Способ защиты объекта от средств поражения с оптико-электронными и радиолокационными системами наведения и подрыва

Изобретение относится к области вооружения, в частности к способам защиты объектов. Способ защиты объекта от средств поражения с оптико-электронными и радиолокационными системами наведения и подрыва заключается в определении траектории средства поражения, доставке средства защиты объекта в расчетную точку траектории атакующего средства поражения и приведении средства защиты объекта в рабочее состояние. Защиту объекта осуществляют с помощью плазменно-вихревого образования, сформированного при подрыве средства защиты в виде корпуса с полым цилиндрическим зарядом бризантного взрывчатого вещества и алюминиевой трубкой в полости цилиндрического заряда в качестве плазмообразующего вещества. Достигается повышение надежности защиты объекта. 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области радиоэлектронной борьбы и может быть использовано для защиты объектов от средств поражения с оптико-электронными и радиолокационными системами наведения и подрыва. В качестве средства поражения рассматриваются ракеты, снаряды, авиабомбы, кассетные боеприпасы, относящиеся к высокоточному оружию (далее по тексту - атакующий элемент высокоточного оружия (АЭ ВТО)).

Уровень техники

Известен способ защиты объекта, реализованный, например, при работе устройства защиты объектов (патент RU №2403586, G01S 7/38, 2008 г.) и предусматривающий определение траектории средства поражения, доставку средства защиты объекта в расчетную точку траектории атакующего средства поражения и приведение средства защиты объекта в рабочее состояние. Известный способ применяется в радиодиапазоне электромагнитных волн.

Недостатком данного способа является малая надежность.

Наиболее близким по технической сущности к предложенному является способ защиты объекта от средств поражения, предусматривающий определение траектории средства поражения, доставку средства защиты объекта в расчетную точку траектории атакующего средства поражения и приведение средства защиты объекта в рабочее состояние (патент RU №2502082, G01 7/38, 2011 г.).

Согласно известному способу на траектории атакующего средства поражения создается аэрозольное облако, отражающее излучение (оптическое, инфракрасное или радиоизлучение) неконтактного дистанционного взрывателя средства поражения и вызывающее его преждевременное срабатывание и последующий преждевременный подрыв боевой части, не приносящий вреда защищаемому объекту.

Недостатком известного способа является невысокая надежность защиты объекта из-за малой вероятности факта преждевременного срабатывания неконтактного дистанционного взрывателя средства поражения, приводящего к подрыву боевой части и самоликвидации средства поражения.

Этот недостаток обусловлен тем, что при взаимодействии излучения с аэрозольным облаком, представляющим собой дисперсную физическую среду, происходит рассеивание падающего излучения в разных направлениях, при этом в обратном направлении (т.е. в направлении на атакующее средство поражения) рассеивается незначительная часть энергии, излученная неконтактным дистанционным взрывателем атакующего средства поражения. По этой причине уровень сигнала на приемнике неконтактного дистанционного взрывателя невелик и, следовательно, вероятность его срабатывания невелика.

Раскрытие изобретения

Задачей настоящего изобретения является обеспечение защиты объектов от поражения снарядами, ракетами, бомбами, кассетными боеприпасами и другими видами высокоточного оружия с радиолокационными и оптико-электронными системами наведения и подрыва.

Технический результат от применения предложенного способа заключается в повышении надежности защиты объекта от атакующих элементов ВТО с оптико-электронными и радиолокационными системами наведения и подрыва за счет увеличения уровня отраженного сигнала и повышения вероятности срабатывания неконтактного дистанционного взрывателя средства поражения, а также расширение области применения способа.

Указанный технический результат достигается тем, что в способе защиты объекта от средств поражения с оптико-электронными и радиолокационными системами наведения и подрыва, предусматривающем определение траектории средства поражения, доставку средства защиты объекта (боеприпасов плазменно-оптического действия (БПОД)) в расчетную точку траектории атакующего элемента ВТО и приведение средства защиты объекта в рабочее состояние, защиту объекта осуществляют с помощью плазменно-вихревого образования, сформированного при подрыве БПОД в виде корпуса с полым цилиндрическим зарядом бризантного взрывчатого вещества и алюминиевой трубки в полости цилиндрического заряда в качестве плазмообразующего вещества.

Осуществление изобретения

Для реализации предложенного способа необходимы следующие технические средства:

1) Станция разведки, обеспечивающая обнаружение атакующего средства поражения, определение его координат и траектории движения.

2) Вычислительный блок на базе микропроцессоров, осуществляющий обработку данных станции разведки в режиме реального времени и выдачу команд целеуказания.

3) Средство доставки БПОД в расчетную точку траектории атакующего элемента высокоточного оружия.

Таким средством могут быть, например, артиллерийские снаряды различного калибра, выстреливаемые из пушки, в том числе из скорострельных пушек, или ракеты (неуправляемые или управляемые), запускаемые с помощью соответствующих пусковых установок.

Темп стрельбы современной 30 мм автоматической пушки - 6000 выстр./мин (соответственно, частота стрельбы 100 Гц), скорость 30-мм снаряда при выходе из ствола составляет ν0 ≈ 500…1000 м/с, т.е. снаряды следуют друг за другом на расстоянии 5…10 м. Пушка имеет устройство передачи времени срабатывания взрывателя снаряду внутри ствола индуктивным методом. Пушка снабжена программно-регулируемыми приводами, обеспечивающими перемещение ствола по азимуту и углу возвышения с заданной скоростью.

4) Средство защиты в виде корпуса с полым цилиндрическим зарядом бризантного взрывчатого вещества и алюминиевой трубки в полости цилиндрического заряда в качестве плазмообразующего вещества (такие боеприпасы могут быть выполнены, например, на основе взрывного плазменно-вихревого источника излучения, описанного в «Журнале технической физики», 2010 г., том 80, №11, с. 87-94).

Реализация предложенного способа будет понятна из примера, описанного ниже и приведенного на чертеже.

Станция разведки 1 обнаруживает и отслеживает перемещение атакующего элемента ВТО 2 в сторону защищаемого объекта 3. Угловые координаты АЭ ВТО 2, направление и скорость его движения, текущее расстояние до него непрерывно поступают в вычислительный блок 4. Эти данные обрабатываются вычислительным блоком 4 с учетом координат места позиционирования пусковой установки 5 средства доставки средства защиты объекта. Результаты вычислений в виде команд целеуказания по азимуту и углу возвышения, по времени подрыва и угловым скоростям поворота ствола поступают на приводы пусковой установки (скорострельной артиллерийской установки) 5. В расчетный момент времени осуществляется пуск (выстрел, серия выстрелов) и средство защиты доставляется в расчетную точку траектории атакующего элемента ВТО 2, в которой осуществляется подрыв цилиндрического заряда взрывчатого вещества.

В результате подрыва средства защиты на траектории перед атакующим элементом высокоточного оружия 2 формируется долгоживущее плазменно-вихревое образование 6 (несколько таких образований при стрельбе очередью) в виде сфероида с характерным диаметром порядка нескольких метров (в зависимости от массы заряда взрывчатого вещества). В быстрой фазе процесса срабатывания БПОД - фазе ударного торможения высокоскоростной струи в воздухе - более 50% излучаемой энергии приходится на ультрафиолетовую область спектра, коротковолновые кванты которой вызывают фотоионизацию окружающего воздуха. В процессе дальнейшего торможения струи в воздухе (медленная фаза) формируется плазменный тороидальный вихрь с характерными температурами плазмы 3000…5000 K. Время жизни плазменного вихря в воздухе - десятки и сотни миллисекунд (до 0,1 с). В течение этого времени в плазменном вихре сохраняются достаточно высокие концентрации электронов - 1012…1014 см3.

Неконтактный дистанционный взрыватель боеприпаса 2 посылает зондирующий сигнал в направлении цели, сигнал попадает на плазменно-вихревое образование 6, отражается от него и вызывает срабатывание взрывателя и ликвидацию боеприпаса 2 на безопасном для защищаемого объекта 3 удалении.

Отражающие свойства плазменно-вихревого образования 6 за счет присутствия в нем диоксида алюминия в капельной фазе значительно превосходят аналогичные характеристики аэрозольного облака прототипа, поскольку физическое явление отражения излучения в направлении на атакующий боеприпас 2 значительно более эффективно, чем рассеяние в аэрозольной дисперсной среде. В результате уровень отраженного сигнала, поступающего на приемник дистанционного неконтактного взрывателя, существенно увеличивается по отношению к прототипу и, тем самым, обеспечивается повышение вероятности преждевременного подрыва боеприпаса 2, т.е. повышение надежности защиты объекта 3.

Эти преимущества предложенного способа реализуются для широкого диапазона средств поражения с неконтактными дистанционными взрывателями, работающими в радио- и оптическом диапазонах длин волн.

Кроме того, технический результат от применения предложенного способа обусловлен еще и тем, что воздействие средства защиты в виде плазменно-вихревого образования 6 на средство поражения осуществляется не только в отношении неконтактного дистанционного взрывателя, но и в отношении головки самонаведения (ГСН) АЭ ВТО. Такое воздействие обусловлено тем, что при подрыве полого цилиндрического заряда бризантного взрывчатого вещества и алюминиевой трубки за счет ударного торможения плазменной струи на атмосферном воздухе генерируется мощный высокоэнергетичный импульс широкополосного электромагнитного излучения оптического диапазона спектра (0,19…14 мкм). Яркость такого излучения многократно превышает яркость солнечного излучения и соответствует радиационным температурам 15000…20000 K, фронт нарастания интенсивности излучения приходится на микросекундный диапазон длительностей.

Воздействие на ГСН заключается, во-первых, в мощном импульсе излучения (вспышка) при подрыве БПОД в атмосферном воздухе (оптико-электронные ГСН всех существующих и перспективных спектральных диапазонов работы) и, во-вторых, в экранирующем действии долгоживущего плазменно-вихревого образования 6 (ГСН радио- и оптического диапазонов), которое приводит к потере цели ГСН средства поражения.

Таким образом, при реализации предложенного способа осуществляется многоканальное воздействие на системы наведения и подрыва средства поражения, что обуславливает повышение надежности защиты объектов и расширение области применения способа.

Расширение возможностей по применению предложенного способа заключается в том, что способ может быть использован для защиты объектов от средств поражения, не оснащенных неконтактным дистанционным взрывателем. В этом случае воздействие осуществляется только на головку самонаведения.

Способ защиты объекта от средств поражения с оптико-электронными и радиолокационными системами наведения и подрыва, предусматривающий определение траектории средства поражения, доставку средства защиты объекта в расчетную точку траектории атакующего средства поражения и приведение средства защиты объекта в рабочее состояние, отличающийся тем, что защиту объекта осуществляют с помощью плазменно-вихревого образования, сформированного при подрыве средства защиты в виде корпуса с полым цилиндрическим зарядом бризантного взрывчатого вещества и алюминиевой трубкой в полости цилиндрического заряда в качестве плазмообразующего вещества.



 

Похожие патенты:

Изобретение относится к области оптической локации. Система содержит импульсный лазер, выходную оптическую систему, фотоприемное устройство, однокоординатное сканирующее устройство, оптический объектив фотоприемного устройства, вычислительное устройство, массив фотоприемных устройств, включающий К фотоприемников, а также волоконно-оптический жгут, содержащий К волокон, которые с одной стороны обращены торцами к соответствующим фотоприемникам массива фотоприемных устройств, а с другой стороны волокна жгута смонтированы в однорядную линейку из К волокон, торцы которой обращены к выходу оптического объектива фотоприемного устройства и расположены в его фокальной плоскости, причем выход фотоприемного устройства регистрации момента излучения лазерного импульса подключен на вход синхронизации вычислительного устройства.

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в виде двух ортогональных световых ножей.

Изобретение относится к устройствам для мониторинга подводных частей нефтепроводов и нефтепродуктопроводов в местах пересечения ими водных преград: рек, водохранилищ, озер и других водных объектов суши, с целью раннего обнаружения и установления местоположения утечек из подводной части нефтепровода; также может применяться для мониторинга морских нефтепроводов вблизи их выхода на сушу с той же целью.

Изобретение относится к области систем безопасности, предназначенных для предотвращения несанкционированного доступа винтокрылых беспилотных летательных аппаратов (БПЛА) в контролируемую зону и отслеживания перемещения винтокрылых БПЛА 1 в контролируемой зоне 3 с одновременной их аутентификацией.

Изобретение касается прецизионного датчика расстояния. Особенностью указанного датчика является то, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или контроллеру.

Изобретение относится к области обнаружения и распознавания малогабаритных беспилотных летательных аппаратов (МБЛА). В заявленном способе примененяются три и более изображений и сигналов в трех и более пространственно разнесенных точках на гиростабилизирующих платформах, связанных между собой рабочими базами.

Изобретение относится к области приборостроения и может быть использовано в оптико-электронных системах, в которых фотоприемные устройства размещены на снаряжении бойца.
Изобретения относятся к системам для активной защиты Земли и могут быть использованы при реализации комплексов для борьбы с летающими объектами естественного и искусственного происхождения, приближающимися к Земле.

Изобретение относится к области океанографических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Технический результат - повышение точности определения характеристик морской поверхности за счет разделения воздействия на отражённый от морской поверхности радиосигнал двух факторов, доминантных ветровых волн и мелкомасштабной ряби. Сущность: формируют короткие радиоимпульсы постоянной длительности и вертикально зондируют ими морскую поверхность, регистрируют отражённые радиоимпульсы и по их форме определяют характеристики морской поверхности, при этом дополнительно формируют более длинные радиоимпульсы и вертикально зондируют ими морскую поверхность, причем длительность дополнительно сформированных радиоимпульсов обеспечивает одновременное отражение от всей площади морской поверхности, освещаемой в пределах диаграммы направленности антенны, определяют амплитуду отраженных импульсов большей длительности, по ней определяют скорость ветра, и определяют характеристики морской поверхности с учетом скорости ветра.

Изобретение относится к области океанологических измерений и преимущественно может быть использовано для контроля состояния поверхности океана. Технический результат - повышение точности определения асимметрии распределения возвышений морской поверхности. Сущность: формируют короткие радиоимпульсы постоянной длительности, зондируют ими морскую поверхность в надир и регистрируют отражённые радиоимпульсы.

Изобретение относится к метрологии, в частности к способу наблюдения и слежения за метеорами. Способ предполагает определение местоположения метеорного тела, основанное на измерении расстояния до метеорного тела. В период между измерениями расстояния до метеорного тела местоположение метеорного тела определяют путем интегрирования скорости движения тела, измеренной по доплеровскому сдвигу частоты сигнала, отраженного телом, с учетом релятивистской поправки. При сближении метеорного тела с наблюдателем релятивистскую поправку к значению скорости движения тела определяют в соответствии с выражением где νr - скорость, вычисленная по результатам измерения доплеровского сдвига частоты сигнала, отраженного телом, с - скорость света, при удалении метеорного тела от наблюдателя релятивистскую поправку к значению скорости движения тела определяют в соответствии с выражением Технический результат - уменьшение ошибок при сближении с метеорным телом и повышение вероятности его перехвата. 1 з.п. ф-лы.

Изобретение относится к области оптико-электронных систем управления, предназначенных преимущественно для автоматического сопровождения подвижных объектов с перемещающегося основания, и может быть использовано в образцах техники, работающих в условиях воздействия помех и пропадании информационных сигналов, а также в установках для научных исследований. Способ управления объектом, включающий выделение сигнала ошибки управления, формирование команды управления объектом, формирование признака недостоверности сигнала ошибки управления, при отсутствии этого признака производится фильтрация сигнала ошибки управления, формирование сигнала компенсации фазового запаздывания фильтрации сигнала ошибки управления, а при наличии признака недостоверности сигнала ошибки управления проводится прогнозирование сигнала ошибки управления и формирование по ней команд управления. При этом передаточная функция образовавшегося с помощью цепи внутренней обратной связи замкнутого контура выбирается в соответствии с передаточной функцией системы управления объектом. Причем в процессе управления формируется обратная связь по выходным координатам или по командам управления. При отсутствии признака недостоверности сигнала ошибки управления фильтрация сигнала ошибки управления осуществляется с учетом инерционных свойств входного сигнала и объекта управления, а управление производится по неотфильтрованному или отфильтрованному сигналу ошибки управления. При наличии признака недостоверности сигнала ошибки прогнозирование сигнала ошибки управления производится с учетом сигнала по цепи внутренней обратной связи и инерционных свойств входного сигнала и объекта управления. Технический результат заключается в повышении помехоустойчивости и повышении устойчивости и точности отработки высоко динамических управляющих воздействий в условиях помех измерения, прерывании оптической связи и в условиях возмущений, вызванных работой комплекса, увеличении допустимого времени нахождения в инерционном режиме, снижении вероятности срыва сопровождения объекта, снижении вероятности ложного захвата объекта. 7 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах позиционирования и навигации подвижных объектов, использующих мобильные терминалы. Технический результат – расширение функциональных возможностей. Для этого способ и устройство для оповещения о состоянии дороги включают: определение состояния дороги в пределах заданной зоны при получении команды, запускающей в мобильном терминале заданную функцию, и, при обнаружении на дороге дорожного препятствия в пределах заданной зоны, выведение оповещающей информации. Согласно изобретению производится определение состояния дороги в пределах заданной зоны и, при обнаружении на дороге дорожного препятствия в пределах заданной зоны, выдается оповещающая информация. В результате обеспечивается автоматическое определение состояния дороги в пределах зоны, заданной в мобильном терминале. При этом благодаря оповещающей информации пользователю становится легче избежать повреждений, вызываемых дорожными препятствиями. 3 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке. Также способ включает калибровку точки обзора для системы контроля по отношению к модели на основании положения измерителя удаленности по отношению к заготовке и измерение данных о фактическом расстоянии удаленности одного элемента отображения измерителя удаленности по отношению к заготовке. На основании данных о фактическом расстоянии удаленности определяют, удовлетворяет ли заготовка предварительно установленным критериям контроля. Повышается точность и надежность контроля. 2 н. и 13 з.п. ф-лы, 3 ил.

Активно-импульсный телевизионный прибор ночного видения содержит блок наблюдения, телевизионный канал, блок управления и синхронизации, импульсный инфракрасный осветитель и блок деления частоты. Также в прибор дополнительно введены последовательно соединенные лазерный дальномер и блок регулировки амплитуды тока накачки, блок предварительной установки задержки и блок регулировки длительности импульса строба. Технический результат заключается в сокращении времени поиска объекта наблюдения и повышении качества получаемого изображения за счет автоматического определения дальности до объекта при помощи лазерного дальномера. 1 ил.

Однозрачковая мультиспектральная оптическая система со встроенным лазерным дальномером содержит общий входной канал, спектроделительную пластинку, отражающую спектральный диапазон оптического канала и пропускающую спектральный диапазон тепловизионного канала. При этом отраженный канал выполнен телевизионным из двух компонентов, между которыми установлена вторая спектроделительная пластинка, отражающая спектральный диапазон телевизионного канала и пропускающая спектральный диапазон дальномерного канала, который содержит плоское зеркало с осевым отверстием, расположенное под углом к оптической оси, осуществляющее апертурное разделение для ветвей фотоприемника и полупроводникового лазерного излучателя. Технический результат заключается в упрощении конструкции, а также обеспечении возможности измерения дальности. 1 з.п. ф-лы, 2 ил., 2 табл.
Наверх