной структуры, изготавливаемой на пластине диэлектрика, такого как ситалл или поликор, содержит хлорсеребряные электроды, представляющие собой серебряные электроды произвольной топологической конфигурации, с неоднородным слоем из AgCl, сформированным электрохимическим методом на их поверхности, и контактные площадки для проводников внешней цепи, свободные от AgCl, и пластифицированный твердый электролит на поверхности электродов.

Предложена система (100) для измерения по крайней мере одного параметра раствора в контейнере (101). Контейнер (101) содержит раствор (101а).

Изобретение относится к синтезу островковых металлических катализаторов и углеродных нанообъектов и может быть использовано в промышленности для производства нанообъектов и наноструктурированных пленок.

Группа изобретений относится к медицине применительно к экспресс-анализам. Устройство для кондуктометрического неинвазивного определения сахара в крови содержит источник питания, соединенный с процессором, снабженным жидкокристаллическим индикатором, кювету для дозы слюны пациента и для реагента, в качестве которого использован первичный конгломерат монореактива Глюкоза-УФ-Ново или Глюкоза-Ново, при этом для перемешивания дозы слюны и реагента введена фиксирующая платформа, а контактная кювета выполнена с возможностью установки в фиксирующую платформу при измерении, при этом в контактной кювете, у ее основания и на внутренних противоположных стенках, выполнены электрические контакты, а в фиксирующей платформе, на ее противоположных внутренних стенках, выполнены электрические контакты, обеспечивающие сопряжение с внешними электрическими выводами контактной кюветы, причем электрические контакты фиксирующей платформы соединены с процессором.

Изобретение относится к области измерений для диагностических целей. Блок датчиков для проведения диагностических измерений, размещенных на поверхности тела, включает основание, содержащее выемку, в которой закреплен пьезоэлемент датчика давления.
Изобретение относится к области материаловедения, в частности к способам определения критической концентрации одной из фаз в многофазной системе. Способ определения типа матрицы композитов металл-диэлектрик основан на том, что для определения типа матрицы предварительно измеряют электрическое сопротивление образца композита металл-диэлектрик при комнатной температуре, после чего указанный образец подвергают вакуумному изотермическому отжигу при температурах 300-400°C в течение 30 минут, после чего определяют электрическое сопротивление отожженного материала и сравнивают его с исходным значением.

Изобретение относится к метрологии, а именно к средствам для клинических лабораторных исследований. Устройство для определения времени свертывания крови содержит средство для размещения пробы крови, два измерительных металлических электрода, расположенных в зоне размещения пробы крови с возможностью электрического контакта с пробой, и преобразователь сопротивления в электрический сигнал, подключенный к этим электродам.

Изобретение относится к способу прогнозирования конечной фактической прочности бетона, включающего кондуктометрическое измерение удельного электрического сопротивления и температуры в процессе твердения образцов бетонных смесей в режиме реального времени с последующей оценкой фактической механической прочности на сжатие образцов бетона заданного класса.

Изобретение относится к блоку управления для двигателя внутреннего сгорания. Устройство управления для двигателя внутреннего сгорания содержит: датчик твердых частиц, установленный в выхлопном патрубке двигателя внутреннего сгорания, захватывающий частицы фильтр, выполненный с возможностью захватывать твердые частицы, содержащиеся в выхлопном газе, и расположенный в выхлопном патрубке в месте выше по потоку относительно датчика твердых частиц; электронный блок управления, выполненный с возможностью обнаруживать количество частиц в выхлопном газе через выхлопной патрубок в ответ на выходной сигнал датчика твердых частиц; электронный блок управления, выполненный с возможностью подавать напряжение захвата частиц между электродами датчика твердых частиц во время первого периода с тем, чтобы формировать слой частиц на поверхностях электродов датчика твердых частиц; и электронный блок управления, выполненный с возможностью останавливать подачу напряжения захвата частиц во время второго периода для того, чтобы поддерживать слой частиц, и электронный блок управления, выполненный с возможностью исполнять управление обнаружением отказа для того, чтобы определять, имеет место отказ захватывающего частицы фильтра или нет.

Изобретение относится к измерительной технике. Сущность: импедансный датчик резонансного типа представляет собой многокатушечный индуктор с разомкнутым сердечником или без стального сердечника, содержащий по меньшей мере две катушки, одной из которых является катушка возбуждения с возможностью соединения по меньшей мере с одним источником переменного тока с качанием частоты, а другой катушкой является измерительная катушка с возможностью соединения по меньшей мере с одной системой обработки данных. После установления электрического соединения с источником тока катушка возбуждения передает энергию измерительной катушке, которая генерирует зондирующее электромагнитное поле. Индуктивно-резистивно-емкостные (LCR) параметры измерительной катушки способны обеспечивать условия резонанса для измерения импеданса объекта исследования на заданной частоте. Технический результат: повышение чувствительности. 3 н. и 30 з.п. ф-лы, 24 ил.

Использование: для определения состава флюида. Сущность изобретения заключается в том, что система для определения состава флюида включает: резервуарную систему для флюида, пробоотборный узел; и систему резонансного датчика, содержащую электрический резонансный преобразователь, подключенный к упомянутому пробоотборному узлу, причем система резонансного датчика измеряет значения действительной и мнимой частей спектра импеданса, ассоциированного с электрическим резонансным преобразователем, находящимся вблизи от флюида, и каждое измеренное значение действительной и мнимой частей спектра импеданса, ассоциированного с электрическим резонансным преобразователем, находящимся вблизи от флюида, независимо используется для определения состава флюида. Технический результат: обеспечение возможности определения уровня поверхности раздела во флюидах. 4 н. и 22 з.п. ф-лы, 21 ил.

Изобретение относится к измерительной технике и предназначено для измерения физических параметров материала, в том числе при экстремальных температурах и давлениях, например, устройство может быть применено для контроля сухости пара пароводяной среды. Устройство измерения физических параметров материала содержит первичный преобразователь, выполненный в виде отрезка длинной линии передачи с сигнальным и экранным проводниками, пространство между которыми предназначено для заполнения контролируемым материалом, амплитудный детектор, генератор зондирующего сигнала, выполненный на основе перестраиваемого по частоте формирователя гармонического сигнала, устройство измерения и управления, а также первый и второй дополнительные отрезки линии передачи с сигнальным и экранным проводниками. Вход первого отрезка подключен к входу первичного преобразователя, а выход этого отрезка подключен к входу амплитудного детектора. Вход второго отрезка подключен к выходу генератора, а выход этого отрезка подключен к входу первичного преобразователя. Вход первого и выход второго дополнительных отрезков введены внутрь первичного преобразователя, при этом соединение сигнальных проводников первого и второго отрезков с сигнальным проводником первичного преобразователя выполнено внутри первичного преобразователя непосредственно в области, заполняемой контролируемым материалом. Первый и второй дополнительные отрезки в месте соединения с первичным преобразователем выполнены в виде электровводов, обеспечивающих герметизацию первичного преобразователя и передачу зондирующего сигнала в область, занимаемую контролируемым материалом. Технический результат заключается в повышении точности измерения, расширении диапазона рабочих давлений, увеличении чувствительности при измерении материалов с низкой диэлектрической проницаемостью, например, нефтепродуктов с низким содержанием воды. 8 з.п. ф-лы, 7 ил.

Использование: для осуществления контроля протекания стадии поликонденсации в процессе производства алкидных лаков. Сущность изобретения заключается в том, что способ включает нагрев рабочей смеси до температуры 240-245°С, контроль протекания стадии поликонденсации осуществляется посредством непрерывного измерения электрического сопротивления реакционной смеси в процессе нагрева путем пропускания через нее электрического тока с помощью встроенных в технологический трубопровод электродов, при достижении заданной величины электрического сопротивления, соответствующего заданному значению вязкости, нагрев реакционной массы прекращается, включается охлаждение и процесс останавливается. Технический результат заключается в том, что способ позволяет отказаться от отбора промежуточных проб и выполнения промежуточных анализов, затратных по времени и энергии, сделать контроль комфортным и безопасным, позволяет отслеживать момент завершения стадии поликонденсации, что повышает безопасность ведения процесса, позволяет получить гарантированно качественный продукт и способствует экономии электроэнергии. 1 ил.

Группа изобретений относится к медицинской технике, а именно к средствам визуализации методом магнитоиндукционной томографии. Способ включает в себя получение доступа к множеству результатов измерения характеристик катушки, полученных для образца с помощью одной катушки, которую возбуждают радиочастотной (РЧ) энергией от источника РЧ-энергии, при этом каждый из множества результатов измерения характеристик катушки получен с помощью одной катушки в одном из множества отдельных местоположений относительно образца и соотнесения данных о положении катушки с каждым из множества результатов измерения характеристик катушки. Данные о положении катушки указывают на положение и ориентацию одной катушки относительно образца для каждого результата измерения характеристик катушки, получение доступа к модели, определяющей отношение между результатами измерения характеристик катушки, полученными с помощью одной катушки, и электромагнитной характеристикой образца, и создание трехмерного графика электромагнитных характеристик образца. Система содержит устройство с катушкой, устройство перемещения, вычислительную систему. Устройство с катушкой содержит одну катушку, имеющую множество концентрических проводящих витков, каждый из которых имеет отличный радиус, соединенную с источником радиочастотной (РЧ) энергии. При этом одна катушка выполнена с возможностью получения результата измерения потерь в катушке. Устройство перемещения выполнено с возможностью расположения одной катушки относительно образца во множестве отдельных местоположений относительно образца. Вычислительная система содержит один или несколько процессоров и одно или несколько запоминающих устройств, хранящих машиночитаемые команды, которые при их исполнении одним или несколькими процессорами вызывают выполнение операций одним или несколькими процессорами. Операции включают: получение доступа к множеству результатов измерения потерь в катушке, полученных для образца с помощью одной катушки, возбуждаемой радиочастотной (РЧ) энергией от источника РЧ-энергии, при этом каждый из множества результатов измерения потерь в катушке получен с помощью одной катушки в одном из множества отдельных местоположений относительно образца, соотнесение данных о положении катушки, указывающих на положение и ориентацию одной катушки относительно образца для каждого результата измерения потерь в катушке, с каждым из множества результатов измерения потерь в катушке, получение доступа к модели, определяющей отношение между результатами измерения характеристик катушки, полученными с помощью одной катушки, и удельной проводимостью образца, создание трехмерного графика удельной проводимости образца с помощью модели, основанной по меньшей мере частично на множестве результатов измерения потерь в катушке и данных о положении катушки, связанных с каждым результатом измерения характеристик катушки. В систему входят также один или несколько материальных постоянных машиночитаемых носителей, хранящих машиночитаемые команды, которые при их исполнении одним или несколькими процессорами вызывают выполнение операций для магнитоиндукционной томографии образца одним или несколькими процессорами. Использование группы изобретений позволяет расширить арсенал средств для магнитоиндукционной томографии. 3 н. и 18 з.п. ф-лы, 12 ил.
Наверх