Способ определения времени инерционности зрительной системы человека

Изобретение относится к медицине, а именно к физиологии зрительной системы. На испытуемом закрепляют устройство, формирующее дополненную реальность, подают на него последовательность двух световых импульсов длительностью 10 мс, разделенных паузой, равной 150 мс, повторяющихся через постоянный временной интервал 1,5 с. На первом этапе измерений уменьшают длительность паузы с постоянной скоростью 20 мс/с, пока испытуемый не определит слияние двух световых импульсов в один. На втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами с шагом 0,5 мс, пока испытуемый не определит момент субъективного ощущения раздельности двух световых импульсов. Далее с заданным периодом испытуемому предъявляют световые импульсы с последней зафиксированной длительностью паузы, увеличивая ее между световыми импульсами при каждом последующем предъявлении дискретно с шагом 0,1 мс, пока испытуемый не определит момент ощущения раздельности двух световых импульсов. Длительность паузы между двумя световыми импульсами в момент ощущения раздельности двух световых импульсов фиксируют, принимая ее равной времени инерционности зрительной системы. Способ позволяет проводить исследование в процессе двигательной деятельности испытуемого.

 

Изобретение относится к медицине и предназначено для определения времени инерционности зрительной системы человека.

Известен способ определения времени инерционности зрительной системы человека путем предъявления испытуемому световых импульсов, заключающийся в том, что испытуемому предъявляют последовательность двух световых импульсов заданной длительности, равной, например, 50 мс, разделенных паузой, равной, например, 150 мс, повторяющихся через постоянный временной интервал порядка 1,5 с, длительность паузы между световыми импульсами уменьшают, пока испытуемый не определит момент субъективного слияния двух световых импульсов в один, причем на первом этапе измерений уменьшают длительность паузы между двумя световыми импульсами с заданной постоянной скоростью порядка 20 мс/с, пока испытуемый не определит оценочно субъективное слияние двух световых импульсов в один, на втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами с заданной постоянной скоростью порядка 5 мс/с, пока испытуемый не определит момент субъективного ощущения раздельности двух световых импульсов, на третьем этапе измерений уменьшают длительность паузы между двумя световыми импульсами с заданной постоянной скоростью порядка 2 мс/с, пока испытуемый не определит момент субъективного слияния двух световых импульсов в один, время инерционности зрительной системы человека принимают равным значению длительности паузы в момент субъективного слияния двух световых импульсов в один [1].

Недостатком способа является низкая точность определения времени инерционности зрительной системы человека, так как она определяется при непрерывно изменяющейся длительность паузы между двумя световыми импульсами, а глаз человека более чувствителен к восприятию дискретно изменяющейся длительности.

Наиболее близким по технической сущности к предлагаемому способу является способ определения времени инерционности зрительной системы человека, заключающийся в том, что испытуемому предъявляют последовательность двух световых импульсов заданной длительности, разделенных паузой, равной 150 мс, повторяющихся через постоянный временной интервал 1,5 с, причем на первом этапе измерений уменьшают длительность паузы между двумя световыми импульсами с заданной постоянной скоростью 20 мс/с, пока испытуемый не определит оценочно субъективное слияние двух световых импульсов в один, на втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами, пока испытуемый не определит момент субъективного ощущения раздельности двух световых импульсов, на третьем этапе измерений уменьшают длительность паузы между двумя световыми импульсами, пока испытуемый не определит момент субъективного слияния двух световых импульсов в один, время инерционности зрительной системы человека принимают равным значению длительности паузы между двумя световыми импульсами в момент субъективного слияния двух световых импульсов в один, определенной на третьем этапе измерений, отличающийся тем, что длительность световых импульсов равна 10 мс, на втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами дискретно с заданным постоянным шагом 0,4 мс, на третьем этапе измерений уменьшают длительность паузы между двумя световыми импульсами дискретно с заданным постоянным шагом 0,1 мс [2].

Недостатком способа является ограниченность условий определения времени инерционности зрительной системы человека, привязка к стационарному оборудованию.

Технический результат, на достижение которого направлено заявляемое изобретение, заключается в обеспечении возможности расширения условий определения времени инерционности зрительной системы человека, например, при выполнении двигательного или иного нагрузочного теста, в процессе какой-либо деятельности.

Технический результат достигается тем, что в процессе деятельности на испытуемом закрепляют устройство, формирующее дополненную реальность, подают на него последовательность двух световых импульсов длительностью 10 мс, разделенных паузой, равной 150 мс, повторяющихся через постоянный временной интервал 1,5 с, на первом этапе измерений уменьшают длительность паузы с постоянной скоростью 20 мс/с, пока испытуемый не определит слияние двух световых импульсов в один, на втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами с шагом 0,5 мс, пока испытуемый не определит момент субъективного ощущения раздельности двух световых импульсов, далее с заданным периодом испытуемому предъявляют световые импульсы с последней зафиксированной длительностью паузы, увеличивая ее между световыми импульсами при каждом последующем предъявлении дискретно с шагом 0,1 мс, пока испытуемый не определит момент ощущения раздельности двух световых импульсов, длительность паузы между двумя световыми импульсами в момент ощущения раздельности двух световых импульсов фиксируют, принимая ее равным времени инерционности зрительной системы.

Предлагаемый способ определения времени инерционности зрительной системы человека осуществляется следующим образом.

На испытуемом закрепляют носимое устройство (шлем, очки или линзы), формирующее дополненную реальность, которое входит в состав исследовательского программно-аппаратного комплекса. Исследователь из библиотеки программ комплекса выбирает и задает испытуемому режим двигательного или нагрузочного теста или испытуемый занимается какой-либо деятельностью.

Затем на устройство, формирующее дополненную реальность, подают последовательность двух световых импульсов длительностью 10 мс, разделенных паузой, равной 150 мс, повторяющихся через постоянный временной интервал 1,5 с.

На первом этапе измерений уменьшают длительность паузы между двумя световыми импульсами с заданной постоянной скоростью 20 мс/с, пока испытуемый не определит слияние двух световых импульсов в один.

На втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами с шагом 0,5 мс, пока испытуемый не определит момент субъективного ощущения раздельности двух световых импульсов.

Далее с заданным периодом испытуемому предъявляют световые импульсы с последней зафиксированной длительностью паузы, увеличивая ее между световыми импульсами при каждом последующем предъявлении дискретно с шагом 0,1 мс, пока испытуемый не определит момент ощущения раздельности двух световых импульсов.

Длительность паузы между двумя световыми импульсами в момент ощущения раздельности двух световых импульсов фиксируют, принимая ее равным времени инерционности зрительной системы.

Фиксация длительности паузы производится по условным действиям или сигналам испытуемого, которые фиксируются программно-аппаратным комплексом или исследователем. При удалении испытуемого на значительное расстояние от исследователя, связь и обмен информацией осуществляется по радиоканалу.

Заявляемый способ определения времени инерционности зрительной системы человека позволяет расширить условия определения времени инерционности зрительной системы человека, например, при выполнении двигательного или иного нагрузочного теста, в процессе какой-либо деятельности.

При осуществлении заявляемого способа могут использоваться известные технические решения и средства. Для компьютерной обработки информации может быть использовано известное или оригинальное программное обеспечение.

Заявляемый способ определения времени инерционности зрительной системы человека отличается от известных новыми свойствами, обуславливающими получение заявленного технического результата. Способ позволяет определять время инерционности в условиях, при которых ранее это невозможно было выполнить.

Способ определения времени инерционности зрительной системы человека в процессе деятельности, заключающийся в том, что на испытуемом закрепляют устройство, формирующее дополненную реальность, подают на него последовательность двух световых импульсов длительностью 10 мс, разделенных паузой, равной 150 мс, повторяющихся через постоянный временной интервал 1,5 с, на первом этапе измерений уменьшают длительность паузы с постоянной скоростью 20 мс/с, пока испытуемый не определит слияние двух световых импульсов в один, на втором этапе измерений увеличивают длительность паузы между двумя световыми импульсами с шагом 0,5 мс, пока испытуемый не определит момент субъективного ощущения раздельности двух световых импульсов, далее с заданным периодом, испытуемому предъявляют световые импульсы с последней зафиксированной длительностью паузы, увеличивая ее между световыми импульсами при каждом последующем предъявлении дискретно с шагом 0,1 мс, пока испытуемый не определит момент ощущения раздельности двух световых импульсов, длительность паузы между двумя световыми импульсами в момент ощущения раздельности двух световых импульсов фиксируют, принимая ее равной времени инерционности зрительной системы.



 

Похожие патенты:

Изобретение относится к области медицины, а именно к неврологии. Проводят балльную оценку эмоциональных, когнитивных нарушений, социальной адаптации и реакции на противосудорожную лекарственную терапию у больных эпилепсией на основе: критериев комплексной оценки данных сфер по жалобам пациентов, наличия связанных с эпилепсией психотических состояний в анамнезе, уровня тревоги и депрессии «Госпитальной шкалы тревоги и депрессии», характеристик Краткой шкалы оценки психического статуса и батареи лобной дисфункции, показателей шкалы «Ролевое функционирование, обусловленное физическим состоянием» опросника SF-36 и раздела «Социальное функционирование» опросника QOLIE-31, а также наличия инвалидности, количества принимаемых антиконвульсантов, числа сложных парциальных, первично- и вторичногенерализованных приступов до и после коррекции противосудорожной терапии.

Изобретение относится к области безопасности жизнедеятельности человека, а более конкретно к обеспечению защиты человека от шума. Определяют по результатам медицинского обследования объективные и получают анкетированием респондентов субъективные характеристики с последующим расчетом коэффициента эргономичности средства коллективной защиты от шума.
Изобретение относится к медицине, а именно к психофизиологической диагностике, и может быть использовано для выявления риска аддиктивного поведения у подростков и лиц юношеского возраста, учащихся образовательных учреждений.
Изобретение относится к области медицины, в частности к нейрофизиологическим и психофизиологическим исследованиям. Определяют усредненный уровень постоянных потенциалов (УПП) головного мозга, зарегистрированных от областей - лобной, центральной, затылочной, правой и левой височных.

Изобретение относится к спортивной медицине и предназначено для оценки точности двигательных действий спортсмена игровых видов спорта, в которых очко счета разыгрывается в результате серии ударов по спортивному снаряду.

Изобретение относится к медицинской технике. Устройство для треморометрии содержит корпус (1), планшет (2), блок регистрации (12), электропроводный щуп (3), соединительный кабель (4), высокочастотный генератор (5), проводящую пластину (7), диэлектрическую прокладку с прорезями (6), контурный конденсатор (8), контурную индуктивность (9), элемент связи (10) и амплитудный детектор (11).

Изобретение относится к медицине, а именно к функциональной диагностике, гериатрии и геронтологии и может быть использовано для определения биологического возраста у женщин.

Изобретение относится к медицине, а именно к стоматологии и психологии, может быть применено для формирования мотивации к стоматологическим лечебно-профилактическим мероприятиям.
Изобретение относится к медицине, а именно к акушерству, и может быть использовано для прогнозирования метаболического синдрома во II триместре беременности. У беременной во втором триместре методом двумерного ультразвукового сканирования определяют сторону преимущественного расположения плаценты.

Изобретение относится к медицине, а именно к терапии, эндокринологии и кардиологии, и может быть использовано для комплексного лечения метаболического синдрома. Для этого проводят диетотерапию пониженной калорийности 1200 ккал для женщин и 1500 ккал для мужчин с ограничением углеводсодержащих продуктов и жиров.

Изобретение относится к медицине, оптометрической диагностике и касается определения контрастной чувствительности у пациентов с дисфункциями мозга, может быть использовано в ранней диагностике дегенеративных поражений мозга.

Изобретение относится к области медицины и может использоваться для оценки функционального состояния различных зон головного мозга. Предъявляют восемь пространственно-частотных решеток с синусоидальным распределением освещенности.
Изобретение относится к области медицины, а именно к офтальмологии. Предъявляют пациенту оптотипы, размер которых изменяют с высокой дискретностью в широком динамическом диапазоне.

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для исследования остроты зрения в динамике. .

Изобретение относится к медицинской технике и может использоваться для скрининговой офтальмологической диагностики зрения детей, взрослых, лиц с нарушениями интеллектуального развития, речи.

Изобретение относится к медицинской технике и может использоваться для офтальмологического тестирования зрения детей, взрослых и особых групп населения, включая лиц с ограниченными возможностями по здоровью, а также для проведения других видов интерактивного тестирования.

Изобретение относится к медицине. .
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при диагностике глазных заболеваний, при профессиональном отборе водителей транспорта.

Изобретение относится к области медицины. .
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для субъективной оценки качества зрения пациентов с ретинальной патологией. .

Изобретение относится к медицинской технике и предназначено для определения асимметрии зрительного восприятия движущихся в противоположных направлениях объектов. На экране видеомонитора испытуемому предъявляют точечный объект и метку. Точечный объект движется по прямой горизонтальной линии, проходя путь от начала до конца линии за 1 с. В момент предполагаемого совпадения движущегося точечного объекта с меткой испытуемый нажимает кнопку «Стоп», в момент нажатия кнопки «Стоп» фиксируют положение точечного объекта и вычисляют ошибку несовпадения положений точечного объекта и метки, значение ошибки запаздывания, взятое с положительным знаком, или ошибки упреждения, взятое с отрицательным знаком. Испытуемый выполняет первую серию нажатий кнопки «Стоп» в момент предполагаемого совпадения положения точечного объекта с меткой, повторяя описанную процедуру заданное число раз. При этом метка находится в центре горизонтальной линии. В момент нажатия кнопки «Стоп» движение точечного объекта продолжают без остановки, испытуемый выполняет заданное число серий, разделенных перерывом заданной длительности, при движении точечного объекта вначале слева направо, затем справа налево. По результатам серий строят вариационный ряд ошибок не совпадения точечного объекта и метки при движении точечного объекта слева направо и справа налево, вычисляют вариационный размах рядов по формуле:R=Xmax-Xmin,где Xmax и Xmin - соответственно наибольший и наименьший члены вариационного ряда. Сопоставление значений вариационных размахов рядов значений ошибок несовпадения положений точечного объекта и метки при движении точечного объекта слева направо и справа налево позволяет судить о наличии и величине асимметрии зрительного восприятия движущихся в противоположном направлении точечных объектов. По меньшему значению вариационного размаха ошибок несовпадения точечного объекта и метки судят о точности реакции на движущиеся в противоположном направлении точечные объекты. Способ позволяет определить наличие и величину асимметрии зрительного восприятия и точность реакции при противоположном движении точечных объектов. 2 ил., 3 пр., 4 табл.
Наверх