Способ получения керамического прекурсора для синтеза лейкосапфира



Владельцы патента RU 2622133:

Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) (RU)

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной кислоты и размешивают до образования композиции из однородной дисперсной фазы, композицию помещают в автоклав, в котором осуществляют гидротермальную обработку при температуре 180÷220°С в течение 4÷26 часов, полученную смесь образовавшегося и электрокорунда сначала греют в муфельной печи на воздухе при температуре не выше 1200°С до полного удаления влаги, далее переносят в вакуумную печь, нагревают и выдерживают при температуре от 1700 до 1800°С в течение 1÷2 часов, полученную керамику затем охлаждают до образования прекурсора. Изобретение позволяет получать керамический прекурсор с плотностью не менее 3,2 г/см3, позволяющий в дальнейшем синтезировать качественный лейкосапфир с содержанием минеральных примесей не более 0,001 мас.%. 5 пр.

 

Изобретение относится к области неорганической химии, в частности к способу получения керамического прекурсора для синтеза лейкосапфира.

Использование керамических заготовок, представляющих собой особо чистый оксид алюминия, в качестве прекурсора для синтеза лейкосапфира позволяет получать кристаллы лейкосапфира с большим выходом продукта.

Керамический прекурсор для синтеза лейкосапфира может иметь самостоятельное применение: в качестве режущего инструмента, деталей двигателей внутреннего сгорания и газотурбинных двигателей, в качестве имплантов, искусственных суставов в медицине; в микроэлектронике в качестве подложек. Также данный материал может применяться для изготовления металлокерамики, адсорбентов и носителей для катализаторов.

Основными требованиями к исходному керамическому прекурсору для синтеза лейкосапфира являются содержание минеральных примесей не более 0,001 мас. % по сумме 12 элементов.

В настоящее время лейкосапфир получают методом Вернейля, в котором [SU 778363] порошок исходного оксида алюминия просыпается в пламя кислородно-водородной горелки или тигельными методами: Чохральского, Киропулоса, Степанова и др. В тигельных методах [RU 42530; RU 2346887] используют кристаллический оксид алюминия, который перед кристаллизацией расплавляют в тигле для синтеза лейкосапфира.

Недостатком обоих методов является то, что содержание минеральных примесей относительно высокое из-за отсутствия стадии очистки.

При этом решающее значение имеет полнота заполнения тигля, определяющая производительность установки для синтеза лейкосапфира. Именно поэтому в вышеприведенных методах использование порошка из корунда является предпочтительным, так как его насыпная плотность составляет 2,0-2,4 г/см3, тогда как для гамма-оксида алюминия она не превышает 0,8 г/см3, что приводит к существенной потере полезного пространства тигля при плавке тигельными методами.

В связи с тем, что конечная плотность лейкосапфира составляет 3,95-4,00 г/см3, целесообразно использовать материал прекурсора с наибольшей плотностью для увеличения выхода кристалла лейкосапфира.

Известно, что для повышения плотности прекурсора, а значит и для увеличения выхода кристалла лейкосапфира в тигельных методах используют предварительную гарнисажную плавку [RU 2246547]. В этом случае порошкообразный шихтовый материал предварительно расплавляют в отдельном тигле гарнисажной печи. Полученный блок высокой плотности является пригодным для синтеза лейкосапфира.

Основным недостатком предварительной плавки в гарнисажной печи является то, что глубина расплава в них, даже при использовании электромагнитного перемешивания, недостаточна для получения однородных керамических заготовок [Тир Л.Л., А.П. Губченко. Индукционные плавильные печи для процессов повышенной точности и чистоты. - М.: Энергоатомиздат, 1988 г. 120 с.].

Вторым недостатком является то, что в дуговых гарнисажных печах обычно используют графитовые тигли как наиболее безопасные в эксплуатации, однако это приводит к привнесению в конечный продукт следов углерода, что существенно снижает качество лейкосапфира [Рахманкулов М.М. Технология литья жаропрочных сплавов. М., Интернет Инжиниринг, 2000. 464 с.].

Исключить вышеуказанные недостатки и собственно саму гарнисажную плавку возможно при использовании керамического прекурсора высокой плотности, что позволяет существенно увеличить полезный объем тигля для синтеза лейкосапфира.

Известен способ подготовки исходного сырья для выращивания монокристаллов лейкосапфира [UA 61230], включающий высокотемпературную обработку порошкообразного оксида алюминия. Форма и размеры конечного продукта определяются формой и размерами приемного тигля, содержащего формообразующее устройство, при температуре меньше 2000°С. Дальнейшая температурная обработка осуществляется в плавильном тигле при температуре 2050-2100°С.

Недостатком способа является то, что отсутствие связующего звена с оксидом алюминия приводит к значительному содержанию брака, заключающемуся в наличии трещин в керамическом прекурсоре для синтеза лейкосапфира.

По этой причине вести направленный синтез монокристаллов лейкосапфира крайне затруднительно.

Наиболее близким техническим решением к предлагаемому способу является способ получения сырья для выращивания монокристаллического лейкосапфира [UA 78462] (прототип), включающий следующие шаги:

- плавление смеси, состоящей из оксида алюминия и связующего звена в виде мелкодисперсного графита с содержанием углерода 0,4-0,6 мас. %;

- помещение полученного глиноземистого материала в плавильный котел с графитовыми нагревательными элементами;

- нагрев материала до температуры предварительного плавления при давлении 0,1-0,2 мм ртутного столба в течение 20-24 часов;

- постепенное в течение 1-2 ч увеличение температуры до 2100-2200°С и выдерживание жидкого расплава в течение 2-3 часов.

Недостатком способа по прототипу является то, что использование в качестве связующего звена мелкодисперсного графита приводит к привнесению в конечный продукт следов углерода, что существенно снижает качество лейкосапфира.

Изобретение направлено на изыскание способа получения керамического прекурсора с плотностью выше 3,2 г/см3, позволяющего в дальнейшем синтезировать лейкосапфир с содержанием минеральных примесей не более 0,001 мас. % при полном отсутствии следов углерода. Полученный таким способом прекурсор вполне пригоден для получения качественного конечного лейкосапфира.

Технический результат достигается тем, что предложен способ получения керамического прекурсора для синтеза лейкосапфира, заключающийся в том, что смесь гидраргиллита с 1÷15 мас. % электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас. % водного раствора соляной кислоты и размешивают до образования композиции из однородной дисперсной фазы, композицию помещают в автоклав, в котором осуществляют гидротермальную обработку при температуре 180÷220°С в течение 4÷26 часов, полученную смесь образовавшегося бемита и электрокорунда сначала греют в муфельной печи на воздухе при температуре не выше 1200°С до полного удаления влаги, далее переносят в вакуумную печь, нагревают и выдерживают при температуре от 1700 до 1800°С в течение 1÷2 часов, полученную керамику затем охлаждают до образования прекурсора с плотностью не менее 3,2 г/см3.

Сущность предлагаемого способа получения керамического прекурсора с плотностью выше 3,2 г/см3 для синтеза лейкосапфира заключается в том, что при гидротермальной обработке смеси гидраргиллита и электрокорунда образуется новая смесь бемита и корунда, при прогреве указанной смеси корунд выступает в качестве затравки для роста зерна оксида алюминия из бемита, что сопровождается уплотнением конечного продукта.

Заявленное содержание электрокорунда установлено экспериментально. При содержании электрокорунда менее 1 мас. % плотность прекурсора не превышает 3,2 г/см3, а при содержании электрокорунда свыше 15 мас. % наблюдается растрескивание керамического прекурсора.

Использование 0,5÷2 мас. % водного раствора соляной кислоты обусловлено тем, что при осуществлении гидротермальной автоклавной обработки в кислой среде размеры кристаллов сравнительно меньше, чем в других средах, следовательно, они будут лучше спекаться в керамический прекурсор с плотностью выше 3,2 г/см3, однако при увеличении концентрации кислоты более 2 мас. % формируются кристаллы, размер которых больше 100 нм, следовательно, керамический прекурсор при спекании не будет иметь максимальной плотности. При уменьшении концентрации кислоты менее 0,5 мас. % кристаллизация происходит не полностью.

Использование водного раствора соляной кислоты обусловлено тем, что из всех неорганических кислот соляная кислота менее всего загрязняет конечный продукт побочными примесями.

Заявленный температурный интервал гидротермальной обработки определен экспериментальным путем и является оптимальным для получения однородной фазы синтезированного из гидраргиллита бемита. Минимальная температура автоклавной обработки обусловлена тем, что ниже 180°С процесс идет очень медленно. Верхний предел температуры обусловлен тем, что при температурах выше 220°С в кристаллах синтезированного из гидраргиллита бемита наблюдается нарушение симметрии.

Температура обработки при 200°С является оптимальной, так как она позволяет получать преобладающие фракции кристаллов бемита в интервалах 70÷100 нм, что позволяет, в свою очередь, данным кристаллам лучше спекаться в конечный продукт - керамический прекурсор для синтеза лейкосапфира.

Заявленный временной интервал гидротермальной обработки смеси гидраргиллита и электрокорунда 4÷26 часов определяется динамикой процесса формирования кристаллов, который в целом завершается через 3 часа при температуре 200°С, а для достижения однородной структуры кристаллов время обработки может составлять до 26 часов. Оптимальным является автоклавная обработка в течение 24 часа при 200°С, при которой в конечном продукте однородность фракции 70÷100 нм составляет 90%.

Температура прогрева в муфельной печи на воздухе для полного удаления влаги не выше 1200°С обусловлена техническими характеристиками печи.

Стадия полного удаления влаги из полученной смеси образовавшегося бемита и электрокорунда необходима для обеспечения последующей работы вакуумной печи.

Плавление в вакуумной печи полностью обезвоженного оксида алюминия при температуре от 1700 до 1800°С в течение 1÷2 часов обусловлено достижением плотности конечного продукта.

Для достижения технического результата использовали: гидраргиллит марки МДГА производства Пикалевского объединения «Глинозем» и электрокорунды марок от F600 до F240 с размером зерна от 10 до 50 мкм. Электрокорунд этих марок выбирают из соображения наилучших условий спекания с оксидом алюминия, полученным из бемита.

Ниже приведены примеры реализации заявляемого способа. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1.

0,5 г электрокорунда марки F 600 с размером зерна 10 мкм смешивали с 49,5 г гидраргиллита марки МДГА, заливали 1,5 мас. % водным раствором соляной кислоты и размешивали до образования композиции из однородной дисперсной фазы. Затем композицию помещали в автоклав, в котором осуществляли гидротермальную обработку при температуре 200°С в течение 24 часов, полученную смесь образовавшегося бемита и электрокорунда грели в муфельной печи на воздухе при температуре 1180°С до полного удаления влаги, а затем переносили в вакуумную печь, нагревали и выдерживали при температуре 1800°С в течение 1,5 часов.

После охлаждения керамики получали керамический прекурсор с плотностью 3,5 г/см3 и с суммарным содержанием минеральных примесей около 0,0005 мас. %, пригодный для синтеза лейкосапфира.

Пример 2.

2,5 г электрокорунда марки F 600 с размером зерна 10 мкм смешивали с 47,5 г гидраргиллита марки МДГА, заливали 1,5 мас. % водным раствором соляной кислоты и размешивали до образования композиции из однородной дисперсной фазы. Затем композицию помещали в автоклав, в котором осуществляли гидротермальную обработку при температуре 200°С в течение 24 часов, полученную смесь образовавшегося бемита и электрокорунда грели в муфельной печи на воздухе при температуре 1180°С до полного удаления влаги, а затем переносили в вакуумную печь, нагревали и выдерживали при температуре 1800°С в течение 1,5 часов.

После охлаждения керамики получали керамический прекурсор с плотностью 3,6 г/см3 и с суммарным содержанием минеральных примесей около 0,0005 мас. %, пригодный для синтеза лейкосапфира.

Пример 3.

7,5 г электрокорунда марки F 600 с размером зерна 10 мкм смешивали с 42,5 г гидраргиллита марки МДГА, заливали 1,5 мас. % водным раствором соляной кислоты и размешивали до образования композиции из однородной дисперсной фазы. Затем композицию помещали в автоклав, в котором осуществляли гидротермальную обработку при температуре 200°С в течение 24 часов, полученную смесь образовавшегося бемита и электрокорунда грели в муфельной печи на воздухе при температуре 1180°С до полного удаления влаги, а затем переносили в вакуумную печь, нагревали и выдерживали при температуре 1750°С в течение 2 часов.

После охлаждения керамики получали керамический прекурсор с плотностью 3,25 г/см3 и с суммарным содержанием минеральных примесей около 0,0005 мас. %, пригодный для синтеза лейкосапфира.

Пример 4.

0,5 г электрокорунда марки F 240 с размером зерна 10 мкм смешивали с 49,5 г гидраргиллита марки МДГА, заливали 1,5 мас. % водным раствором соляной кислоты и размешивали до образования композиции из однородной дисперсной фазы. Затем композицию помещали в автоклав, в котором осуществляли гидротермальную обработку при температуре 180°С в течение 26 часов, полученную смесь образовавшегося бемита и электрокорунда грели в муфельной печи на воздухе при температуре 1180°С до полного удаления влаги, а затем переносили в вакуумную печь, нагревали и выдерживали при температуре 1700°С в течение 1,5 часов.

После охлаждения керамики получали керамический прекурсор с плотностью 3,3 г/см3 и с суммарным содержанием минеральных примесей 0,001 мас. %, пригодный для синтеза лейкосапфира.

Пример 5.

2,5 г электрокорунда марки F 240 с размером зерна 10 мкм смешивали с 47,5 г гидраргиллита марки МДГА, заливали 1,5 мас. % водным раствором соляной кислоты и размешивали до образования композиции из однородной дисперсной фазы. Затем композицию помещали в автоклав, в котором осуществляли гидротермальную обработку при температуре 220°С в течение 12 часов, полученную смесь образовавшегося бемита и электрокорунда грели в муфельной печи на воздухе при температуре 1180°С до полного удаления влаги, а затем переносили в вакуумную печь, нагревали и выдерживали при температуре 1750°С в течение 1,5 часов.

После охлаждения керамики получали керамический прекурсор с плотностью 3,4 г/см3 и с суммарным содержанием минеральных примесей 0,001 мас. %, пригодный для синтеза лейкосапфира.

Предложенное изобретение позволяет получать керамический прекурсор с плотностью не менее 3,2 г/см3, позволяющий в дальнейшем синтезировать качественный лейкосапфир с содержанием минеральных примесей не более 0,001 мас. %.

Способ получения керамического прекурсора для синтеза лейкосапфира, заключающийся в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной кислоты и размешивают до образования композиции из однородной дисперсной фазы, композицию помещают в автоклав, в котором осуществляют гидротермальную обработку при температуре 180÷220°С в течение 4÷26 часов, полученную смесь образовавшегося бемита и электрокорунда сначала греют в муфельной печи на воздухе при температуре не выше 1200°С до полного удаления влаги, далее переносят в вакуумную печь, нагревают и выдерживают при температуре от 1700 до 1800°С в течение 1÷2 часов, полученную керамику затем охлаждают до образования прекурсора с плотностью не менее 3,2 г/см3.



 

Похожие патенты:

Изобретение относится к механическим способам обработки монокристаллических слитков. Способ соединения и фиксации монокристаллов включает позиционирование нескольких монокристаллов, ориентирование их определенным образом и фиксацию монокристаллов друг с другом клеящим веществом, причем предварительно проводят отбор необходимого количества слитков монокристалла, затем проводят ориентацию торцов отобранных слитков с необходимым допуском и снятие предварительного базового среза длиной 18-20 мм, после чего склеивают слитки монокристаллов с помощью устройства для соединения и фиксации монокристаллов следующим образом: наносят клеящий материал на предварительно обезжиренный торец слитка монокристалла, устанавливают слиток предварительным базовым срезом на плоскость основания 1 устройства, одновременно прижимая слиток чистым торцом к неподвижному упору 4 и образующей слитка к поверхности бокового ограждения 2, устанавливают следующий слиток предварительным базовым срезом на плоскость основания 1 устройства вплотную к торцу предыдущего слитка и, вращая ручку 7 прижимного винта 6, слитки прижимают друг к другу с помощью подвижного упора 5, повторяют указанные операции до получения стека необходимой длины, выдерживают стек в устройстве до полного отвердения клеящего материала, причем в качестве клеящего материала используют двухкомпонентный бесцветный эпокси-каучуковый клей, затем проводят калибрование стека до необходимого диаметра и снятие основного базового среза, после чего проводят контроль ориентации базового среза и перпендикулярности торцов к образующей.

Изобретение относится к технологии производства спеченной заготовки из α-оксида алюминия в качестве исходного сырья для дальнейшего получения из нее монокристаллов сапфира.

Изобретение может быть использовано в химической промышленности. Способ синтеза альфа-оксида алюминия с чистотой равной 99,99% или более в форме сферических частиц с размером преимущественно равным 850 мкм или больше, с гранулометрическим распределением, имеющим максимум при размерах частиц более 850 мкм, с относительной плотностью 50% или более от теоретической плотности включает помещение порошкового гамма-оксида алюминия (γ) средствами (5) подачи на пластину (7) из карбида кремния и воздействие на упомянутый порошок гамма-оксида алюминия (γ) по меньшей мере одним лучом (11) СО2 лазера (9).
Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова и изготовления из них монокристаллических цилиндрических шайб, которые могут быть использованы в приборостроении, машиностроении.

Изобретение относится к области автоматизации управления технологическими процессами при выращивании кристаллов сапфира из расплава методом Киропулоса. Способ включает динамическое измерение веса выращиваемого кристалла и автоматическое регулирование мощности нагревателя, при этом вычисляют производную по времени измеренного веса, вычисляют ее рассогласование с опорным значением производной веса, задаваемым согласно функции от времени на основе данных, полученных экспериментально, или модели массопереноса процесса роста, входящими данными которой являются линейная скорость кристаллизации, форма фронта кристаллизации, геометрические размеры тигля, масса загрузки тигля шихтой, диаметр затравочного кристалла, плотности кристалла и расплава, коэффициент поверхностного натяжения расплава, угол роста кристалла, а выходными данными - форма выращиваемого кристалла и соответствующее ей опорное значение, формируют основной сигнал управления по каналу мощности нагревателя с применением регулятора с зоной нечувствительности, а дополнительное управление по каналу скорости вытягивания осуществляют при условии превышения рассогласования заранее установленного порогового значения.

Изобретение относится к электронной промышленности, а конкретно к производству кристаллов сапфира, применяемых в электронике и оптической промышленности. Установка содержит вакуумную кристаллизационную камеру 17, нагреватель, тигель с расплавом, теплоизоляцию нагревателя, вращаемый водоохлаждаемый шток 8 с затравочным кристаллом, шток 8 имеет фланец, соединенный с длинноходным сильфоном 16, нижний конец которого соединен герметично с кристаллизационной камерой 17, а также датчик веса 5 кристалла, при этом водоохлаждаемый шток 8 подвешен непосредственно к датчику веса 5, укрепленному вне камеры кристаллизации 17, и герметично отделен от него компенсационным сильфоном 9 и вакуумным вводом вращения 15, проходит через полый вал вакуумного ввода вращения 15 без контакта с внутренними стенками полого вала, водоохлаждаемый шток 8 приводится во вращение вместе с датчиком веса 5, охлаждающая вода поступает в шток 8 от ротационного соединения 1 протока воды, содержит токосъемник 2 в цепи электрического подключения датчика веса.
Изобретения могут быть использованы в химической и электронной промышленности. Способ получения α-оксида алюминия для получения монокристалла сапфира включает этап, на котором смешивают 100 массовых частей α-оксида алюминия (I) и 25-235 массовых частей α-оксида алюминия (II).
Изобретение может быть использовано в химической и электронной промышленности. Объем на одну частицу α-оксида алюминия для получения монокристаллического сапфира составляет не менее 0,01 см3, относительная плотность не менее 80%, объемная плотность агрегата 1,5-2,3 г/см3, и его форма представляет собой любую форму из сферической формы, цилиндрической формы и брикетоподобной формы.

Изобретение относится к материалам для ювелирной промышленности. Прозрачный, полупрозрачный или непрозрачный композиционный нанокристаллический материал на основе наноразмерных оксидных и силикатных кристаллических фаз содержит одну из кристаллических фаз: шпинель, кварцеподобные фазы, сапфирин, энстатит, петалитоподобную фазу, кордиерит, виллемит, циркон, рутил, титанат циркония, двуокись циркония с содержанием ионов переходных, редкоземельных элементов и благородных металлов от 0,001 до 4 мол.

Изобретение относится к устройству для выращивания монокристаллов сапфира, которые могут быть использованы в качестве подложек для получения светоиспускающих диодов.

Изобретение относится к конструкционным изделиям ИК-оптики, обеспечивающим, наряду с основной функцией пропускания излучения в требуемом спектральном диапазоне, защитные функции приборов и устройств от воздействий внешней среды.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, в частности к подготовке сырьевой шихты, которую используют при производстве проппантов средней плотности.

Изобретение относится к керамическому расклинивающему агенту. Способ получения керамического расклинивающего агента включает стадии: а) подготовку, включающую измельчение исходных материалов, содержащих магнийсодержащий материал, и вспомогательных материалов с получением шихты, б) гранулирование шихты с получением гранул предшественника расклинивающего агента, в) обжиг гранул предшественника расклинивающего агента с получением гранул расклинивающего агента и стадию предварительного обжига магнийсодержащего материала в восстановительной атмосфере, которую проводят перед стадией а).

Изобретение относится к области керамического материаловедения, в частности к технологии получения нанокерамики. Техническим результатом предлагаемого изобретения является снижение энергозатрат, исключение применения различных активаторов спекания, повышение физико-механических свойств получаемого материала.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов средней плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта - ГРП.

Изобретение относится к материалам для ювелирной промышленности, а именно к искусственным материалам для изготовления имитаций природных драгоценных и полудрагоценных камней и технологии их синтеза.

Изобретение относится к области машиностроения и может быть использовано при изготовлении композитных керамических изделий типа опорных элементов (например, колец/валов подшипников качения/скольжения) или инструментов типа чашечных резцов или режущих керамических пластин.

Изобретение относится к получению композиционного материала на основе карбосилицида титана. Способ включает приготовление порошковой смеси, состоящей из порошков титана, карбида кремния и графита и нанопорошка оксида алюминия, механосинтез порошковой смеси и холодное прессование смеси.

Изобретение относится к расклинивающим наполнителям и способам их создания. Описывается множество керамических расклинивающих наполнителей, где наполнители являются монодисперсными с распределением, являющимся распределением 3-сигма или ниже с шириной общего распределения 5% или менее от среднего размера частиц, а также другие варианты указанных наполнителей, способы изготовления этих расклинивающих наполнителей и способы использования этих расклинивающих наполнителей в извлечении углеводородов.
Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив.

Изобретение относится к технологии получения окислительно-стойких ультравысокотемпературных керамических композиционных материалов состава MB2/SiC, где М=Zr и/или Hf с нанокристаллическим карбидом кремния, которые могут быть использованы в качестве окислительно-, химически- и эрозионно-стойких материалов в потоках воздуха при температурах выше 2000°С, для создания авиационной, космической и ракетной техники, отопительных систем, теплоэлектростанций, а также в технологиях атомной энергетики, в химической и нефтехимической промышленности.
Наверх