Поршневой компрессор

Изобретение относится к поршневым компрессорам с охлаждением, работающим без смазки рабочей полости и предназначенным для сжатия и перемещения газов. Поршневой компрессор содержит цилиндр, крышку с всасывающим и нагнетательным клапанами. В цилиндре расположен поршень с поршневыми кольцами, выполненными из самосмазывающихся материалов, предназначенных для герметизации рабочей камеры. В крышке цилиндра перед нагнетательным клапаном в паз радиусом R1 установлены ребра. Ребра расположены перпендикулярно к торцу крышки, обращенному в сторону рабочей камеры поршневого компрессора. Ребра имеют полусферическую форму и выполнены радиусом R толщиной δ из металлических пластин. За счет исключения оребрения по всей внутренней поверхности цилиндра, уменьшения площади оребрения, наличия поршневых колец изобретение позволяет уменьшить утечки газа, увеличить теплоотдачу от газа к стенкам рабочей камеры в процессе нагнетания, уменьшить мертвый объем в камере компрессора. 1 ил.

 

Изобретение относится к поршневым компрессорам с охлаждением, работающим без смазки рабочей полости и предназначенным для сжатия и перемещения газов.

Известен поршневой компрессор с воздушным охлаждением преимущественно для накачки автотракторных шин, содержащий оребренный цилиндр, несущий головку со всасывающим и нагнетательным клапанами, и включенную в линию нагнетания камеру для охлаждения сжатого воздуха [АС №31579 от 01.10.1971], в котором камера охлаждения выполнена в виде параллельного оси цилиндра кольцевого отсека, образованного оребренной стенкой цилиндра и выступом головки.

Основным недостаткам аналога является наличие только внешних ребер, что позволяет охлаждать только детали, формирующие рабочую камеру (цилиндр, крышку цилиндра), сжимаемый газ охлаждается слабо, т.к. внутренняя поверхность гладкая, а, следовательно, мала и площадь теплообмена между газом и стенками рабочей камеры.

Наиболее близким к заявляемому техническому решению является поршневой компрессор с охлаждением, работающий без смазки рабочей полости и предназначенный для сжатия и перемещения газов [патент №2307953 от 10.10.2007].

Поршневой компрессор содержит цилиндр с всасывающими и нагнетательным клапанами. Крышка цилиндра служит для размещения клапанов, поршень размещен в цилиндре с возможностью возвратно-поступательного движения. Причем перед нагнетательным клапаном в крышке выполнены ребра. Для интенсификации охлаждения в крышке выполнены полости, в которых проходит охлаждающая жидкость.

Недостатками прототипа являются:

- наличие внутреннего оребрения по всей поверхности цилиндрической части рабочей камеры, что приводит к подогреву газа в процессе всасывания за счет развитой внутренней поверхности, что уменьшает производительность компрессора;

- утечка газа из рабочей камеры через лабиринтное уплотнение (фактически зазор) между поршнем и цилиндром.

Задачей изобретения является создание конструкции поршневого компрессора, которая позволит увеличить его производительность, уменьшить подогрев газа в процессе всасывания, увеличить теплоотдачу от газа к стенкам рабочей камеры в процессе нагнетания, уменьшить утечки газа и уменьшить мертвый объем в камере компрессора.

Данный технический результат достигается тем, что в поршневом компрессоре содержащем цилиндр, крышку с всасывающими и нагнетательным клапанами, в цилиндре расположен поршень с поршневыми кольцами, выполненными из самосмазывающихся материалов, предназначенными для герметизации рабочей камеры, в крышке цилиндра перед нагнетательным клапаном в паз радиусом R1 установлены ребра, расположенные перпендикулярно к торцу крышки, обращенному в сторону рабочей камеры поршневого компрессора, имеющие полусферическую форму и выполненные радиусом R из металлических пластин, причем

R1=R+δ, где

R1 - радиус паза;

R - радиус ребер;

δ - толщина ребер.

На чертеже изображен поршневой компрессор с внутренними ребрами, расположенными перед нагнетательным клапаном.

Поршневой компрессор содержит цилиндр 1, крышку 4. В крышке 4 располагаются всасывающий 2 и нагнетательный 3 клапаны для впуска и выпуска газа. В цилиндре 1 расположен поршень 5 с возможностью возвратно-поступательного движения. Крышка 4, цилиндр 1, поршень 5 образуют рабочую камеру 8. В поршне 5 установлены поршневые кольца 6 из самосмазывающихся материалов, например "Фтороплат 4" (ГОСТ 10007-80), и предназначенные для герметизации рабочей камеры.

В крышке 4 цилиндра 1 перед нагнетательным клапаном 3 выполнен сферический паз 9 радиусом R1. В паз 9 (А-А) установлены ребра 7, расположенные перпендикулярно к торцу крышки 4, обращенному в стороны рабочей камеры 8. Ребра 7, имеющие полусферическую форму, выполнены радиусом R толщиной δ из металлических пластин.

Учитывая данные [Гавра Г.Г., Михайлов П.М., Рис. В.В. Тепловой и гидравлический расчет теплообменных аппаратов компрессорных установок. Учебное пособие. - Л., ЛПИ, 1982, 72 с. - стр. 28] шаг ребер L и их толщина δ могут быть приняты одинаковыми: δ=L.

Количество ребер и их длина зависит от диаметра паза для размещения ребер 7Dp.

На практике ребра 7 можно выполнить из пластин толщиной 0,1…0,2 мм.

Известно [Идельчик И.Е. Справочник по гидравлическим сопротивлениям / Под ред. М.О. Штейнберга. - з-е изд., перераб и доп. - М.: Машиностроение, 1992. - 672 с., Стр. 146], что для исключения дополнительных гидравлических потерь при нагнетании газа необходимо обеспечить следующие условие: площадь проходного сечения каналов, между ребрами 7 Sp должна быть не менее проходного сечения клапана Sк:

Sp≥Sк, где

Sк=πdкл2/4, где dкл - диаметр клапана, м.

Sp=πDp2/4-ΣSP', где Dp- диаметр паза для размещения ребер 7, м;

ΣSΡ' - суммарная площадь сечения ребер на торце крышки 4 со стороны рабочей камеры 8.

Согласно [Пластинин, П.И. Поршневые компрессоры. В 2 т. Т. 1. Теория и расчет / П.И. Пластинин - 3-е изд., перераб. и доп.- М.: КолосС, 2006. - 456 с., стр. 46] мертвый объем (объем каналов между ребрами 7) должен быть не более 5%, то есть должно выполняться условие:

где Vм - мертвый объем, м3;

Vм=πDp3/6-ΣVp',

где ΣVP' - суммарный объем ребер, м3.

Vрк - объем рабочей камеры, м3,

Vрк = S*πdц2/4,

где S - ход поршня, м;

dц - диаметр цилиндра, м.

Формула 2 позволяет однозначно определить диаметр паза Dp.

Поршневой компрессор работает следующим образом:

Поршень 5 совершает возвратно-поступательные движения, изменяя объем газовой полости цилиндра 1. При увеличении объема рабочий газ поступает через всасывающий клапан 2 с температурой всасывания Твс и давлением всасывания Рвс в газовую полость цилиндра 1. Причем за счет гладких стенок цилиндра 1 идет незначительный подогрев газа. При достижении максимального объема газовой полости всасывание прекращается, всасывающий клапан 2 закрывается, поршень 5 меняет свое направление движения и начинается процесс сжатия в газовой полости, давление и температура в цилиндре 1 повышаются. При достижении давления газа величины Рн - давление нагнетания, нагнетательный клапан 3 открывается, и дальнейшее уменьшение объема газовой полости цилиндра 1 сопровождается выталкиванием рабочего газа, которое прекращается при минимальном объеме газовой полости. В процессе нагнетания газ омывает ребра 7, расположенные перед нагнетательным клапаном 3 в крышке 4.

Количество тепла, отводимое от газа в процессе нагнетания, пропорционально площади оребренной поверхности и коэффициенту теплоотдачи, который возрастает с ростом давления и имеет максимальное значение в процессе нагнетания. Таким образом, наличие оребрения 7 позволяет существенно увеличить теплоотвод от нагнетаемого газа за счет развитой поверхности. Тепловой поток от ребер отводится охлаждающей.

Поверхность цилиндра поз. 1 выполнена гладкой, оребрение внутри рабочей камеры расположено только перед нагнетательным клапаном. Отсутствие внутреннего оребрения на цилиндре поз. 1 позволяет меньше подогреваться газу от гладких стенок в процессе всасывания также наличие поршневых колец поз. 6 уменьшаются утечки газа. Интенсивная теплоотдача тепла в процессе нагнетания при прохождении газа через ребра перед нагнетательным клапаном. Уменьшение площади оребренной поверхности позволяет уменьшить мертвый объем в рабочей камере.

Таким образом, предложенная конструкция за счет расположения внутреннего оребрения перед клапаном нагнетания перпендикулярно к торцу крышки, обращенному в стороны рабочей камеры, увеличивает теплоотдачу от газа к стенкам рабочей камеры в процессе нагнетания, исключения оребрения по всей внутренней поверхности цилиндра, уменьшения площади оребрения, наличия поршневых колец позволяет уменьшить утечки газа, увеличить теплоотдачу от газа к стенкам рабочей камеры в процессе нагнетания, уменьшить мертвый объем в камере компрессора.

Поршневой компрессор, содержащий цилиндр с всасывающими и нагнетательными клапанами, крышку цилиндра и поршень, размещенный в цилиндре с возможностью возвратно поступательного движения, отличающийся тем, что в поршне установлены поршневые кольца, выполненные из самосмазывающихся материалов, предназначенные для герметизации рабочей камеры, в крышке цилиндра перед нагнетательным клапаном в паз радиусом R1 установлены ребра, расположенные перпендикулярно к торцу крышки, обращенному в сторону рабочей камеры поршневого компрессора, имеющие полусферическую форму и выполненные радиусом R из металлических пластин, причем

R1=R+δ, где

R1 - радиус паза;

R - радиус ребер;

δ - толщина ребер.



 

Похожие патенты:

Изобретение относится к области компрессоростроения и может быть использовано при создании поршневых компрессоров, к которым предъявляются высокие требования по ресурсу работы, надежности и экономичности.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным жидкостным охлаждением цилиндропоршневой группы.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с независимым активным жидкостным охлаждением.

Изобретение относится к области энергетики и компрессоростроения и может быть использовано при создании поршневых компрессоров. Поршневая машина содержит цилиндр 1 с поршнем 2 с образованием рабочего объема 4, клапанную коробку 5 с полостью всасывания 6, линию всасывания 7, всасывающий клапан 8, полость нагнетания 11, линию нагнетания 12, нагнетательный клапан 13.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с индивидуальным жидкостным охлаждением цилиндропоршневой группы.

Изобретение относится к области машин объемного действия поршневого типа. Способ заключается в том, что при возвратно-поступательном движении поршня происходит всасывание, сжатие и нагнетание газа потребителю с одновременным сжатием смазочно-охлаждающей жидкости в картере машины при ходе поршня вниз и ее подача в зазор между поршнем и цилиндром через питающие круговые щели в цилиндре и в сам цилиндр в конце хода всасывания и начале хода сжатия.

Изобретение относится к области компрессоростроения и может быть использовано в компрессорах с жидкостным охлаждением. Компрессорное устройство содержит компрессорный элемент 2 с камерой сжатия, с одним входом 8 охлаждающего агента и выходом 4 газа.

Изобретение относится к области машин объемного действия поршневого типа и может быть использовано при создании высокоэффективных поршневых машин малой и средней производительности с автономной жидкостной системой охлаждения.

Изобретение относится к области компрессоростроения и может быть использовано в компрессорах с автономным жидкостным охлаждением. Компрессор состоит из цилиндра 1 с поршнем 2 с образованием рабочего объема 4, полости нагнетания 5, нагнетательного клапана 6, полости всасывания 7, всасывающего клапана 8.

Изобретение относится к области машиностроения и может использоваться в компрессорной технике. Поршневой компрессор содержит цилиндрический корпус 1 с двумя оппозитно установленными в нем компрессорным и приводным цилиндрами 2 и 3. В каждом цилиндре 2 и 3 размещены поршни 4 и 5, закрепленные на общем штоке 6. Содержит входные и выходные линии 7, 8 связи рабочих полостей 9, 10 цилиндра 2 и систему подачи рабочей среды в рабочие полости 11, 12 цилиндра 3. Содержит источник 13 рабочей среды с напорной и сливной линиями 14, 15, распределительное устройство 16 и теплообменное устройство 17. Корпус 1 выполнен с рубашкой 18 охлаждения. Содержит плунжерный микронасос 19, который представляет собой рабочую полость, образованную крышкой 20 корпуса 1 и концом 21 общего штока 6, являющимся плунжером микронасоса 19. Его другой конец 22 механически связан с распределительным устройством 16. Теплообменное устройство 17 установлено в напорной линии 14 связи с возможностью преобразования рабочей среды в парообразное состояние. В сливной линии 15 установлено дополнительное теплообменное устройство 24 с возможностью преобразования парообразной рабочей среды, например фреона, в жидкое состояние. Сливная линия 15 через подпорный клапан 25 соединена с источником 13 рабочей среды в виде бака, который через линию 26 всасывания подключен к микронасосу 19. В напорной линии 14 на входе в теплообменное устройство 17 установлен обратный клапан 28. Изобретение позволяет снизить механические потери при работе за счет тепла, вырабатываемого компрессором, и преобразовать это тепло в механическую энергию работы элементов компрессора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени. Поршневая двухступенчатая машина состоит из картера 1 с механизмом привода, приводящим в движение поршень 4, который с общим цилиндром образует газовые полости первой ступени 5 и второй ступени 6, а также жидкостную дополнительную ступень 11. Все ступени снабжены всасывающими и нагнетательными клапанами, вокруг газовых ступеней имеются рубашки охлаждения 9, 10. При возвратно-поступательном движении поршня 4 происходит всасывание газа в полость 5 первой ступени, его сжатие и подача во вторую ступень 6, где газ дожимается и подается потребителю. Жидкость всасывается в полость 5 через рубашку 10, сжимается и прокачивается через рубашку 9, чем достигается охлаждение первой 5 и второй 6 ступени и уплотнение зазоров между поршнем и цилиндрами газовых ступеней. Достигается автономное охлаждение машины при сжатии газов, бесконтактное уплотнение поршня и повышение экономичности машины. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с полостью нагнетания машины и частично заполненного охлаждающей жидкостью, уменьшают при увеличении давления нагнетания и наоборот увеличивают - при уменьшении давления нагнетания. Компрессор состоит из цилиндра 1 с поршнем 2, рабочей камеры 4, полостей всасывания 6 и нагнетания 9 с клапанами 5 и 8. Полость нагнетания 9 соединена каналом 16 с дополнительным объемом 14, который через нагнетательный клапан 12 соединен с рубашкой охлаждения 11 и через всасывающий клапан 18 - с питающей емкостью 20. При повышении давления нагнетания сверх нормативного плунжер 24 опускают в объем 14 и наоборот. Достигается максимально возможное движение жидкости через систему охлаждения на всех режимах работы машины, что повышает отвод теплоты от цилиндра 1 и повышает экономичность работы компрессора. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы. Компрессор состоит из цилиндров 1, 2 с рубашкой охлаждения 14, поршней 15, 16, которые приводятся в движение коленчатым валом 19 через шатуны 17, 18. Газ всасывается в полости 7, 8 цилиндров 1, 2 через линию всасывания 12, общую для цилиндров полость всасывания 9 и обратные самодействующие клапаны 3, 4, сжимается и нагнетается потребителю через обратные самодействующие клапаны 5, 6, полости нагнетания 10, 11 и линию нагнетания 13. Рубашка 14 соединена через теплообменники 28, 29 и обратные клапаны 26, 27 с герметичной емкостью 24, соединенной каналом 25 с полостью 9, а также через канал 30 с емкостью 1, сообщенной с атмосферой отверстием 32. Повышается экономичность компрессора без дополнительных затрат энергии. 3 з.п. ф-лы, 5 ил.
Наверх