Двухпоточный цилиндр паротурбинной установки с охлаждением ротора

Изобретение относится к области энергетического машиностроения, в частности к конструкции двухпоточных цилиндров паровых турбин, работающих на сверхкритических параметрах пара и выше. В корпусе двухпоточного цилиндра в пространстве между дисками первых ступеней ротора установлено кольцо, состоящее из наружной обечайки, наружных стенок, внутренней обечайки, внутренних стенок. При этом наружная обечайка, наружные стенки и внутренняя обечайка образуют наружную камеру, а внутренняя обечайка, внутренние стенки и ротор образуют внутреннюю камеру. В наружных стенках выполнены боковые отверстия с установленными в них закрывающими элементами со щелью в каждом, выполненной под углом α=30-50° к торцевой плоской поверхности закрывающего элемента, при этом отношение ширины щели к ее длине составляет 0,05-0,1. Между наружной обечайкой и трубопроводом подвода охлаждающего пара установлены поршневые кольца. Во внутренней обечайке выполнено по меньшей мере одно сквозное радиальное отверстие. Во внутренних стенках установлены уплотнительные элементы. Технический результат заключается в эффективном охлаждении центральной части двухпоточного цилиндра (средняя часть ротора и диски первых ступеней левого и правого потоков) при минимальном расходе охлаждающего пара, что обеспечивает высокую экономичность, надежность и увеличивает ресурс ротора по длительной прочности. 1 ил.

 

Предлагаемое изобретение относится к области энергетического машиностроения, в частности к конструкции двухпоточных цилиндров паровых турбин. Может быть использовано при создании новых турбин и модернизации действующего оборудования.

В настоящее время существует тенденция к созданию паровых турбин на повышенные параметры пара. Несмотря на то что материалы, применяемые в конструкциях таких турбин, рассчитаны на работу с повышенными параметрами пара, представляется необходимость обеспечить более высокий запас по прочности. Известно, что допустимые пределы по длительности, прочности и по пластичности снижаются с увеличением температуры металла. При работе с высокими температурами увеличивается скорость ползучести металла роторов и цилиндра, растет малоцикловая температурная повреждаемость. Также расчетные исследования и опыт эксплуатации мощных паровых турбин, работающих на сверхкритических параметрах пара и выше, показали, что наиболее уязвимыми точками ротора являются места концентраторов напряжений, в том числе диски первых ступеней левого и правого потоков.

На сегодняшний день в мире разработано множество конструкций охлаждения роторов. Основные их недостатки заключаются в сложности конструкции, приводящей к многочисленным существенным изменениям в исходной конструкции турбины, монтаже дополнительных устройств, снижающих надежность работы турбины. Существуют и простые конструкции, однако они не обеспечивают достаточное снижение температуры охлаждаемой части ротора. Таким образом, перед специалистами была поставлена задача разработать двухпоточный цилиндр паротурбинной установки с охлаждением ротора, в котором достигается снижение температуры наиболее напряженных участков ротора для обеспечения надежности и увеличения ресурса ротора.

Известно изобретение «Двухпоточный цилиндр паротурбинной установки» (патент РФ №2299332, МПК F01D 3/02, 5/08, опубл. 20.05.2007 г.). Двухпоточный цилиндр паротурбинной установки включает наружный и внутренний корпусы, ротор с дисками и рабочими лопатками проточной части прямого и обратного потока и подводящий элемент с трубопроводом подвода холодного пара от внешнего источника. Во внутреннем корпусе на участке ротора между первыми дисками прямого и обратного потока установлен корпус с уплотнениями по торцам, образующий кольцевую камеру, ограниченную ротором и этими уплотнениями. Кольцевая камера соединена по входу с подводящим элементом, а по выходу - через радиальные зазоры между гребнями уплотнений и валом ротора с входом на рабочие лопатки первых ступеней обоих потоков. Давление в кольцевой камере больше, чем давление на входе рабочих лопаток первых ступеней прямого и обратного потока. Изобретение позволяет гарантированно охладить среднюю часть ротора на участке между уплотнениями.

Недостатком данной конструкции является возможность перетечек пара из одного потока в другой, обусловленных как разностью давлений за дисками первых ступеней потоков, так и наличием больших осевых зазоров входа на рабочие лопатки, соединенных между собой пространством между первыми дисками прямого и обратного потоков. Такие перетоки пара даже при соблюдении допусков на изготовление проточных частей могут составлять десятки тонн и приводят к снижению экономичности двухпоточных цилиндров.

Наиболее близким техническим решением к предлагаемому техническому решению по совокупности существенных признаков и выбранным в качестве прототипа является изобретение «Двухпоточный цилиндр паротурбинной установки» (патент РФ №2523086; МПК F01K 3/02, F01D 5/08; дата публикации 20.07.2014). Согласно изобретению двухпоточный цилиндр паротурбинной установки включает наружный цилиндр (корпус), внутренний цилиндр, ротор с дисками и рабочими лопатками проточной части прямого и обратного потоков (левого и правого), трубопровод подвода охлаждающего пара к турбине. Во внутреннем цилиндре установлены корпусы с уплотнениями вала ротора (уплотнительными элементами). В пространстве между дисками первых ступеней прямого и обратного потоков установлены перегородки, соединенные по торцу с поверхностью внутреннего цилиндра и корпусом уплотнений, образующие две кольцевые камеры, ограниченные поверхностями внутреннего цилиндра, корпусов уплотнений и перегородок, а также боковыми поверхностями дисков первых ступеней. Каждая из кольцевых камер соединена через осевой зазор между диском первой ступени примыкающего к этой камере потока и торцевой поверхностью внутреннего цилиндра с камерой подвода пара на рабочую лопатку первой ступени. Через радиальный зазор между валом ротора и гребнями уплотнений кольцевые камеры соединены между собой.

Известное техническое решение обеспечивает охлаждение центрального участка ротора и предотвращает паразитные перетечки пара через пространство между дисками первых ступеней из одного потока в другой.

Недостатком данной конструкции является то, что за счет вторичных течений пара, вызванных вращением ротора, происходит нагрев охлаждающего пара в процессе его движения к первым дискам прямого и обратного потока, что не гарантирует их охлаждение.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в эффективном охлаждении центральной части двухпоточного цилиндра (средняя часть ротора и диски первых ступеней левого и правого потоков) при минимальном расходе охлаждающего пара, что обеспечивает высокую экономичность, надежность и увеличивает ресурс ротора по длительной прочности.

Для достижения указанного выше технического результата предлагается двухпоточный цилиндр паротурбинной установки, включающий корпус, ротор с дисками ступеней проточной части левого и правого потоков, трубопровод подвода охлаждающего пара, уплотнительные элементы.

При этом согласно заявляемому изобретению в корпусе в пространстве между дисками первых ступеней установлено кольцо, состоящее из наружной обечайки, наружных стенок, внутренней обечайки, внутренних стенок. Наружная обечайка, наружные стенки и внутренняя обечайка образуют наружную камеру. Внутренняя обечайка, внутренние стенки и ротор образуют внутреннюю камеру. Разделение кольца на внутреннюю и наружную камеры позволяет создавать направленный поток охлаждающего пара на наиболее ответственные высокотемпературные участки ротора и дисков. Наличие во внутренней камере постоянного объема охлаждающего пара позволяет эффективно охлаждать среднюю часть ротора, независимо от течения рабочего пара вдоль ротора и сил трения, возникающих при вращении и нагреве ротора.

В наружных стенках выполнены боковые отверстия с установленными в них закрывающими элементами со щелью в каждом, выполненной под углом 30-50° к торцевой плоской поверхности закрывающего элемента. Отношение ширины щели к ее длине составляет 0,05-0,1. Боковые отверстия расположены равномерно по окружности кольца с целью обеспечения непрерывного воздействия охлаждающего пара на диски первых ступеней левого и правого потоков. Выполнение закрывающих элементов с указанной расчетной геометрией щели обеспечивает минимально необходимый расход и оптимальную интенсивность течения охлаждающего пара для охлаждения дисков первых ступеней, тем самым повышая эффективность охлаждения дисков.

Между наружной обечайкой и трубопроводом подвода охлаждающего пара установлены поршневые кольца для уплотнения зазоров, что обеспечивает надежную работу при тепловом удлинении трубопровода подачи охлаждающего пара.

Во внутренней обечайке выполнено по меньшей мере одно сквозное радиальное отверстие для обеспечения постоянного дозированного доступа необходимого количества охлаждающего пара к средней высокотемпературной части ротора.

Уплотнительные элементы установлены во внутренних стенках. Уплотнительные элементы ограничивают зону охлаждения средней части ротора и уменьшают протечку охлаждающего пара из внутренней камеры. При этом обеспечивается оптимальная скорость циркуляции охлаждающего пара, утекающего вдоль ротора в направлении дисков первых ступеней левого и правого потоков. Как следствие, уменьшается необходимый расход охлаждающего пара, увеличивается эффективность охлаждения, а также обеспечивается гарантированно интенсивное охлаждение этой зоны.

Предлагаемая конструкция двухпоточного цилиндра в раскрытой выше совокупности существенных признаков позволяет обеспечить высокую экономичность, надежность и увеличить ресурс ротора по длительной прочности за счет эффективного охлаждения центральной части двухпоточного цилиндра (средняя часть ротора и диски первых ступеней левого и правого потоков) при минимальном расходе охлаждающего пара.

Сущность предлагаемого технического решения поясняется чертежом, где представлены: меридиональный разрез верхней половины двухпоточного цилиндра, выносной элемент А - закрывающий элемент со щелью, вид Б сбоку закрывающего элемента со щелью. Верхняя и нижняя половины двухпоточного цилиндра симметричны.

Представленные графические материалы содержат пример конкретного выполнения двухпоточного цилиндра паротурбинной установки с охлаждением ротора. Двухпоточный цилиндр включает корпус 1, сопловые аппараты 2 и 3 левого и правого потоков, ротор 4 с дисками 5 и 6 и рабочими лопатками 7 и 8 проточной части левого и правого потоков, трубопровод подвода охлаждающего пара 9, уплотнительные элементы 10. Левый и правый потоки проточной части симметричны. В корпусе в пространстве между дисками 5 и 6 первых ступеней левого и правого потоков установлено кольцо 11. Сопловые аппараты 2 и 3 установлены в корпусе 1 и в пазах кольца 11. Кольцо 11 выполнено сварным и состоит из наружной обечайки 12, наружных стенок 13, внутренней обечайки 14, внутренних стенок 15. Наружная обечайка 12, наружные стенки 13 и внутренняя обечайка 14 образуют наружную камеру 16. Внутренняя обечайка 14, внутренние стенки 15 и ротор 4 образуют внутреннюю камеру 17. В наружных стенках 13 выполнены боковые отверстия 18 с установленными в них закрывающими элементами 19 со щелью 20 в каждом, выполненной под углом α=30-50° к торцевой плоской поверхности закрывающего элемента 19. Отношение ширины а щели 20 к ее длине b составляет 0,05-0,1 (выносной элемент А, вид Б). Количество боковых отверстий 18 определяется из условия, чтобы шаг между соседними отверстиями позволял обеспечить непрерывное воздействие охлаждающего пара на диски 5 и 6 первых ступеней. В конкретном примере выполнено двенадцать боковых отверстий 18. Между наружной обечайкой 12 и трубопроводом подвода охлаждающего пара 9 установлены поршневые кольца 21 для уплотнения зазоров. Во внутренней обечайке 14 выполнены сквозные радиальные отверстия 22. В конкретном примере выполнено шесть сквозных радиальных отверстий 22. Уплотнительные элементы 10 установлены во внутренних стенках 15 кольца 11.

Двухпоточный цилиндр паротурбинной установки с охлаждением ротора работает следующим образом. В процессе работы паровой турбины водяной пар проходит последовательно через ряд ступеней, при этом пар расширяется, а его потенциальная энергия преобразуется в кинетическую энергию парового потока, приводящего во вращение ротор 4 турбины. Горячий рабочий пар нагревает ротор 4, при этом наибольшему температурному воздействию подвергается средняя часть ротора 4 и диски 5 и 6 первых ступеней.

Для охлаждения ротора 4 используется охлаждающий пар, который отбирается из коллектора (показан) паротурбинной установки и имеет более низкую температуру и более высокое давление, чем рабочий пар на входе в двухпоточный цилиндр. Далее охлаждающий пар через трубопровод подвода охлаждающего пара 9 поступает в наружную камеру 16 кольца 11. Через боковые отверстия 18 и щели 20 в закрывающих элементах 19 часть охлаждающего пара поступает на диски 5 и 6 первых ступеней и охлаждает их. Поршневые кольца 21 препятствуют утечке охлаждающего пара из наружной камеры 16. Также из наружной камеры 16 охлаждающий пар через сквозные радиальные отверстия 22 непрерывно поступает во внутреннюю камеру 17. Таким образом, во внутренней камере 17 создается постоянный объем охлаждающего пара для охлаждения средней части ротора 4. Даже при наличии вторичных кольцевых течений рабочего пара вдоль ротора 4 подаваемый на охлаждение пар обеспечивает гарантированное снижение температуры ротора 4 на наиболее ответственных участках, а также снижает среднюю температуру рабочего пара, циркулирующего под кольцом 11. Уплотнительные элементы 10 обеспечивают протечку охлаждающего пара из внутренней камеры 17 в направлении дисков 5 и 6 в оптимальном количестве и со скоростью, оптимальной для эффективного охлаждения.

Двухпоточный цилиндр паротурбинной установки, включающий корпус, ротор с дисками ступеней проточной части левого и правого потоков, трубопровод подвода охлаждающего пара, уплотнительные элементы, отличающийся тем, что в корпусе в пространстве между дисками первых ступеней установлено кольцо, состоящее из наружной обечайки, наружных стенок, внутренней обечайки, внутренних стенок, при этом наружная обечайка, наружные стенки и внутренняя обечайка образуют наружную камеру, а внутренняя обечайка, внутренние стенки и ротор образуют внутреннюю камеру; в наружных стенках выполнены боковые отверстия с установленными в них закрывающими элементами со щелью в каждом, выполненной под углом α=30-50° к торцевой плоской поверхности закрывающего элемента, при этом отношение ширины щели к ее длине составляет 0,05-0,1; между наружной обечайкой и трубопроводом подвода охлаждающего пара установлены поршневые кольца; во внутренней обечайке выполнено по меньшей мере одно сквозное радиальное отверстие; уплотнительные элементы установлены во внутренних стенках.



 

Похожие патенты:

Узел турбомашины содержит лопатку для направления горячего газа во время работы турбомашины, кольцо статора для крепления лопатки, теплозащитный экран для защиты кольца статора от потока горячего газа.

Изобретение относится к энергетике. Газотурбинный двигатель, включающий в себя контур (10) охлаждения окружающего воздуха, содержащий охлаждающий канал (26), расположенный в лопатке (22) турбины и в сообщении по текучей среде с источником (12) окружающего воздуха; и предварительный завихритель (18), причем упомянутый предварительный завихритель содержит внутренний обод, наружный обод и множество направляющих лопаток, каждая проходящая от внутреннего обода до наружного обода.

Изобретение относится к энергетике. Предложен удерживающий кронштейн, содержащий кольцевой корпус, который содержит кольцевую удерживающую скобу, ограничивающую первые сквозные отверстия, и кольцевое основание, ограничивающее вторые сквозные отверстия.

Изобретение относится к высокотемпературным турбинам газотурбинных двигателей, а именно к способам и системам охлаждения рабочих лопаток турбин авиационных двигателей.

Изобретение относится к энергетике. Охлаждаемая турбина высокого давления содержит сопловой аппарат турбины с аппаратом закрутки, вход которого соединен с источником охлаждающего воздуха, а выходные каналы сообщены с безлопаточным диффузором, диск с охлаждаемыми рабочими лопатками, каналы подвода охлаждающего воздуха к рабочим лопаткам, установленным в проточной части турбины, при этом выходные каналы аппарата закрутки повернуты в сторону вращения диска с охлаждаемыми рабочими лопатками.

Изобретение относится к области газотурбинного двигателестроения, а именно к охлаждаемым турбинам газотурбинных двигателей. Охлаждаемая турбина высокого давления содержит рабочее колесо в виде диска колеса с установленными на нем рабочими лопатками с внутренними охлаждающими полостями, каналы подвода к лопаткам охлаждающего воздуха, сопловой аппарат закрутки, безлопаточный диффузор, замками фиксации лопаток и приставным кольцом с подкачивающими лопатками.

Устройство охлаждения платформы, выполненное в турбинной рабочей лопатке, содержит платформу, расположенную в области сопряжения аэродинамической части и корневой части.

Устройство охлаждения платформы предназначено для роторной лопатки турбины, имеющей платформу, расположенную на границе сопряжения между аэродинамическим профилем и хвостовой частью, содержащей средства крепления и хвостовик, проходящий между средствами крепления и платформой.

Устройство охлаждения платформы рабочей лопатки турбины содержит платформу, расположенную между аэродинамической частью лопатки и корнем лопатки, и имеет внутренний охлаждающий канал, проходящий в радиальном направлении от места соединения с источником охлаждающей текучей среды в корне лопатки.

Изобретение относится к авиадвигателестроению, в частности к системам охлаждения турбины газотурбинного двигателя. Охлаждаемая турбина газотурбинного двигателя содержит рабочее колесо с каналами подвода охлаждающего воздуха к рабочим лопаткам и сопловой аппарат закрутки.

Изобретение относится к области газотурбинного двигателестроения, а именно к охлаждаемым турбинам газотурбинных двигателей. Турбина высокого давления содержит рабочее колесо в виде диска колеса с установленными на нем рабочими лопатками с внутренними охлаждающими полостями, торцевые каналы, каналы подвода к лопаткам охлаждающего воздуха, сопловой аппарат закрутки, безлопаточный диффузор, замки фиксации лопаток, подпорное и два подвижных лабиринтных уплотнения, а также приставное кольцо с подкачивающими лопатками и кольцевым выступом, выполненным на полотне диска рабочего колеса. Приставное кольцо с подкачивающими лопатками с помощью байонетного соединения закреплено под ободом диска. Безлопаточный диффузор жестко закреплен на аппарате закрутки, с образованием зазора между одной его стенкой и приставным кольцом и зазора между другой стенкой и кольцевым выступом. Подвижные уплотнения установлены в образованных зазорах, а подпорное подвижное уплотнение выполнено между диском рабочего колеса и сопловым аппаратом закрутки. Лабиринты выполнены на роторных частях уплотнений, направлены вершиной в радиальном направлении от оси ротора и соприкасаются посредством выполненных сотовых кольцевых уплотнений со статорными частями турбины. В ободе диска и ножках лопаток выполнены пазы под замки фиксации лопаток. Каналы подвода воздуха в лопатку выполнены в виде паза в диске под замком лопаток, а напротив пазов в диске в замках фиксации лопаток со стороны приставного кольца выполнены отверстия. Охлаждающие полости лопаток последовательно сообщены с каналами подвода воздуха в лопатку, с полостями под приставным кольцом с подкачивающими лопатками и с полостями безлопаточного диффузора и аппарата закрутки. Изобретение позволяет снизить массу рабочего колеса и улучшить его охлаждение, а также повысить надежность и ресурс турбины и упростить ее изготовление и регулирование осевой силы. 1 ил.

Турбинная система включает роторную лопатку с хвостовиком и турбинный диск, содержащий щель, в которой закреплен хвостовик роторной лопатки. Щель турбинного диска содержит множество противоположных пар выступов щели, множество противоположных пар углублений щели и дно щели. Дно щели содержит первую часть выпуклой поверхности. Хвостовик роторной лопатки содержит дно хвостовика, содержащее первую часть вогнутой поверхности, соответствующую первой части выпуклой поверхности дна щели. Первая часть выпуклой поверхности пронизана выходом охлаждающего канала, проходящего через турбинный диск. Другое изобретение группы относится к газовой турбине, содержащей указанную выше турбинную систему. Группа изобретений позволяет снизить концентрацию напряжений на дне щели диска, имеющем охлаждающий канал. 2 н. и 7 з.п. ф-лы, 5 ил.

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит сопловой аппарат турбины с сопловыми лопатками, диск с рабочими лопатками, многоканальный воздуховод. Входная полость многоканального воздуховода сообщена с источником охлаждающего воздуха, а выходная полость соединена с одной стороны через дополнительный аппарат закрутки статора, дополнительный безлопаточный диффузор и дополнительные воздушные каналы с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки. С другой стороны выходная полость многоканального воздуховода соединена через аппарат закрутки статора, безлопаточный диффузор и воздушные каналы с остальной полостью каждой рабочей лопатки. Полость на выходе из дополнительного аппарата закрутки статора отделена от полости на входе в безлопаточный диффузор подвижным уплотнением. Дополнительный безлопаточный диффузор выполнен в виде канала, образованного двумя стенками, одна из которых размещена на сопловом аппарате турбины, а другая выполнена в виде покрывного диска, соединенного с диском с рабочими лопатками. Дополнительные воздушные каналы размещены в полотне покрывного диска и на входе отделены дополнительным подвижным уплотнением от проточной части турбины, а на выходе образован кольцевой коллектор, сообщенный с внутренней полостью каждой рабочей лопатки, расположенной у входной кромки. Воздушные каналы, сообщенные с остальной полостью каждой рабочей лопатки, размещены между диском с рабочими лопатками и покрывным диском и снабжены ребрами. Покрывной диск в осевом направлении относительно диска с рабочими лопатками фиксируется с помощью баянетного соединения, а в радиальном направлении с помощью упора. Изобретение позволяет снизить массу деталей и металлоемкости конструкции, упростить технологию крепления и сборки узла турбины, а также повысить его ресурс и надежность. 1 ил.

Изобретение относится к области теплоэнергетического машиностроения и может быть использовано при модернизации действующего оборудования и создании новых турбин. Предложен двухпоточный цилиндр среднего давления паровой турбины, включающий наружный и внутренний корпусы, ротор с дисками и рабочими лопатками проточной части прямого и обратного потоков, направляющие лопатки первых ступеней прямого и обратного потоков, диафрагмы вторых ступеней прямого и обратного потоков, кольцевое экранирующее тело, установленное в центральной части внутреннего корпуса, и обойму, расположенную осесимметрично внутри экранирующего тела и снабженную кольцевыми камерами, соединенными между собой и имеющими отверстия на внутренней и торцевых стенках обоймы, трубопровод подачи охлаждающего пара от внешнего источника в обойму, при этом в диафрагмах вторых ступеней прямого и обратного потоков выполнены кольцевые камеры и установлены форсунки, в направляющих лопатках диафрагм вторых ступеней обоих потоков выполнены отверстия, причем кольцевые камеры в диафрагмах соединены посредством трубопроводов с внешним источником охлаждающего пара, кроме этого в кольцевом экранирующем теле выполнены отверстия для перепуска пара, а трубопровод подачи охлаждающего пара от внешнего источника в обойму установлен в дополнительный защитный трубопровод, закрепленный во внутреннем корпусе. Заявленное техническое решение позволяет повысить надежность цилиндра турбины за счет повышения эффективности охлаждения дисков первых ступеней и центральной части ротора. Заявленная конструкция системы охлаждения, при перекосах давления за направляющими лопатками первых ступеней между прямым и обратным потоками до 100 КПа, позволяет надежно охлаждать центральную часть ротора двухпоточных цилиндров и наиболее напряженные диски первых ступеней обоих потоков со стороны паровпуска и со стороны вторых ступеней, при этом снижается ползучесть металла, увеличивается его длительная прочность, в результате чего продлевается ресурс работы ротора. Установка дополнительного трубопровода также позволяет существенно повысить эффективность охлаждения ротора за счет эффекта экранирования, получаемого при установке трубопровода подачи охлаждающего пара в дополнительный защитный трубопровод. 1 ил.

Газогенератор газотурбинного двигателя включает в себя осевой компрессор, камеру сгорания, турбину высокого давления с охлаждаемыми рабочими и диском основным с выполненными на его фланце отверстиями и несущим на себе диск покрывной с образованием между ними кольцевой полости. Кольцевая полость сообщена на выходе с внутренними полостями охлаждаемых рабочих лопаток, а на входе через отверстия во фланце диска основного сообщена с подходящей по уровню давления проточной частью промежуточной ступени компрессора через внутреннюю полость вала, соединяющего роторы компрессора и турбины. Между диском покрывным и фланцем диска основного выполнен радиальный кольцевой зазор, в полости которого размещен аппарат спутной закрутки, сообщенный с зоной вторичного воздуха камеры сгорания на входе и полостью радиального кольцевого зазора на выходе, переходящей в междисковую кольцевую полость. Изобретение направлено на повышение напорности системы охлаждения рабочих лопаток турбины высокого давления при отборе от промежуточной ступени компрессора путем использования смеси воздуха, отбираемого от промежуточной ступени компрессора, с воздухом, отбираемым из зоны вторичного воздуха камеры сгорания, а также повышения ресурса диска покрывного с одновременным снижением его массы за счет исключения ребер. 2 ил.

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток. Вращающийся узел рабочих лопаток включает множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя. Неподвижный узел направляющих лопаток включает множество направляющих лопаток и внутренний кожух. Внутренний кожух содержит обращенную радиально наружу первую поверхность, обращенную радиально внутрь вторую поверхность и множество канавок, выходящих на вторую поверхность. Канавки располагаются таким образом, что между смежными канавками образована область, имеющая протяженность в окружном направлении, причем во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении канала горячего газа таким образом, что продувочный воздух течет в требуемом направлении относительно направления потока горячего воздуха через канал горячего газа. Канавки сужаются в направлении от их входов, расположенных на удалении относительно аксиального концевого участка внутреннего бандажа, до их выходов, расположенных вблизи аксиального концевого участка внутреннего бандажа, таким образом, что входы имеют ширину больше, чем выходы. Изобретение позволяет более эффективно предотвращать попадание горячего газа в полость диска турбины газотурбинного двигателя. 8 з.п. ф-лы, 4 ил.

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток. Вращающийся узел рабочих лопаток включает множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя. Неподвижный узел направляющих лопаток включает множество направляющих лопаток и внутренний кожух. Внутренний кожух содержит обращенную радиально наружу первую поверхность, обращенную радиально внутрь вторую поверхность и множество канавок, выходящих на вторую поверхность. Канавки располагаются таким образом, что между смежными канавками образована область, имеющая протяженность в окружном направлении, причем во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении канала горячего газа таким образом, что продувочный воздух течет в требуемом направлении относительно направления потока горячего воздуха через канал горячего газа. Канавки сужаются в направлении от их входов, расположенных на удалении относительно аксиального концевого участка внутреннего бандажа, до их выходов, расположенных вблизи аксиального концевого участка внутреннего бандажа, таким образом, что входы имеют ширину больше, чем выходы. Изобретение позволяет более эффективно предотвращать попадание горячего газа в полость диска турбины газотурбинного двигателя. 8 з.п. ф-лы, 4 ил.

Изобретение относится к области теплоэнергетики, в частности к способу и устройству для охлаждения высокотемпературных шпилек корпуса и фланцевых соединений паровых турбин тепловых электрических станций (ТЭС, ТЭЦ), в частности высокотемпературных шпилек фланцевых разъемов уплотнения цилиндра высокого давления (ЦВД), и может быть использовано в системах охлаждения шпилек турбин типа ПТ. Поставленная техническая задача в способе охлаждения высокотемпературных шпилек паровых турбин, включающем подвод охлаждающего пара по охлаждающей линии из проточного канала с одной стороны и отвод охлаждающего пара по отводящей линии с другой стороны, достигается за счет того, что отбор пара происходит из ступени среднего или низкого давления паровой турбины с последующим направлением отобранного пара для охлаждения высокотемпературных шпилек паровых турбин, при этом регулирование скорости потока отобранного пара осуществляется за счет регулировки запорной арматуры на линиях отбора пара из ступени низкого или среднего давления паровой турбины, а регулировка температуры отобранного пара осуществляется за счет его отбора со ступеней низкого или среднего давления паровой турбины, далее отобранный пар направляется через цилиндрический патрубок в цилиндрическую металлическую трубку меньшего диаметра и далее, распределяясь в объеме, попадает в охлаждающий цилиндрический канал, где отобранный пар через перфорацию в цилиндрической металлической трубке меньшего диаметра подается в охлаждающий цилиндрический канал, где снимает часть теплоты с внутренней поверхности внешней цилиндрической трубки большего диаметра и, вследствие теплоотдачи, сам нагревается, при этом охлаждает стенки внешней цилиндрической металлической трубки большего диаметра, далее пар вытесняется в отводящий цилиндрический патрубок и далее либо возвращается в цикл паротурбинной установки, либо направляется в атмосферу. Поставленная техническая задача в устройстве для осуществления способа охлаждения высокотемпературных шпилек паровых турбин, содержащем охлаждающие цилиндрические каналы, перфорацию, достигается за счет того, что охлаждающий цилиндрический канал образован двумя цилиндрическими металлическими трубками с основаниями, имеющими общую вертикальную ось, причем цилиндрическая металлическая трубка меньшего диаметра имеет перфорацию и соединена с цилиндрическим патрубком, а внешняя цилиндрическая металлическая трубка большего диаметра соединена с отводящим цилиндрическим патрубком. 2 н. и 2 з.п. ф-лы, 3 ил.

Ротор осевой газовой турбины относится к области авиационного двигателестроения, а именно к конструкции турбин газотурбинных двигателей. Ротор осевой газовой турбины содержит основной диск с установленными на нем охлаждаемыми рабочими лопатками и покрывной диск, прикрепленный к нему с помощью байонетного соединения, образующий каналы подвода охлаждающего воздуха к хвостовой части рабочих лопаток. В ободе основного диска между рабочими лопатками выполнен по меньшей мере один радиальный паз, в покрывном диске выполнен ответный паз, образующий с пазом диска полость, в которой установлен фиксатор. На покрывном диске по обе стороны паза в поперечном направлении выполнены канавки, при этом каждый фиксатор снабжен пластиной, контактирующей с ним средней частью, а концы пластины размещены в канавках и контактируют с соседними лопатками. Изобретение позволяет уменьшить напряжения в дисках, возникающие в зоне осевых отверстий в дисках во время работы двигателя, и таким образом повысить надежность ротора и осевой газовой турбины в целом. 2 ил.
Наверх