Реакторная группа, коммутируемая тиристорами

Изобретение относится к области электротехники и силовой электроники и может быть использовано для управления комбинированными источниками реактивной мощности, построенными на основе статических тиристорных компенсаторов реактивной мощности. Технический результат - улучшение характеристик и параметров реакторной группы, повышение дискретности уровней регулируемого тока, повышение качества электрической энергии при регулировании тока, упрощение устройства в целом за счет исключения из его состава фильтров высших гармоник. Реакторная группа, коммутируемая тиристорами, состоящая из трех параллельно подключенных к выводам реакторной группы ветвей, каждая из которых содержит последовательное соединение реактора и встречно-параллельно соединенных тиристоров, снабжена дополнительными встречно-параллельно соединенными тиристорами, выводы встречно-параллельно соединенных тиристоров двух из трех ветвей соединены вместе и подключены к одному из выводов реакторной группы, а вывод встречно-параллельно соединенных тиристоров третьей ветви подключен ко второму выводу реакторной группы, при этом реакторы параллельных ветвей снабжены промежуточными внутренними выводами обмоток, а промежуточный внутренний вывод обмотки реактора в третьей ветви соединен соответственно с каждым из промежуточных внутренних выводов обмоток реакторов первой и второй ветвей с помощью дополнительных встречно-параллельно соединенных тиристоров. 3 ил., 1 табл.

 

Изобретение относится к области электротехники и силовой электроники и может быть использовано для управления комбинированными источниками реактивной мощности, построенными на основе статических тиристорных компенсаторов реактивной мощности. Подобные устройства широко применяются в электроэнергетике, электроприводе, электротермии, электролизе, преобразовательной технике, для плавного регулирования реактивной мощности в электрической сети как в режиме ее потребления, так и генерации.

Известен управляемый шунтирующий реактор, использующий стальной сердечник в качестве магнитопровода. Управление индуктивностью реактора осуществляется за счет воздействия на состояние магнитопровода сердечника с помощью изменения тока подмагничивания в дополнительной обмотке управляемого шунтирующего реактора и изменения положения рабочей точки сердечника на нелинейной кривой намагничивания его стали. Дополнительная обмотка подключается к регулятору тока, построенному на основе управляемых ключей. Система управления регулятором управляет состоянием управляемых ключей и тем самым регулирует величину тока подмагничивания управляемого шунтирующего реактора, изменяя его индуктивность. (Управляемые подмагничиванием электрические реакторы. Сб. статей. 2-е дополненное издание. Под ред. д.т.н., проф. A.M. Брянцева. - М.: «Знак». 2010. 288 с. ил.).

К недостаткам такого устройства относятся сложная конструкция управляемого шунтирующего реактора и цепей управления, наличие дополнительных потерь в стали сердечника и нелинейных искажений в кривой тока управляемого шунтирующего реактора, что требует применения дополнительных фильтров высших гармоник и приводит к усложнению схемы управляемого шунтирующего реактора.

Известна реакторная группа, коммутируемая тиристорами, использующая параллельно соединенные ветви, каждая из которых содержит реактор с последовательно подключенными к нему встречно-параллельно соединенными тиристорами. Реализация фазового управления тиристорами в каждой из параллельно соединенных ветвей позволяет осуществлять в ней плавное регулирование тока. Применение нескольких параллельно соединенных ветвей, каждая из которых состоит из реактора и встречно-параллельно соединенных тиристоров, обеспечивает требуемую величину тока в реакторной группе и уменьшение в нем содержания высших гармоник. Количество параллельно соединенных ветвей, а также величины индуктивностей реакторов подбирают исходя из необходимости получения различных уровней регулируемого тока в реакторной группе. При этом регулирование токов реакторов в каждой из параллельно соединенных ветвей осуществляется с помощью фазового управления соответствующих встречно-параллельно соединенных тиристоров. Система управления устройством синхронизирует моменты отпирания встречно-параллельно соединенных тиристоров в каждой из параллельных ветвей относительно приложенного к ним напряжения («Основы современной энергетики. 4.2 Современная электроэнергетика» под ред. А.П. Бурмана и В.А. Строева. Изд-во «МЭИ», 2003, 453 стр. с илл. Стр. 200, рис. 8.12).

Существенным недостатком данной реакторной группы, коммутируемой тиристорами, является невысокая дискретность уровней регулируемого тока, а также его несинусоидальная форма с присутствием в нем большого числа высших гармоник, вызванных процессом фазового регулирования токов в каждой из ветвей реакторной группы. Для подавления высших гармоник в токе необходимо применять дополнительных фильтры высших гармоник. Применение фильтров, с одной стороны, полностью не устраняет высшие гармоники в кривой тока и, с другой стороны, усложняет схему реакторной группы за счет введения в нее дополнительных устройств.

Техническим результатом, на получение которого направлено предлагаемое техническое решение, является улучшение характеристик и параметров реакторной группы, включающее повышение дискретности уровней регулируемого тока, повышение качества электрической энергии при регулировании тока за счет исключения из его состава высших гармонических составляющих, а также упрощение устройства в целом за счет исключения из его состава фильтров высших гармоник.

Технический результат достигается тем, что реакторная группа, коммутируемая тиристорами, состоящая из трех параллельно подключенных к выводам реакторной группы ветвей, каждая из которых содержит последовательное соединение реактора и встречно-параллельно соединенных тиристоров, снабжена дополнительными встречно-параллельно соединенными тиристорами, выводы встречно-параллельно соединенных тиристоров первой и второй ветвей соединены вместе и подключены к одному из выводов реакторной группы, а вывод встречно-параллельно соединенных тиристоров третьей ветви подключен ко второму выводу реакторной группы, при этом реакторы параллельных ветвей снабжены промежуточными внутренними выводами обмоток, а промежуточный внутренний вывод обмотки реактора в третьей ветви соединен соответственно с каждым из промежуточных внутренних выводов обмоток реакторов первой и второй ветвей с помощью дополнительных встречно-параллельно соединенных тиристоров.

Сущность предлагаемого устройства поясняется чертежом, где на фиг. 1 приведена схема построения реакторной группы, коммутируемой тиристорами.

На фиг. 2 приведена таблица величин индуктивностей реакторной группы, получаемых при различных комбинациях включенных встречно-параллельно соединенных тиристоров в ветвях реакторной группы.

На фиг. 3 представлены временные диаграммы приложенного к реакторной группе напряжения и ее токов при различной комбинации включенных встречно-параллельно соединенных тиристоров в ветвях реакторной группы.

Реакторная группа, коммутируемая тиристорами, состоит из трех параллельно подключенных к ее выводам ветвей. Первая ветвь содержит последовательное соединение встречно-параллельно соединенных тиристоров, образующих управляемый ключ 1, и реактора 2 с внутренним выводом его обмотки, разделяющим реактор 2 на две секции 3 и 4 соответственно. Вторая ветвь содержит последовательное соединение встречно-параллельно соединенных тиристоров, образующих управляемый ключ 5, и реактора 6 с внутренним выводом его обмотки, разделяющим реактор 6 на две секции 7 и 8 соответственно. Третья ветвь содержит последовательное соединение встречно-параллельно соединенных тиристоров, образующих управляемый ключ 9, и реактора 10 с внутренним выводом его обмотки, разделяющим реактор 10 на две секции 11 и 12 соответственно. При этом неподключенные к реакторам 2 и 6 выводы управляемых ключей 1 и 5, а также не подключенный к управляемому ключу 9 вывод реактора 10 объединены вместе и подключены к одному из выводов реакторной группы. К другому выводу реакторной группы подключен вывод управляемого ключа 9, не соединенный с реактором 10, а также выводы реакторов 2 и 6, не соединенные с управляемыми ключами 1 и 5. Между внутренним выводом обмотки реактора 10 и каждым из внутренних выводов обмоток реакторов 2 и 6 включены дополнительные встречно-параллельно соединенные тиристоры, образующие соответственно управляемые ключи 13 и 14.

Реакторная группа, коммутируемая тиристорами, работает следующим образом. Управление управляемыми ключами 1, 5, 9, 13, 14 осуществляется в моменты максимума или минимума, приложенного к реакторной группе напряжения. При этом набор включаемых в указанные моменты управляемых ключей 1, 5, 9, 13, 14 определяется системой управления в зависимости от требуемой величины индуктивности реакторной группы. Изменение набора включенных управляемых ключей 1, 5, 9, 13 14 приводит к изменению внутренней топологии схемы реакторной группы и, соответственно, величины ее результирующей индуктивности. При заданной конфигурации схемы реакторной группы возможно получить 31 различное значение величины ее индуктивности. За счет выбора значений индуктивностей секций 3, 4, 7, 8, 11, 12 реакторов 2, 6, 10 в зависимости от комбинации включенных управляемых ключей 1, 5, 9, 13, 14 обеспечивается относительно равномерное изменение величины индуктивности реакторной группы.

На фиг. 2 представлена таблица относительных величин значений индуктивностей реакторной группы в зависимости от состояния включенных тиристорных ключей 1, 5, 9, 13, 14. Нормирование величин получаемых индуктивностей (L) и соответствующих им реактивных мощностей реакторной группы (Q) осуществляется относительно минимально возможной величины индуктивности реакторной группы Leq, получаемой в схеме фиг. 1 при всех включенных тиристорных ключах 1, 5, 9, 13, 14. Очевидно, что минимально возможной индуктивности Leq соответствует максимальное значение реактивной мощности Qмакс, накапливаемой в реакторной группе. При этом значения индуктивностей секций 3, 4, 7, 8, 11, 12 реакторов 2, 6, 10 определяются соотношениями: L3=1.89Leq, L4=1.34Leq, L7=0.66Leq, Z8=1,41Leq, Leq=7.56Leq и L12=3.78Leq.

Наличие 31 относительно равномерных ступеней изменения величины индуктивности и соответственно токов и реактивных мощностей реакторной группы, получаемых с помощью управления управляемыми ключами 1, 5, 9, 13 14, уже не требует применения фазового регулирования управляемыми ключами 1, 5, 9 в каждой из ветвей.

Реализация управления состоянием управляемых ключей в моменты максимума или минимума напряжения на реакторной группе позволяет обеспечить синусоидальную форму ее тока и полное отсутствие в нем высших гармонических составляющих. На фиг. 3 изображены кривые тока и напряжения реакторной группы при различных комбинациях включенных управляемых ключей 1, 5, 9, 13, 14.

Реакторная группа, коммутируемая тиристорами, состоящая из трех параллельно подключенных к выводам реакторной группы ветвей, каждая из которых содержит последовательное соединение реактора и встречно-параллельно соединенных тиристоров, отличающаяся тем, что устройство снабжено дополнительными встречно-параллельно соединенными тиристорами, выводы встречно-параллельно соединенных тиристоров первой и второй ветвей соединены вместе и подключены к одному из выводов реакторной группы, а вывод встречно-параллельно соединенных тиристоров третьей ветви подключен ко второму выводу реакторной группы, при этом реакторы параллельных ветвей снабжены промежуточными внутренними выводами обмоток, а промежуточный внутренний вывод обмотки реактора в третьей ветви соединен соответственно с каждым из промежуточных внутренних выводов обмоток реакторов первой и второй ветвей с помощью дополнительных встречно-параллельно соединенных тиристоров.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения преобразовательных трансформаторов. Техническим результатом является обеспечение широких функциональных возможностей благодаря введению пофазного регулирования напряжения в полном диапазоне регулирования путем переключения тиристорных ключей поочередно в каждой фазе первичной обмотки.

Изобретение относится к области электротехники и может быть использовано для стабилизации напряжения питания радиоэлектронной аппаратуры, питающейся от сети с большим диапазоном изменения напряжения и с нестабильным напряжением электросети.

Изобретение относится к трансформаторно-тиристорным устройствам для плавноступенчатого регулирования напряжения под нагрузкой. Трансформаторно-тиристорное устройство для плавноступенчатого регулирования напряжения под нагрузкой содержит в каждой фазе регулировочную обмотку с ответвлениями, избиратель с входными и двумя выходными контактами.

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения трансформатора. Техническим результатом является повышение надежности и точности регулирования даже при отказе отдельных переключающих элементов.

Изобретение относится к области электротехники и может быть использовано в устройствах регулирования напряжения трансформаторов под нагрузкой. Технический результат - обеспечение регулирования напряжения под нагрузкой, снижение величины коммутационных экстратоков регулировочной ступени обмотки трансформатора.

Изобретение относится к электротехнике, в частности к системам промышленного, городского и тягового энергоснабжения, и может быть использовано в трансформаторных подстанциях, в том числе для железнодорожного и городского (трамваи, троллейбусы, эскалаторы) электрифицированного транспорта.

Изобретение относится к преобразовательной технике и может быть использовано при создании выпрямителей для регулируемых электроприводов постоянного и переменного тока для станков для повышения их быстродействия, а также на преобразовательных подстанциях для питания электрифицированных железных дорог, в электрометаллургической и химической отраслях промышленности для уменьшения величины пульсаций выпрямленного напряжения и уменьшения содержания высших гармонических составляющих в кривой переменного тока в трехфазной сети.

Изобретение относится к электротехнике и может быть использовано в системах привода переключателей отводов регулируемых трансформаторов. .

Изобретение относится к электротехнике, а именно к регулировочному трансформатору, выполненному в виде фазосдвигающего трансформатора, причем в регулировочной обмотке (2, W1, W2, W3) с несколькими частями (W1, W2, W3) обмотки для каждой фазы предусмотрены полупроводниковые переключающие элементы, при этом в каждой фазе (U, V, W) предусмотрена дополнительная линия (L1, L2) связи с дополнительным электронным переключающим элементом (S1, S2), каждая из этих линий связи соединяет модуль (М3) соответствующей фазы с концом основной обмотки (2) соседней фазы. Технический результат состоит в расширении функциональных возможностей регулировочных трансформаторов путем изменения режимов работы с продольным и поперечным регулированием. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к электротехнике, а именно к устройствам регулирования напряжения преобразовательных трансформаторов. Устройство регулирования напряжения содержит трехфазный трансформатор, в первичные обмотки каждой фазы которого включены соединенные последовательно сетевая и регулировочная части, при этом в каждой из трех фаз первые выводы регулировочной части соединены с выводом сетевой части, образуя общую точку, а вторые выводы регулировочной части соединены с первыми выводами неуправляемого реактора каждой из фаз, вторые выводы неуправляемых реакторов всех трех фаз соединены между собой, образуя первую нейтраль, к общей точке соединения регулировочной и сетевой частей первой и второй фаз подключены первые выводы тиристорных ключей, вторые выводы тиристорных ключей первой и второй фаз объединены между собой, образуя вторую нейтраль, к которой подключена общая точка соединения регулировочной и сетевой частей первичной обмотки третьей фазы. Технический результат состоит в упрощении конструкции, улучшении регулировочных характеристик и повышении надежности. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности. Принцип наложения формы сигнала основан на непрерывности формы сигнала и гибком регулировании напряжения, что обеспечивает, соответственно, гибкое преобразование переменного тока, гибкую передачу и преобразование электроэнергии и гибкое регулирование напряжения. Плавное регулирование напряжения в соответствии с гибким ступенчатым регулированием напряжения осуществляется: электронным переключателем регулирования переменного напряжения трансформатора с переходным импедансом и быстродействующим регулировочным трансформатором напряжения и обеспечивает возможность подключения высоковольтных электрических сетей шестью способами, в том числе подключения к электрической сети трансформатора с переходным импедансом или повышающего автотрансформатора. Это обеспечивает надежную компенсацию реактивной мощности. 7 н. и 8 з.п. ф-лы, 18 ил.
Наверх