Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя



Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя
H02P27/06 - Управление или регулирование электрических двигателей, генераторов, электромашинных преобразователей; управление трансформаторами, реакторами или дроссельными катушками (конструкции пусковых аппаратов, тормозов или других управляющих устройств см. в соответствующих подклассах, например механические тормоза F16D, механические регуляторы скорости G05D; переменные резисторы H01C; пусковые переключатели H01H; системы для регулирования электрических или магнитных переменных величин с использованием трансформаторов, реакторов или дроссельных катушек G05F; устройства, конструктивно связанные с электрическими двигателями, генераторами, электромашинными преобразователями, трансформаторами, реакторами или дроссельными катушками, см. в соответствующих подклассах, например H01F,H02K; соединение или управление

Владельцы патента RU 2622394:

федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) (RU)

Изобретение относится к области электротехники и может быть использовано для регулирования скорости вращения асинхронного электродвигателя. Техническим результатом является обеспечение нейтрализации отрицательного действия ЭДС самоиндукции на обмотках статора электродвигателя, уменьшение расхода электрической энергии. Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя содержит две полупроводниковые вентильные группы. Первая вентильная группа выполнена в виде диодного выпрямительного моста, первый вход переменного напряжения которого соединен с фазой питающей сети, второй вход переменного напряжения соединен с нулем питающей сети. Во второй вентильной группе использованы двенадцать полупроводниковых ключей, шесть из которых, второй, четвертый, шестой, десятый и двенадцатый, выполнены на основе транзисторов n-p-n структуры. Выход первого ключа объединен с коллектором второго ключа и с началом первой обмотки статора электродвигателя. Выход третьего ключа объединен с коллектором четвертого ключа и с концом первой обмотки статора электродвигателя. Выход пятого ключа объединен с коллектором шестого ключа и с началом второй обмотки статора электродвигателя. Выход седьмого ключа объединен с коллектором восьмого ключа и с концом второй обмотки статора электродвигателя. Выход девятого ключа объединен с коллектором десятого ключа и с началом третьей обмотки статора электродвигателя. Выход одиннадцатого ключа объединен с коллектором двенадцатого ключа и с концом третьей обмотки статора электродвигателя. Эмиттеры второго, четвертого, шестого, восьмого, десятого и двенадцатого ключей подключены к минусу выпрямленного напряжения диодного моста. В качестве первого, третьего, пятого, седьмого, девятого и одиннадцатого полупроводниковых ключей использованы тиристоры со встречно-параллельно соединенными диодами. Входы первого, второго, третьего, пятого, седьмого, девятого и одиннадцатого полупроводниковых ключей подключены к плюсу выпрямленного напряжения диодного моста. В первом, третьем, пятом, седьмом, девятом и одиннадцатом полупроводниковых ключах анод тиристора объединен с катодом диода и со входом ключа, а катод тиристора объединен с анодом диода и с выходом ключа. 10 ил.

 

Предлагаемое изобретение относится к регулируемым полупроводниковым преобразователям для трехфазного асинхронного электродвигателя и может быть использовано для надежного плавного регулирования его скорости.

Известно устройство формирования трехфазного напряжения в обмотках электродвигателя, содержащее ключевые усилительные каскады, собранные на транзисторах, диоды, защищающие транзисторы от коммутационных «всплесков» напряжения, а также источник питания на постоянном токе устройства. Обмотки электродвигателя включены в коллекторные цепи транзисторов и зашунтированы диодами (Мухин М. Трехфазный ток - это очень просто / М. Мухин // Радио. - М. 1999. - №11. - 054, рис. 1).

Основным недостатком описанного устройства формирования трехфазного напряжения в обмотках электродвигателя является появление постоянной составляющей напряжения, дающее повышенный нагрев электродвигателя, вследствие отсутствия отрицательной полуволны напряжения на обмотках электродвигателя.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является широкополосный трехфазный преобразователь частоты с явно выраженным звеном постоянного тока для питания трехфазного асинхронного электродвигателя, содержащий две полупроводниковые вентильные группы. Первая вентильная группа выполнена в виде диодного выпрямительного моста, первый вход переменного напряжения которого соединен с фазой питающей сети, второй вход переменного напряжения соединен с нулем питающей сети. Во второй вентильной группе использованы двенадцать полупроводниковых ключей, шесть ключей из которых, второй, четвертый, шестой, десятый и двенадцатый, выполнены на основе транзисторов n-p-n структуры, причем выход первого полупроводникового ключа объединен с коллектором второго полупроводникового ключа и с началом первой обмотки статора электродвигателя, выход третьего полупроводникового ключа объединен с коллектором четвертого полупроводникового ключа и с концом первой обмотки статора электродвигателя, выход пятого полупроводникового ключа объединен с коллектором шестого полупроводникового ключа и с началом второй обмотки статора электродвигателя, выход седьмого полупроводникового ключа объединен с коллектором восьмого полупроводникового ключа и с концом второй обмотки статора электродвигателя, выход девятого полупроводникового ключа объединен с коллектором десятого полупроводникового ключа и с началом третьей обмотки статора электродвигателя, выход одиннадцатого полупроводникового ключа объединен с коллектором двенадцатого полупроводникового ключа и с концом третьей обмотки статора электродвигателя. Эмиттеры второго, четвертого, шестого, восьмого, десятого и двенадцатого полупроводниковых ключей подключены к минусу выпрямленного напряжения диодного моста. Первый, третий, пятый, седьмой, девятый и одиннадцатый ключи выполнены на основе p-n-р структуры (патент RU 2482593, МПК Н02М 5/27 (2006.01), Н02Р 1/26 (2006.01)).

Основными недостатками описанного полупроводникового устройства питания трехфазного асинхронного электродвигателя от однофазной сети являются отсутствие защищенности транзисторов от ЭДС самоиндукции, возникающей при коммутации обмоток статора электродвигателя, что приводит к снижению надежности из-за частого пробоя транзисторов, а также, к увеличению стоимости устройства из-за необходимости использования дорогих высоковольтных транзисторов и дополнительных изолированных источников питания для транзисторных ключей группы p-n-р, а также большой расход мощности на управление открытием и удержанием в рабочем состоянии каждого из транзисторов.

Предлагаемым изобретением решается задача нейтрализации отрицательного действия ЭДС самоиндукции на обмотках статора электродвигателя, а также уменьшение стоимости устройства за счет использования меньшего количества источников питания для управления транзисторами и уменьшения расхода электрической энергии на подержания рабочего состояния транзисторов, так и использованием более дешевых транзисторов на меньшее напряжение.

Для решения поставленной задачи в реверсивном полупроводниковом устройстве регулирования скорости трехфазного асинхронного электродвигателя, содержащем две полупроводниковые вентильные группы, при этом первая вентильная группа выполнена в виде диодного выпрямительного моста, первый вход переменного напряжения которого соединен с фазой питающей сети, второй вход переменного напряжения соединен с нулем питающей сети, во второй вентильной группе использованы двенадцать полупроводниковых ключей, шесть ключей из которых, второй, четвертый, шестой, десятый и двенадцатый, выполнены на основе транзисторов n-p-n структуры, причем выход первого полупроводникового ключа объединен с коллектором второго полупроводникового ключа и с началом первой обмотки статора электродвигателя, выход третьего полупроводникового ключа объединен с коллектором четвертого полупроводникового ключа и с концом первой обмотки статора электродвигателя, выход пятого полупроводникового ключа объединен с коллектором шестого полупроводникового ключа и с началом второй обмотки статора электродвигателя, выход седьмого полупроводникового ключа объединен с коллектором восьмого полупроводникового ключа и с концом второй обмотки статора электродвигателя, выход девятого полупроводникового ключа объединен с коллектором десятого полупроводникового ключа и с началом третьей обмотки статора электродвигателя, выход одиннадцатого полупроводникового ключа объединен с коллектором двенадцатого полупроводникового ключа и с концом третьей обмотки статора электродвигателя, эмиттеры второго, четвертого, шестого, восьмого, десятого и двенадцатого полупроводниковых ключей подключены к минусу выпрямленного напряжения диодного моста, согласно изобретению первый, третий, пятый, седьмой, девятый и одиннадцатый полупроводниковые ключи выполнены на основе тиристоров со встречно-параллельно соединенными диодами, причем входы первого, второго, третьего, пятого, седьмого, девятого и одиннадцатого полупроводниковых ключей подключены к плюсу выпрямленного напряжения диодного моста, в первом, третьем, пятом, седьмом, девятом и одиннадцатом полупроводниковых ключах анод тиристора объединен с катодом диода и со входом ключа, а катод тиристора объединен с анодом диода и с выходом ключа.

Нейтрализация отрицательного действия ЭДС самоиндукции, возникающая в обмотках статора при закрытии ключей, реализуется при использовании диодов, включенных параллельно тиристорам в обратном направлении, через которые замыкается ток ЭДС самоиндукции с уменьшением до нуля, что обеспечивает надежную работу реверсивного трехфазного асинхронного электродвигателя.

Использование тиристорных ключей вместо транзисторных ключей p-n-р группы исключает необходимость использования изолированных источников питания, а также уменьшает потребление дополнительной энергии для подержания в рабочем состоянии транзисторов p-n-р группы.

Предлагаемое изобретение поясняется чертежом, где на фиг. 1 приведена принципиальная электрическая схема предлагаемого реверсивного полупроводникового устройства регулирования скорости трехфазного асинхронного электродвигателя, на фиг. 2 - векторная диаграмма вращающегося магнитного потока поля статора, состоящая из восьми фиксированных положений; на фиг. 3 - векторная диаграмма вращающегося магнитного потока поля статора, состоящая из шести фиксированных положений; на фиг. 4 - векторная диаграмма вращающегося магнитного потока поля статора, состоящая из четырех фиксированных положений; на фиг. 5 показано пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг. 2, а также открываемые транзисторы и тиристоры; на фиг. 6 показано пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг. 3, а также открываемые транзисторы и тиристоры; на фиг. 7 показано пофазное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг. 4, а также открываемые транзисторы и тиристоры; на фиг. 8 показано пофазное реверсивное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг. 2, а также открываемые транзисторы и тиристоры; на фиг. 9 показано пофазное реверсивное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг. 3, а также открываемые транзисторы и тиристоры; на фиг. 10 показано пофазное реверсивное изменение магнитного потока в обмотках статора в соответствии с векторной диаграммой, изображенной на фиг. 4, а также открываемые транзисторы и тиристоры.

Кроме того, на чертеже дополнительно изображено следующее:

- Ф - фаза;

- 0 - ноль;

- VD1-VD6 - полупроводниковые диоды;

- VS1-VS6 - тиристоры;

- VT1-VT6 - транзисторы;

- K1-K12 - полупроводниковые ключи;

- прямые линии со стрелками вдоль обмотки статора электродвигателя - положительное направление постоянного тока в обмотке статора электродвигателя;

- пунктирные линии со стрелками вдоль обмотки статора электродвигателя - отрицательное направление постоянного тока в обмотке статора электродвигателя;

- I, II, III, IIV, V, VI, VII, VIII - последовательные фиксированные положения магнитного потока статора электродвигателя.

Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя содержит две полупроводниковые вентильные группы. Первая вентильная группа выполнена в виде диодного выпрямительного моста. Первый вход 1 переменного напряжения диодного выпрямительного моста 2 соединен с фазой питающей сети переменного тока, второй вход 3 переменного напряжения соединен с нулем питающей сети. Во второй вентильной группе использованы двенадцать полупроводниковых ключей, шесть ключей из которых, второй 4 (VT1), четвертый 5 (VT2), шестой 6 (VT3), восьмой 7 (VT4), десятый 8 (VT5) и двенадцатый 9 (VT6) выполнены на основе транзисторов n-p-n структуры, и шести ключей из которых, первый 10 (VS1), третий 11 (VS2), пятый 12 (VS3), седьмой 13 (VS4), девятый 14 (VS5) и одиннадцатый 15 (VS6) полупроводниковые ключи выполнены на основе тиристоров со встречно-параллельно соединенными диодами. Для первой обмотки 16 (А) эмиттеры 17 и 18 транзисторов 4 (VT1) и 5 (VT2) подключены к отрицательному выводу 19 источника постоянного напряжения; коллектор 20 транзистора 4 (VT1) объединен с катодом 21 тиристора 11 (VS2) и анодом 22 диода 23 (VD1) и соединен с первым выводом 24 первой обмотки 16 (А) статора электродвигателя, коллектор 25 транзистора 5 (VT2) объединен с катодом 26 тиристора 10 (VS1) и анодом 27 диода 28 (VD2) и соединен со вторым выводом 29 первой обмотки 16 (А) статора электродвигателя, анод 30 тиристора 11 (VS2) соединен с катодом 31 диода 23 (VD1) и подсоединен к положительному выводу 32 источника постоянного напряжения, анод 33 тиристора 10 (VS1) соединен с катодом 34 диода 28 (VD2) и подсоединен к положительному выводу 32 источника постоянного напряжения.

Для второй обмотки 35 (В) анод 36 тиристора 12 (VS3) соединен с катодом 37 диода 38 (VD4) и подсоединен к положительному выводу постоянного напряжения 32, анод 39 тиристора 13 (VS4) соединен с катодом 40 диода 41 (VD3) и подсоединен к положительному выводу постоянного напряжения 32, катод 42 тиристора 12 (VS3) и анод 43 диода 38 (VD4) объединены с коллектором 44 транзистора 7 (VT4) и соединены с первым выводом 45 второй обмотки 35 (В) статора электродвигателя, катод 46 тиристора 13 (VS4) и анод 47 диода 41 (VD3) объединены с коллектором 48 транзистора 6 (VT3) и соединены со вторым выводом 49 второй обмотки 35 (В) статора электродвигателя, эмиттеры 50 и 51 транзисторов 6 (VT3) и 7 (VT4) подключены к отрицательному выводу 19 источника постоянного напряжения.

Для третьей обмотки 52 (С), анод 53 тиристора 14 (VS5) соединен с катодом 54 диода 55 (VD6) и подсоединен к положительному выводу 32 источника постоянного напряжения, анод 56 тиристора 15 (VS6) соединен с катодом 57 диода 58 (VD5) и подсоединен к положительному выводу 32 источника постоянного напряжения, катод 59 тиристора 14 (VS5) и анод 60 диода 55 (VD6) объединены с коллектором 61 транзистора 9 (VT6) и соединены с первым выводом 62 третей обмотки 52 (С) статора электродвигателя, катод 63 тиристора 15 (VS6) и анод 64 диода 58 (VD5) объединены с коллектором 65 транзистора 8 (VT5) и соединены со вторым выводом 66 третей обмотки 52 (С) статора электродвигателя, эмиттеры 67 и 68 транзисторов 8 (VT5) и 9 (VT6) подключены к отрицательному выводу 19 источника постоянного напряжения, которое преобразуется из переменного напряжения питающей сети с помощью диодного выпрямительного моста 2.

Эмиттеры 17 и 18 транзисторов 4 (VT1) и 5 (VT2) подключены к отрицательному выводу 19 источника постоянного напряжения; коллектор 20 транзистора 4 (VT1) объединен с катодом 21 тиристора 11 (VS2) и анодом 22 диода 23 (VD1) и соединен с первым выводом 24 первой обмотки статора электродвигателя 16 (А), коллектор 25 транзистора 5 (VT2) объединен с катодом 26 тиристора 10 (VS1) и анодом 27 диода 28 (VD2) и соединен со вторым выводом 29 первой обмотки статора электродвигателя 16 (А), анод 30 тиристора 11 (VS2) соединен с катодом 31 диода 23 (VD1) и подсоединен к положительному выводу постоянного напряжения 32, анод 33 тиристора 10 (VS1) соединен с катодом 34 диода 28 (VD2) и подсоединен к положительному выводу постоянного напряжения 32. Для второй обмотки 35 (В) анод 36 тиристора 12 (VS3) соединен с катодом 37 диода 38 (VD4) и подсоединен к положительному выводу постоянного напряжения 32, анод 39 тиристора 13 (VS4) соединен с катодом 40 диода 41 (VD3) и подсоединен к положительному выводу постоянного напряжения 32, катод 42 тиристора 12 (VS3) и анод 43 диода 38 (VD4) объединены с коллектором 44 транзистора 7 (VT4) и соединены с первым выводом 45 второй обмотки статора электродвигателя 35 (В), катод 46 тиристора 13 (VS4) и анод 47 диода 41 (VD3) объединены с коллектором 48 транзистора 6 (VT3) и соединены со вторым выводом 49 второй обмотки статора электродвигателя 35 (В), эмиттеры 50 и 51 транзисторов 6 (VT3) и 7 (VT4) подключены к отрицательному выводу 19 источника постоянного напряжения. Для третьей обмотки 52 (С), анод 53 тиристора 14 (VS5) соединен с катодом 54 диода 55 (VD6) и подсоединен к положительному выводу постоянного напряжения 32, анод 56 тиристора 15 (VS6) соединен с катодом 57 диода 58 (VD5) и подсоединен к положительному 32 выводу источника постоянного напряжения, катод 59 тиристора 14 (VS5) и анод 60 диода 55 (VD6) объединены с коллектором 61 транзистора 9 (VT6) и соединены с первым выводом 62 третей обмотки статора электродвигателя 52 (С), катод 63 тиристора 15 (VS6) и анод 64 диода 58 (VD5) объединены с коллектором 65 транзистора 8 (VT5) и соединены со вторым выводом 66 третей обмотки статора электродвигателя 52 (С), эмиттеры 67 и 68 транзисторов 8 (VT5) и 9 (VT6) подключены к отрицательному выводу 19 источника постоянного напряжения, которое преобразуется из переменного напряжения питающей сети с помощью диодного выпрямительного моста 2.

Работа реверсивного полупроводникового устройства регулирования скорости трехфазного асинхронного электродвигателя происходит следующим образом. В статорные обмотки трехфазного асинхронного электродвигателя путем изменения частоты векторно-алгоритмической коммутации полупроводниковых ключей подается переменное напряжение в последовательности, обеспечивающей получение вращающегося магнитного поля статора с требуемыми характеристиками.

Для обеспечения вращения вектора магнитного потока вращающегося поля статора трехфазного асинхронного электродвигателя в соответствии с векторной диаграммой, представленной на фигуре 2, в последовательности I-II-III-IV-V-VI-VII-VIII необходимо подавать управляющие импульсы на базы транзисторов 4 (VT1), 5 (VT2), 6 (VT3), 7 (VT4) 8 (VT5), 9 (VT6) и на управляющие выводы тиристоров 10 (VS1), 11 (VS2), 12 (VS3), 13 (VS4), 14 (VS5), 15 (VS6) в нижеследующей последовательности (фигура 5).

1. В промежуток времени 1 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 15 (VS6), что образует I положение магнитного потока. Ток протекает по обмотке 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

2. В промежуток времени t2 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 14 (VS5) что образует II положение магнитного потока. Ток протекает по обмоткам 35 (В) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

3. В промежуток времени t3 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2) и 14 (VS5), что образует III положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

4. В промежуток времени t4 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 12 (VS3) и 14 (VS5), что образует IV положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

5. В промежуток времени t5 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 14 (VS5), что образует V положение магнитного потока. Ток протекает по обмоткам 16 (А) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

6. В промежуток времени t6 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 15 (VS6), что образует VI положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмоткам 35 (В) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

7. В промежуток времени t7 обеспечивается подача управляющих импульсов на базы 4 (VT1) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1) и 15 (VS6), что образует VII положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

8. В промежуток времени t8 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 13 (VS4) и 15 (VS6), что образует VIII положение магнитного потока. Ток протекает по обмоткам 16 (А) и 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

9. Далее процесс включения транзисторов и тиристоров повторяется, начиная с промежутка времени t1.

Изменяя частоту коммутации полупроводниковых ключей можно обеспечить плавное регулирование скорости вращения электродвигателя. Изменяя степень открытия транзисторных ключей можно изменять напряжение, подводимое к статорным обмоткам электродвигателя.

Для обеспечения вращения вектора магнитного потока вращающегося поля статора трехфазного асинхронного электродвигателя в соответствии с векторной диаграммой, представленной на фигуре 3, в последовательности I-II-III-IV-V-VI необходимо подавать управляющие импульсы на базы транзисторов 4 (VT1), 5 (VT2), 6 (VT3), 7 (VT4) 8 (VT5), 9 (VT6) и на управляющие выводы тиристоров 10 (VS1), 11 (VS2), 12 (VS3), 13 (VS4), 14 (VS5), 15 (VS6) в нижеследующей последовательности (фигура 6).

1. В промежуток времени t1 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 15 (VS6), что образует I положение магнитного потока. Ток протекает по обмотке 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

2. В промежуток времени t2 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 14 (VS5) что образует II положение магнитного потока. Ток протекает по обмоткам 35 (В) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

3. В промежуток времени t3 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 12 (VS3) и 14 (VS5), что образует IV положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (A) и 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

4. В промежуток времени t4 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 14 (VS5), что образует V положение магнитного потока. Ток протекает по обмоткам 16 (А) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя;

5. В промежуток времени t5 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 15 (VS6), что образует VI положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмоткам 35 (B) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя;

6. В промежуток времени t6 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 13 (VS4) и 15 (VS6), что образует VIII положение магнитного потока. Ток протекает по обмоткам 16 (А) и 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя;

7. Далее процесс включения транзисторов и тиристоров повторяется, начиная с промежутка времени t1.

Изменяя частоту коммутации полупроводниковых ключей можно обеспечить плавное регулирование скорости вращения электродвигателя. Изменяя степень открытия транзисторных ключей можно изменять напряжение, подводимое к статорным обмоткам электродвигателя.

Для обеспечения вращения вектора магнитного потока вращающегося поля статора трехфазного асинхронного электродвигателя в соответствии с векторной диаграммой, представленной на фигуре 4, в последовательности I-II-III-IV необходимо подавать управляющие импульсы на базы транзисторов 4 (VT1), 5 (VT2), 6 (VT3), 7 (VT4) 8 (VT5), 9 (VT6) и на управляющие выводы тиристоров 10 (VS1), 11 (VS2), 12 (VS3), 13 (VS4), 14 (VS5), 15 (VS6) в нижеследующем алгоритмическом порядке (фигура 7).

1. В промежуток времени t1 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 15 (VS6), что образует I положение магнитного потока. Ток протекает по обмотке 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

2. В промежуток времени t2 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2) и 14 (VS5), что образует III положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

3. В промежуток времени t3 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 14 (VS5), что образует V положение магнитного потока. Ток протекает по обмоткам 16 (А) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

4. В промежуток времени t4 обеспечивается подача управляющих импульсов на базы 4 (VT1) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1) и 15 (VS6), что образует VII положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

5. Далее процесс включения транзисторов и тиристоров повторяется, начиная с промежутка времени t1.

Для обеспечения вращения вектора магнитного потока вращающегося поля статора трехфазного асинхронного электродвигателя в обратную сторону в соответствии с векторной диаграммой, представленной на фигуре 2, в последовательности I-VIII-VII-VI-V-IV-III-II необходимо подавать управляющие импульсы на базы транзисторов 4 (VT1), 5 (VT2), 6 (VT3), 7 (VT4) 8 (VT5), 9 (VT6) и на управляющие выводы тиристоров 10 (VS1), 11 (VS2), 12 (VS3), 13 (VS4), 14 (VS5), 15 (VS6) в нижеследующей последовательности (фигура 8).

1. В промежуток времени t1 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 15 (VS6), что образует I положение магнитного потока. Ток протекает по обмотке 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (A) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

2. В промежуток времени t2 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 13 (VS4) и 15 (VS6), что образует VIII положение магнитного потока. Ток протекает по обмоткам 16 (А) и 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

3. В промежуток времени t3 обеспечивается подача управляющих импульсов на базы 4 (VT1) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1) и 15 (VS6), что образует VII положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

4. В промежуток времени t4 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 15 (VS6), что образует VI положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмоткам 35 (B) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

5. В промежуток времени t5 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 14 (VS5), что образует V положение магнитного потока. Ток протекает по обмоткам 16 (А) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

6. В промежуток времени t6 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 12 (VS3) и 14 (VS5), что образует IV положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя;

7. В промежуток времени t7 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2) и 14 (VS5), что образует III положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

8. В промежуток времени t8 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 14 (VS5) что образует II положение магнитного потока. Ток протекает по обмоткам 35 (В) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

9. Далее процесс включения транзисторов и тиристоров повторяется, начиная с промежутка времени t1.

Для обеспечения вращения вектора магнитного потока вращающегося поля статора трехфазного асинхронного электродвигателя в обратном направлении в соответствии с векторной диаграммой, представленной на фигуре 3, в последовательности I-IV-V-IV-III-11 необходимо подавать управляющие импульсы на базы транзисторов 4 (VT1), 5 (VT2), 6 (VT3), 7 (VT4) 8 (VT5), 9 (VT6) и на управляющие выводы тиристоров 10 (VS1), 11 (VS2), 12 (VS3), 13 (VS4), 14 (VS5), 15 (VS6) в нижеследующей последовательности порядке (фигура 9).

1. В промежуток времени t1 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 15 (VS6), что образует I положение магнитного потока. Ток протекает по обмотке 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

2. В промежуток времени t2 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 13 (VS4) и 15 (VS6), что образует VIII положение магнитного потока. Ток протекает по обмоткам 16 (А) и 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

3. В промежуток времени t3 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 15 (VS6), что образует VI положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмоткам 35 (В) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

4. В промежуток времени t4 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 14 (VS5), что образует V положение магнитного потока. Ток протекает по обмоткам 16 (А) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

5. В промежуток времени t5 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 12 (VS3) и 14 (VS5), что образует IV положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

6. В промежуток времени t6 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 14 (VS5) что образует II положение магнитного потока. Ток протекает по обмоткам 35 (В) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

7. Далее процесс включения транзисторов и тиристоров повторяется, начиная с промежутка времени t1.

Для обеспечения вращения вектора магнитного потока вращающегося поля статора трехфазного асинхронного электродвигателя в обратном направлении в соответствии с векторной диаграммой, представленной на фигуре 4, в последовательности I-II-III-IV необходимо подавать управляющие импульсы на базы транзисторов 4 (VT1), 5 (VT2), 6 (VT3), 7 (VT4) 8 (VT5), 9 (VT6) и на управляющие выводы тиристоров 10 (VS1), 11 (VS2), 12 (VS3), 13 (VS4), 14 (VS5), 15 (VS6) в нижеследующем алгоритмическом порядке (фигура 10).

1. В промежуток времени t1 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2), 7 (VT4) и 9 (VT6) и управляющие выводы тиристоров 11 (VS2), 13 (VS4) и 15 (VS6), что образует I положение магнитного потока. Ток протекает по обмотке 35 (В) в прямом направлении (показано сплошной стрелкой), а по обмоткам 16 (А) и 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

2. В промежуток времени t2 обеспечивается подача управляющих импульсов на базы 4 (VT1) и 9 (VT6) и управляющие выводы тиристоров 10 (VS1) и 15 (VS6), что образует VII положение магнитного потока. Ток протекает по обмотке 16 (А) в прямом направлении (показано сплошной стрелкой), а по обмотке 52 (С) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

3. В промежуток времени t3 обеспечивается подача управляющих импульсов на базы транзисторов 4 (VT1), 6 (VT3) и 8 (VT5) и управляющие выводы тиристоров 10 (VS1), 12 (VS3) и 14 (VS5), что образует V положение магнитного потока. Ток протекает по обмоткам 16 (А) и 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 35 (В) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

4. В промежуток времени t4 обеспечивается подача управляющих импульсов на базы транзисторов 5 (VT2) и 8 (VT5) и управляющие выводы тиристоров 11 (VS2) и 14 (VS5), что образует III положение магнитного потока. Ток протекает по обмотке 52 (С) в прямом направлении (показано сплошной стрелкой), а по обмотке 16 (А) в обратном направлении (показано пунктирной стрелкой), статора электродвигателя.

5. Далее процесс включения транзисторов и тиристоров повторяется, начиная с промежутка времени t1.

Изменяя частоту коммутации полупроводниковых ключей можно обеспечить плавное регулирование скорости вращения электродвигателя. Изменяя степень открытия транзисторных ключей можно изменять напряжение, подводимое к статорным обмоткам электродвигателя. Также с помощью тиристоров и транзисторов, можно осуществить реверс электродвигателя.

Открытие транзисторов и тиристоров происходит путем подачи соответствующих управляющих импульсов на базу транзистора и на управляющий электрод тиристора, а их закрытие (прекращение протекания тока) осуществляется снятием управляющего сигнала с базы транзистора, при этом возникает ЭДС самоиндукции на обмотке статора электродвигателя, которая замыкается через полупроводниковый диод, например если открыты VS1 и VT1, и затем закрыть VT1, то возникающая в обмотках статора ЭДС самоиндукции будет теперь замыкаться по цепочки: обмотка А, диод 23 (VD1), тиристор 10 (VS1), обмотка А. При этом закрытие тиристора VS1 происходит тогда, когда ток от ЭДС самоиндукции станет равным нулю. Этот момент легко контролируется, поэтому нет необходимости ставить «задержку» в управлении следующей коммутационной парой (VS2-VT2), что надежно предотвращает возникновение короткого замыкания. Поэтому без задержки подаются управляющие сигналы на открытие тиристоров и транзисторов в другом направлении. Этим предотвращается возникновения короткого замыкания, например, через тиристор 10 (VS1) и транзистор 5 (VT2), а также предотвращается условие пробоя транзисторов от ЭДС самоиндукции.

Таким образом, предлагаемое реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя имеет преимущества по сравнению с известными вследствие обеспечения нейтрализации отрицательного действия ЭДС самоиндукции на обмотках статора электродвигателя, уменьшения стоимости и расхода электрической энергии.

Реверсивное полупроводниковое устройство регулирования скорости трехфазного асинхронного электродвигателя, содержащее две полупроводниковые вентильные группы, при этом первая вентильная группа выполнена в виде диодного выпрямительного моста, первый вход переменного напряжения которого соединен с фазой питающей сети, второй вход переменного напряжения соединен с нулем питающей сети, во второй вентильной группе использованы двенадцать полупроводниковых ключей, шесть ключей из которых, второй, четвертый, шестой, десятый и двенадцатый, выполнены на основе транзисторов n-р-n структуры, причем выход первого полупроводникового ключа объединен с коллектором второго полупроводникового ключа и с началом первой обмотки статора электродвигателя, выход третьего полупроводникового ключа объединен с коллектором четвертого полупроводникового ключа и с концом первой обмотки статора электродвигателя, выход пятого полупроводникового ключа объединен с коллектором шестого полупроводникового ключа и с началом второй обмотки статора электродвигателя, выход седьмого полупроводникового ключа объединен с коллектором восьмого полупроводникового ключа и с концом второй обмотки статора электродвигателя, выход девятого полупроводникового ключа объединен с коллектором десятого полупроводникового ключа и с началом третьей обмотки статора электродвигателя, выход одиннадцатого полупроводникового ключа объединен с коллектором двенадцатого полупроводникового ключа и с концом третьей обмотки статора электродвигателя, эмиттеры второго, четвертого, шестого, восьмого, десятого и двенадцатого полупроводниковых ключей подключены к минусу выпрямленного напряжения диодного моста, отличающееся тем, что первый, третий, пятый, седьмой, девятый и одиннадцатый полупроводниковые ключи выполнены на основе тиристоров со встречно-параллельно соединенными диодами, причем входы первого, второго, третьего, пятого, седьмого, девятого и одиннадцатого полупроводниковых ключей подключены к плюсу выпрямленного напряжения диодного моста, в первом, третьем, пятом, седьмом, девятом и одиннадцатом полупроводниковых ключей анод тиристора объединен с катодом диода и со входом ключа, а катод тиристора объединен с анодом диода и с выходом ключа.



 

Похожие патенты:

Изобретение относится к автоматическим регуляторам электродвигателей. Быстродействующий адаптивный регулятор частоты вращения содержит блок инвертирования, пропорциональную и интегральную части регулятора, четыре блока сравнения, два блока умножения, блок единичной функции, блок выделения модуля, нелинейный ограничитель.

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с асинхронными исполнительными двигателями. Техническим результатом является повышение быстродействия следящего электропривода с асинхронным исполнительным двигателем.

Изобретение относится к области транспорта и может быть использовано в тяговом приводе трамваев, троллейбусов, электровозов, электромобилей. Техническим результатом является повышение эффективности процесса преобразования частоты, расширение функциональных возможностей, области использования и уменьшение массогабаритных показателей частотного привода.

Изобретение относится к электротехнике, а именно к цепи (16) питания М фазной синхронной машины (14), содержащей: преобразователь (22) постоянного входного тока в многофазный переменный ток; накопительную батарею (47); средство (30) детектирования короткого замыкания до и внутри машины (14); устройство (26) для изоляции машины (14) от перенапряжений и/или перегрузок по току многофазного переменного тока; средство (28) управления преобразователем (22), изолирующим устройством (26) и средством (27) короткого замыкания, выполненным с возможностью соединения М выходов (31) источника питания друг с другом.

Изобретение относится к области электротехники и может быть использовано в устройствах преобразования мощности. Техническим результатом является осуществление преобразования мощности с помощью двухплечевого управления ШИМ-модуляцией с высокой универсальностью, которое может ослаблять ограничения на коэффициент мощности и может эффективно использовать свои возможности независимо от коэффициента мощности.

Изобретение относится к электротехнике, а именно к контроллерам синхронных двигателей с разделенными фазами и датчиками положения ротора, содержащим, по меньшей мере, один силовой переключатель с устройством управления и источник питания постоянного тока в средней точке разделенных фазных обмоток двигателя, снабженный компонентой бесперебойного питания источника.

Изобретение относится к области электротехники и может быть использовано в полупроводниковых преобразователях энергии. Техническим результатом является повышение надежности функционирования за счет обеспечения требуемого значения тока.

Изобретение относится к электротехнике и и может быть использовано для привода различных устройств в прецизионном приборостроении, в оптических системах, в системах нанотехнологий.

Изобретение относится к области электротехники и может быть использовано в нефтегазодобывающей и нефтеперерабатывающей отраслях промышленности, машиностроении, коммунальном хозяйстве и в иных отраслях народного хозяйства для автоматизации плавного пуска высоковольтных электродвигателей (мощностью до десятков МВт) напряжением 6-10 кВ.

Изобретение относится к области электротехники и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Изобретение относится к полупроводниковым преобразователям и может быть использовано для непосредственного преобразования трехфазного переменного напряжения в переменное по величине.

Изобретение относится к преобразовательной технике и может быть использовано в качестве источников питания индукционных и сварочных установок, в частотно-регулируемом электроприводе, во вторичных источниках электропитания.

Изобретение относится к области электротехники и может быть использовано в гидроэлектрических турбинах. Техническим результатом является обеспечение оптимизации производительности отдельных турбин и группы турбин.

Настоящее изобретение относится к области электротехники и преобразовательной техники, в частности к статическим преобразователям электрической энергии, построенным по схеме двухзвенных электрических преобразователей.

Настоящее изобретение относится к области электротехники и силовой электроники, в частности к преобразователям электрической энергии, построенным по схеме двухзвенных электрических преобразователей.

Изобретение относится к способу генерации напряжения, осуществляемому генераторным модулем (20) электрической сети (1) летательного аппарата, причем упомянутой электрической сети (1), содержащей линию (3) подачи электропитания, питаемую упомянутым генераторным модулем (20), шину (4) постоянного тока, питаемую от упомянутой линии (3) подачи электропитания через выпрямитель (5) и, по меньшей мере, один электропривод (9), питаемый переменным током от шины (4) постоянного тока через инвертор (8); причем способ генерации содержит этап, на котором подают напряжения (VAC) переменного тока как функцию от устанавливаемого значения напряжения и напряжения, измеренного в упомянутой бортовой сети (1) электропитания.

Изобретение относится к области электротехники и силовой электроники, в частности к преобразователям электрической энергии, построенным по схеме двухзвенных электрических преобразователей.

Настоящее изобретение относится к области электротехники и силовой электроники, в частности к преобразователям электрической энергии, построенным по схеме двухзвенных электрических преобразователей. Технический результат - повышение энергетической эффективности устройства, уменьшение времени подготовки преобразователя частоты к работе, повышение надежности, а также улучшение эксплуатационных характеристик.

Изобретение относится к области электротехники и может быть использовано в высоковольтных частотно-регулируемых электроприводах для контроля исправности входного трансформатора и силовых ячеек.

Изобретение относится к области электротехники и может быть использовано в для управления преобразователем частоты в системе двигателя. Технический результат - уменьшение потерь при коммутации.

Изобретение относится к области электротехники и может быть использовано для потребителей, питающихся от сети. Техническим результатом является повышение точности установки отношения паразитных индуктивностей трансформатора между рабочими режимами.
Наверх