Способ отбора растительных проб и устройство для его осуществления



Способ отбора растительных проб и устройство для его осуществления
Способ отбора растительных проб и устройство для его осуществления
Способ отбора растительных проб и устройство для его осуществления
G01N1/02 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2622440:

Государственное научное учреждение "Северо-западный научно-исследовательский институт молочного и лугопастбищного хозяйства" (RU)

Группа изобретений относится к области технологии циклического отбора растительных проб из буртов, ям, траншей, скирд, стогов и других хранилищ в сельском хозяйстве при определении качественных показателей корма и может быть использовано при отборе проб других трудносыпучих материалов, например торф, грунт, снег и прочих. Устройство содержит вращательный механизм 1, приводной вал 2, режущую коронку 5, накопитель 8. Вращательный механизм 1 имеет ударно-импульсный характер вращения. Вал 2 выполнен с цилиндрической частью шнека 3 и конусообразным шнековым наконечником 4. Коронка 5 выполнена с режущими выступами 6 полукруглой формы, размещенными по периметру торцевой окружности, и имеет на внешней поверхности как минимум один закрепленный шнековый виток 7. При этом коронка 5 жестко зафиксирована внутренней поверхностью в зоне основания конусообразного шнекового наконечника 4 как минимум на одном шнековом витке 7. Вырезают пробы из монолита корма вращательным механизмом 1 с заглублением режущей коронки 5. Вращательный механизм 1 создает ударно-импульсное вращение, ударные импульсы которого на коронке 5 уменьшаются или увеличиваются в моменты возникновения сопротивления резанию до величины преодоления усилия этого сопротивления. Реактивный момент, возникающий при ударно-импульсном резании, компенсируется ударно-импульсным вращательным механизмом и не передается оператору. Обеспечивается эффективность отбора и высокая циклическая скорость отбора растительных проб по глубине. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области технологии циклического отбора растительных проб из буртов, ям, траншей, скирд, стогов, кип, рулонов и других хранилищ в сельском хозяйстве при определении качественных показателей корма и может быть использовано при отборе проб других трудносыпучих материалов, например торф, грунт, снег и прочих.

Отбор проб является трудоемкой операцией и требует применения специального оборудования. Известны способы [1-4] с использованием различных конструкций пробоотборников.

В способе [1] для отбора пробы осуществляют одновременное вращение шнека в первом направлении и вращение нижней части внешней трубы во втором направлении, причем первое направление противоположно второму. Вращение в противоположных направлениях осуществляется двумя электромоторами. Вырезаемая часть материала транспортируется шнеком вверх.

Недостатком данного способа является сложность конструкции устройства для отбора проб и невозможность использования для отбора проб из растительных материалов.

В устройствах отбора проб растительных материалов, описанных в [2-4], конусообразный наконечник ввинчивается или вывинчивается из монолита корма, при этом вырезается проба корма. Продольные отверстия в полой цилиндрической части шнека, являющегося накопителем, используются для вырезания и механического извлечения пробы.

Основными недостатками данных способов являются трудность резания корма и сложность извлечения пробы из накопительного цилиндра. Кроме того, в момент резания монолита корма происходит его разрыхление шнеком, что вносит значительную погрешность определения объема взятой пробы и уровня по глубине хранилища, с которого взята проба.

Наиболее близкими к изобретению являются способ, описанный в [5]. Однако конструкция его устройства, в частности крепление режущей коронки как минимум одним штырем, частично перекрывает отверстие коронки и создает трудности поступления пробы в накопитель. Кроме того, имеются трудности извлечения устройства отбора проб из монолита корма из-за возможности зацепа внешними краями коронки за монолит корма, а треугольные режущие выступы коронки при малых оборотах устройства для взятия пробы приводят к наматыванию стеблей растений на режущие выступы.

Задачей изобретения является обеспечение эффективности резания и высокой скорости циклического отбора растительных проб по глубине монолита корма.

Получение такого технического решения может быть достигнуто путем вырезания монолита корма ударно-импульсным вращением режущей коронки. Ударно-импульсное вращение режущей коронки осуществляется от ударно-импульсного механизма, при этом ударные импульсы на коронке уменьшаются или увеличиваются в моменты возникновения сопротивления резанию до величины преодоления усилия этого сопротивления. Реактивный момент, возникающий при ударно-импульсном резании, на оператора не передается, а компенсируется ударно-импульсным механизмом, т.е. нет отдачи при ударно-вращательном движении коронки в монолите корма. Кроме того, для снижения сопротивления резанию монолита корма и исключения возможного наматывания стеблей на режущие выступы коронки выступы изготовлены полукруглой формы, заточены и размещены по периметру торцевой окружности кромки. Для обеспечения легкого извлечения устройства отбора проб из монолита корма коронка изготовлена как минимум с одним шнековым витком с внешней стороны и жестко зафиксирована внутренней стороной в зоне основания конусообразного наконечника как минимум на одном шнековом витке.

Предлагаемый способ иллюстрируется чертежами, на которых показан общий вид устройства отбора растительных проб (фиг. 1, 2). На фиг. 2 показан способ соединения режущей коронки и накопителя.

Устройство отбора растительных проб (фиг. 1) содержит ударно-импульсный вращательный механизмом 1, приводной вал 2 с цилиндрической частью шнека 3 и конусообразным шнековым наконечником 4, коронку 5 с режущими выступами 6 полукруглой формы, размещенными по периметру торцевой окружности, при этом коронка жестко зафиксирована внутренней поверхностью на цилиндрической части шнека 3 и имеет на внешней поверхности как минимум один жестко закрепленный шнековый виток 7, накопитель 8, имеющий свободное вращение и перемещение вдоль вала с цилиндрической частью шнека для освобождения из зацепов коронки и извлечения взятой пробы, механический уровнемер в виде пластины 9 и регистрирующую трубку 10.

Для соединения накопителя 8 с режущей коронкой 5 (фиг. 2) имеются выступы 11, которые вставляются в прорези - зацепы 12 коронки и поворачиваются в них до полной фиксации вращением накопителя в противоположную сторону по отношению к вращению при резании монолита корма.

Отбор растительных проб осуществляется в следующей последовательности.

Устройство отбора растительных проб (фиг. 1) устанавливают в выбранном месте кормохранилища и путем создания ударно-импульсного вращения приводного вала 2 с цилиндрической частью шнека 3 и конусообразным шнековым наконечником 4 и режущей коронкой 5 с выступами 6 и шнековым витком 7 обеспечивают механическое прижатие коронки к монолиту корма, заглубление и эффективное резание корма. Вырезанная часть корма захватывается цилиндрической частью шнека 3 и подается в накопитель 8 до полного его заполнения. Объем заполнения кормом контролируется механическим уровнемером в виде пластины 9, соединенной с регистрирующей трубкой 10, скользящей вдоль гладкой цилиндрической части приводного вала 2. Перед началом работы накопитель 8 присоединяют выступами 11 (фиг. 2) к зацепам 12 режущей коронки 5 поворотом в противоположную сторону по отношению к вращению при резании монолита корма. В начальный момент резания монолита корма уровнемер пластиной 9 опирается на цилиндрическую часть шнека 8. Извлечение пробы осуществляется противоположным вращением и вытягиванием устройства отбора растительных проб на поверхность монолита корма и выдвижением накопителя 8 вверх после освобождения его из зацепов 12 режущей коронки 5.

Пример

Отбор пробы сельскохозяйственной продукции, в частности корма из растительного материала, осуществляют вращением устройства в выбранном месте кормохранилища с помощью ударно-импульсного вращательного механизма. Вращение конусообразной части шнека и внешнего шнекового витка коронки обеспечивают механическое прижатие коронки к монолиту корма и принудительное его резание, а цилиндрическая часть шнека, размещенная в накопителе, обеспечивает подачу вырезанного корма в объем накопителя, соединенного с помощью выступов с зацепами режущей коронки. При поступлении вырезанного корма в накопитель его объем контролируется механическим уровнемером в виде пластины с регистрирующей трубкой, скользящей вдоль гладкой цилиндрической части вала устройства. Извлечение пробы осуществляется выдвижением устройства вверх путем обратного вращательного движения и освобождения накопителя из зацепов коронки.

Устройство отбора растительных проб с ударно-импульсным вращением режущей коронки обеспечивает эффективность резания и высокую скорость циклического отбора растительных проб по глубине монолита корма с любых уровней по глубине хранилища.

Источники информации

1. Устройство для отбора проб материалов с вращающейся трубой в сборе. Патент 2429460 РФ.

2. Пробоотборник. Патент №2306543 РФ.

3. Пробоотборник растительных материалов. АС SU 1778605 A1, кл. G01N 1/02.

4. Бур для отбора проб уплотненных и плохосыпучих материалов. Патент №2136882 РФ.

5. Способ отбора растительных проб и устройство для его осуществления. Заявка №2012111937 РФ.

1. Устройство отбора растительных проб, содержащее вращательный механизм, приводной вал, режущую коронку, накопитель, отличающееся тем, что вращательный механизм имеет ударно-импульсный характер вращения, вал выполнен с цилиндрической частью шнека и конусообразным шнековым наконечником, коронка выполнена с режущими выступами полукруглой формы, размещенными по периметру торцевой окружности, и имеет на внешней поверхности как минимум один закрепленный шнековый виток, при этом коронка жестко зафиксирована внутренней поверхностью в зоне основания конусообразного шнекового наконечника как минимум на одном шнековом витке.

2. Способ отбора растительных проб при помощи устройства по п. 1, включающий вырезание пробы из монолита корма вращательным механизмом с заглублением режущей коронки, отличающийся тем, что вращательный механизм создает ударно-импульсное вращение, ударные импульсы которого на коронке уменьшаются или увеличиваются в моменты возникновения сопротивления резанию до величины преодоления усилия этого сопротивления, а реактивный момент, возникающий при ударно-импульсном резании, компенсируется ударно-импульсным вращательным механизмом и не передается оператору.



 

Похожие патенты:

Изобретение относится к способу получения стабилизированных частиц йодида серебра. Способ включает приготовление первого раствора, представляющего собой раствор йодида калия с концентрацией 0,216-3,6 ммоль/л, приготовление второго раствора, образованного из водного раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, смешение обоих растворов при нормальных условиях путем приливания первого раствора ко второму раствору с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм.

Изобретение относится к области экспериментальной биологии и медицины и касается вариантов способа окрашивания препаратов цельных биологических тканей и органов методом клик-гистохимии.

Изобретение относится к нанотехнологии в области биологии, ветеринарии, медицины и может быть использовано в судебно-медицинской практике, хирургии и стоматологии.Способ приготовления препаратов из костной ткани для проведения диагностики патологических процессов, включающий фиксацию препарата, его шлифовку и полировку, отличается тем, что обработку препарата проводят в течение 50-70 минут в водной среде с тонкодисперсным абразивным веществом размером 1 мкм, воздействуя ультразвуком с частотой 20-24 кГц, затем препарат промывают в дистиллированной воде и высушивают при температуре 18-22°C.

Группа изобретений относится к приборостроению в медицинском оборудовании для получения срезов исследуемой ткани. Микротом содержит нож объектодержатель для объекта, защитное устройство для ножа.
Изобретение предназначено для применения в химической промышленности, агропромышленном комплексе, производстве строительных материалов и других отраслях. Способ определения коэффициента неоднородности смеси трудноразделимых сыпучих материалов включает подсчет числа проб, минимально допустимого веса пробы, отбор проб смеси и ее компонентов.
В изобретении раскрыто применение фторсодержащего полимера в получении прозрачного мерзлого грунта, который используется в качестве прозрачного твердого материала при получении прозрачного мерзлого грунта, причем фторсодержащий полимер представлен тефлоном AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3 и имеет вид частиц диаметром 0,25-2,0 мм или частиц диаметром ≤ 0,074 мм с неправильной формой.

Группа изобретений относится к области микроскопического исследования цитологических образцов. Система получения цитологического образца содержит фиксатор для фиксации клеток, модификатор клеточной поверхности для модификации поверхности клеток, первое (103) и второе (105) поддерживающие средства для образца, имеющие каждое по меньшей мере две стороны.

Изобретение относится к системам водоотведения, а именно к способам оценки контроля сбросов сточных вод от выпусков (водоотводов) абонентов в канализацию. Способ содержит регистрацию наличия в воде признаков загрязнителей и анализ пробы сливной воды на превышение предельно допустимых значений загрязнителей в сливной воде.

Группа изобретений относится к активным исследованиям астрономического объекта (АО), например астероида или кометы. Способ включает воздействие на поверхность АО направленным электронным лучом с борта космического аппарата, зависшего над поверхностью этого АО.
Изобретение относится к исследованиям материалов методом проб в условиях космического полета с целью обнаружения микроорганизмов космического происхождения. Способ предусмативает взятие проб с поверхностей орбитальной станции посредством стерилизованного и гермоизолированного на Земле пробозаборника.

Группа изобретений относится к области взятия и стабилизации цельной крови или ее компонентов. Устройство для сбора и стабилизации цельной крови или ее компонента содержит первый конец и второй конец и по меньшей мере одну внутреннюю стенку, образующую резервуар. При этом резервуар включает стабилизирующий агент, содержащий ингибитор лизофосфолипазы (LysoPLA), и антикоагулянт. Также раскрывается способ сбора и стабилизации цельной крови или ее компонента, способ диагностирования нарушения метаболизма пациента, способ обнаружения наличия пролекарства и/или его активного метаболита в крови или ее компоненте, способ контролирования лечения пациента с нарушением метаболизма, а также способ определения количества пролекарства и/или его активного метаболита в крови или ее компоненте. Группа изобретений обеспечивает относительно более длительную стабильность крови или ее компонента при хранении для проведения достоверного клинического тестирования. 6 н. и 18 з.п. ф-лы, 3 ил.

Группа изобретений относится к способам измерения толщины слоя нефти над водой и может быть использовано для оценки количества нефти в скважинной продукции с большой долей воды. Отсекают слой нефти вертикальным отсекателем от общей массы нефти над водой. Разбавляют слой нефти внутри отсекателя органическим разбавителем фиксированного объема и переводят полученный раствор в емкость для проведения измерений. Растворитель подают непосредственно в слой нефти с помощью отдельного прозрачного насосного устройства двухстороннего действия. Круговым движением подающей и всасывающей иглы насоса нефть с растворителем на глубину среза иглы перемешивают и затем переводят с помощью насоса из отсекателя в делительную воронку для разделения раствора нефти от попутно отобранной воды. Измеряют объем нефти как разницу между объемами полученной и измеренной смеси и растворителя по формуле: Vн=Vсм-Vр, где Vн - объем нефти, Vсм - объем полученной и измеренной смеси, Vр - объем растворителя. Определяют толщину слоя нефти над водой в исследуемой точке водоема как отношение объема нефти Vн к площади внутреннего сечения F отсекателя по формуле δ=(Vсм-Vр)/F. Подачу растворителя в слой нефти и обратный отбор раствора нефти организуют многократно при значительной величине слоя нефти над водой - в циклическом режиме до полного отсутствия в отсекателе раствора нефти. Насос и отсекатель выполнены как отдельные устройства. Отсекатель имеет с внешней стороны поплавок в форме тора, утяжеленную нижнюю кромку для вертикального вхождения отсекателя в слой нефти и придания устойчивости отсекателя на водной поверхности со слоем нефти. Насос содержит иглу, глубина среза которой выполнена в виде среза на 45° к вертикали. Обеспечивается повышение точности оценки толщины слоя нефти над водой. 2 н. и 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД) для исследования степени загрязнения воздуха продуктами, поступающими вместе с воздухом в систему кондиционирования воздуха (СКВ), а также определения состава вредных примесей, опасных концентраций в воздухе газов и паров. Устройство содержит диффузор с внутренним соплом, ориентированным по направлению потока отбираемого от газотурбинного двигателя воздуха, тройник, электромагнитные клапаны, пробоотборники с встроенными концентраторами и вакуумированные емкости. Сопло диффузора выполнено с одним внутренним выходом, соединенным с плоским тройником, находящимся в одной плоскости с диффузором. Электромагнитные клапаны установлены непосредственно на входные патрубки пробоотборников таким образом, что входной патрубок соответствующего пробоотборника для уменьшения потерь компонентов пробы ввинчен в переходник, закрепленный в корпусе электромагнитного клапана и зафиксирован на выходе к корпусу клапана контргайкой. Внутренний выход переходника выполнен переходящим в седловину для установки электромагнитного клапана непосредственно на входной патрубок соответствующего пробоотборника, а вход контактирует с поршнем клапана, взаимосвязанным с электромагнитом. Корпус электромагнитного клапана выполнен в виде расширительной камеры, в торцах которой установлены подводящее отбираемый воздух от двигателя расширительное сопло и в противоположной стороне корпуса выходной патрубок для сброса избытка воздуха через жиклер. При этом его проходное сечение выполнено с возможностью регулирования температуры внутри расширительной камеры во избежание конденсации примесей в ней. Электромагнитный клапан, установленный на поверхности расширительной камеры, выполнен с возможностью открывать во время отбора воздуха и перекрывать поршнем с резиновым клапаном пробоотборник после отбора воздуха при летных испытаниях авиационных газотурбинных двигателей. Обеспечивается уменьшение габаритов устройства без ухудшения его метрологических характеристик для возможности установки на летающую лабораторию и снижение погрешности измерения концентраций примесей в воздухе ГТД, отбираемого на нужды СКВ летательного аппарата, за счет уменьшения фонового загрязнения. 1 ил.
Изобретение относится к способам определения окислительных показателей растительных масел и может быть использовано в масложировой промышленности при технохимическом контроле в процессе производства и применения растительных масел. Способ контроля показателей окисления растительных масел предусматривает подготовку растительного масла к измерению без замораживания путем его перемешивания в емкости и отбора из ее середины пробы, навеску пробы вносят в пенициллиновый пузырек, затем 20 мл изооктана порциями по 4 мл добавляют в вышеуказанный пузырек, растворенную в изооктане навеску перемешивают путем набора жидкости с последующим сливанием в раствор без доступа воздуха 4 раза, далее добавляют в кварцевую кювету 4 мл изооктана и не менее 4 мл полученной навески, измерение оптической плотности на УФ-спектрофотометре с дейтериевой лампой проводят последовательно при длинах волн 232 нм и 270 нм, для каждого образца проводят два параллельных измерения, в каждом из которых осуществляют 5 последовательных измерений, далее определяют среднее арифметическое значение оптической плотности, а затем определяют индекс окисления (ИО): ИО=2⋅Dcp/m, где Dcp - среднее арифметическое значение оптической плотности для каждого образца при 5 измерениях, m - масса навески, г. 1 з.п. ф-лы, 2 пр.
Изобретение относится к области медицины и касается способа выявления нервных структур в зубочелюстной системе. Сущность способа заключается в том, что проводят фиксацию объекта в течение 3-5 суток в растворе, содержащем концентрированную муравьиную кислоту - 3,5 мл, хлоралгидрат - 3,5 г, дистиллированную воду - 100 мл, причем 2-3 раза в сутки проводят замену фиксирующего раствора. Далее отмытый исследуемый объект, в зависимости от его величины, помещают в смесь спирта с аммиаком на 30-60 минут с дальнейшим промыванием в дистиллированной воде 20-30 минут. Импрегнацию проводят в термостате 5-7 суток в 5% растворе нитрата серебра до приобретения объектом светло-коричневого оттенка, промывая его в дистиллированной воде 10 минут перед восстановлением и 10-15 минут перед проводкой, заливкой, резкой и бальзамированием. Использование способа позволяет с высокой точностью выявлять неравные структуры в зубочелюстной системе.

Изобретение относится к области геофизики, в частности к способам проведения сейсморазведки, и может быть использовано для поиска подводных полезных ископаемых, а также прогнозирования места, силы и времени сейсмического события, например, землетрясения, извержения подводных вулканов. Предложен способ прогнозирования сейсмического события, содержащий выбор, по меньшей мере, одного контролируемого параметра из числа параметров, характеризующих процессы в земной коре, для мониторинга ситуации, по меньшей мере, в одной зоне ожидаемого сейсмического события, принадлежащей исследуемому сейсмоактивному региону; формирование в исследуемом сейсмоактивном регионе, к которому принадлежит, по меньшей мере, эта одна зона ожидаемого сейсмического события, наблюдательной сети из n пунктов измерения, по меньшей мере, этого одного контролируемого параметра, в котором при формировании для исследуемого сейсмоопасного региона пространственно-временной схемы распределения меры согласованности S изменений контролируемых параметров меру согласованности определяют по критерию синхронизации, равному отношению среднеквадратического отклонения разностей между последовательными измерениями для каждого узла регулярной сетки к среднему значению измерений во всех узлах регулярной сетки. Технический результат - повышение достоверности сейсмических исследований.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром ≤0,074 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм. Бесцветная поровая жидкость представлена водой. Смешивают сначала фторсодержащий полимер и кубиковый лед, равномерно перемешивают в криогенной лаборатории при температуре от -6,0°С до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу помещают в плотномер для затвердевания со значением степени переуплотнения 0,8-3 и загружают в криогенный бокс при температуре -20°С, где замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие: плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; а механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта, в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 5 з.п. ф-лы, 2 ил.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром 0,25-2,0 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц 0,1-0,5 мм. Бесцветная поровая жидкость представлена водой. Сначала фторсодержащий полимер и кубиковый лед равномерно перемешивают в криогенной лаборатории при температуре от -6,0 до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу загружают в криогенный бокс при температуре -20°С и замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенный мерзлый песчаный грунт, физические свойства которого следующие: плотность - 1,53-2,0 г/см3, удельная масса - 15-20 кН/м3 и относительная плотность - 20-80%; а механические свойства следующие: угол внутреннего трения - 30-31°, модуль упругости - 8-61 МПа и коэффициент Пуассона - 0,2-0,4. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта и в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к технике отбора образцов воздуха мотогондол двигателей летательных аппаратов для исследования достаточности содержания паров пожаротушащих агентов (хладоны, углекислый газ, элегаз и другие) в воздухе мотогондолы при срабатывании системы пожаротушения и повышения точности их определения. Устройство содержит цилиндрический корпус пробоотборника с расположенным внутри штоком с рисками и поршнем с резиновым уплотнением, ручку, прикрепленную к штоку, для ручного перемещения поршня и крышку, закрывающую надпоршневое пространство. Корпус пробоотборника выполнен с входным патрубком, к которому трубопроводом присоединен электромагнитный клапан, связанный с пультом управления. Между крышкой и корпусом пробоотборника установлено кольцевое резиновое уплотнение меньшего диаметра, на которое наворачивается крышка с боковым подпружиненным фиксатором и сальником. К внутренней торцевой поверхности крышки пробоотборника прикреплена кольцевая резиновая прокладка, внутри окружности которой на крышке выполнено сквозное отверстие с закрывающимся запорным вентилем. Сальниковое уплотнение, герметизирующее зазор между штоком и крышкой пробоотборника выполнено с возможностью герметизации надпоршневого пространства при перемещении штока. Крышка выполнена с боковым подпружиненным фиксатором штока для сохранения вакуума до момента отбора и сохранения пробы под избыточным давлением после ее отбора. Боковая поверхность штока выполнена с делениями линейки, выходящей за пределы крышки. Обеспечивается повышение точности определения пожаротушащих концентраций в воздухе мотогондол авиационных газотурбинных двигателей за счет предотвращения разбавления пробы воздухом до и после ее отбора, а следовательно, и уменьшение времени наземного и летного эксперимента по оценке пожарозащищенности двигателей. 1 ил.

Изобретение относится к устройствам для взятия проб в жидком или текучем состоянии и может быть использовано в ядерных реакторах с жидкометаллическим теплоносителем для отбора проб расплавленного теплоносителя. Устройство содержит трубу, один конец которой снабжен уплотняющим узлом с шибером внутри него, а второй предназначен для погружения под уровень теплоносителя. Для отбора пробы и ее транспортировки предусмотрен пробоотборник в виде капилляра, выполненный с возможностью перемещения по трубе через узел. Перемещение капилляра по трубе обеспечивают механизмом его перемещения. Подающий механизм отвечает за подачу капилляра в трубу. Для поступления теплоносителя в полость капилляра его соединяют с линией вакуум-насоса посредством трубопровода. Обеспечивается герметизация канала, исключается утечка загрязняющих веществ из газовой подушки реактора при отборе пробы. 5 з.п. ф-лы, 1 ил.
Наверх