Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Система гелиотеплохладоснабжения содержит южный и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, а на внешней поверхности вихревой трубы выполнены ребра с уменьшающимися расстояниями между ними по направлению движения «горячего» потока. Изобретение должно обеспечить комфортные параметры воздуха в помещении животноводческой фермы. 3 ил.

 

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Известна система гелиотеплохладоснабжения (см. авторское свидетельство СССР №1733871, кл. F24J 2/42, 1992, бюл. №18), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением.

Недостатком технического решения является энергоемкость при изменяющихся погодно-климатических условиях эксплуатации, когда по южному воздуховоду в нагнетательный вентилятор поступают мелкодисперсные загрязнения в виде каплеобразной влаги и твердых частиц, на перемещение которых приводом вентилятора затрачивается дополнительная энергия (см., например, Курчавин А.Г. и др. Экономия тепловой и электрической энергии. М.: 1980 г. - 280 с., ил.). Кроме того, и твердые частицы загрязнений, например атмосферная и/или технологическая пыль, интенсифицируют износ движущихся частей вентилятора.

Известна система гелиотеплохладоснабжения (см. патент РФ на изобретение №2554171, МПК F24J 2/42, опубл. 27.06.2015), содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений.

Недостатком данной системы является невозможность эффективного использования теплоты нагревающейся внешней поверхности вихревой трубы для накопления тепловой энергии в аккумуляторе, которая позволяет снижать энергозатраты на подогрев отопительной системы для поддержания комфортных параметров воздуха в помещении, особенно при отрицательных температурах окружающей среды.

Технической задачей предлагаемого изобретения является снижение нормированных энергозатрат на подогрев отопительной системы для обеспечения комфортных параметров воздуха в помещении животноводческой фермы за счет эффективного накопления тепловой энергии путем увеличения теплоотдачи вихревой трубы вследствие выполнения на ее внешней поверхности ребер с уменьшающимися расстояниями между ними по направлению движения «горячего» потока.

Технический результат достигается тем, что система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, при этом южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, при этом на внешней поверхности вихревой трубы выполнены ребра с уменьшающимися расстояниями между ними по направлению движения «горячего» потока.

На фиг. 1 представлена схема системы гелиотеплохладоснабжения, на фиг. 2 - завихритель суживающегося сопла на входе в южный воздухопровод, на фиг. 3 - вихревая труба, на внешней поверхности которой расположены ребра.

Система содержит воздухопроводы: южный 1, подпольный 2, северный 3, теплообменный 4 и грунтовый 5 с грунтовыми теплопроводящими трубами 6, помещение 7, под которым расположен тепловой аккумулятор 8, вихревую трубу 9 с входом 10 для обрабатываемого воздуха, каналом «холодного» потока 11, соединенным с входом 12 фильтра 13 и каналом «горячего» потока 14, соединенным с грунтовым воздухопроводом 5, фильтр 13 своим выходом 15 соединен с внутренним объемом помещения 7, нагнетательный вентилятор 16, установленный в вентиляционной камере 17 и соединенный подпольным воздухопроводом 2 через воздушные заслонки 18 и 19 с входом 10 вихревой трубы 9 и с выходом 12 фильтра 13, вытяжной вентилятор 20, установленный в вентиляционной камере 21 и соединенный теплообменным 4 воздухопроводом с северным 3 воздухопроводом, осуществляющим выброс воздуха из помещения 7 в атмосферу.

Южный 1 воздухопровод снабжен суживающимся соплом 22, которое установлено вне помещения 7 и выполнено с завихрителем 23, состоящим из четырех 24, 25, 26 и 27 пластин, входные 28, 29, 30, 31 и выходные 32, 33, 34 и 35 участки которых расположены один относительно другого под прямым углом. У входного отверстия 36 суживающегося сопла 22 на внутренней поверхности 37 выполнена круговая канавка 38, соединенное с устройством удаления загрязнений 39. На внешней поверхности 40 вихревой трубы 9 выполнены ребра 41 с уменьшающимися расстояниями между ними по ходу направления движения «горячего» потока, т.е. от входа 10 для обрабатываемого воздуха до канала «горячего» потока 14.

Система гелиотеплохладоснабжения работает следующим образом.

Основой функционирования вихревой трубы 9 является термодинамическое расслоение воздуха, поступающего во вход 10, на «горячий» переферийный и «холодный» осевой потоки. Конвективная теплота от «горячего» потока посредством теплопроводности передается внешней поверхности 40 (см., например, Меркулов А.П. Вихревой эффект и его применение в промышленности. - М., Машиностроение, 1979.- 386 с. ил.) и, далее, конвекцией в тепловой аккумулятор 8 для последующего подогрева атмосферного воздуха, движущегося по подпольному воздуховоду 2, что сокращает энергозатраты его подогрева за счет отопительной системы.

Дополнительное снижение энергозатрат отопительной системы подогрева атмосферного воздуха в тепловом аккумуляторе 8 достигается увеличением коэффициента теплоотдачи конвективного теплообмена за счет интенсификации съема тепла с внешней поверхности 40 вихревой трубы 9 путем выполнения на ней ребер (см., например, с. 168, Коваленко Л.М., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. - М.: Энергоиздат, 1968. - 240 с. ил.).

Особенностью теплообмена в вихревой трубе 9 при термодинамическом расслоении воздуха является то, что температура «горячего» потока и, соответственно, температура внешней поверхности 40, а следовательно, коэффициент теплоотдачи и количество тепла, передаваемого конвекцией тепловому аккумулятору 8 от входа 10 до канала 14, уменьшается. Поэтому для поддержания максимальной теплоотдачи (соответствующей началу термодинамического расслоения у входа 10) на внешней поверхности 40 вихревой трубы 9 расположены ребра 41 таким образом, что расстояние между ними уменьшается от входа 10 к каналу 14 по соотношению l1>12>…>1n.

Снижение температуры на внешней поверхности 40 вихревой трубы 9 в зоне затухающего вращающегося «горячего» потока, т.е. от входа 10 к каналу 14, при передаче тепла конвекцией тепловому аккумулятору 8 компенсируется увеличением количества ребер вследствие уменьшения расстояния между ними.

В результате тепловой поток равномерно распределяется по ребрам 41 и осуществляет энергосберегающий подогрев атмосферного воздуха с максимальной отдачей тепловой энергии, соответствующей условно одинаковой температуре внешней поверхности 40 вихревой трубы 9, вне зависимости от процесса снижения температуры вращающегося «горячего» потока термодинамически расслоенного воздуха.

Следовательно, предлагаемое конструктивное решение существенно увеличивает возможность использования вихревой трубы в системе гелиотеплохладоснабжения.

При наличии каплеобразных частиц атмосферной и технологической влаги, а также твердых частиц пыли в атмосферном воздухе, поступающем по южному 1 воздухопроводу через подпольный воздухопровод 2 в нагнетательный вентилятор 16, его приводом затрачивается дополнительная энергия на транспортировку данной смеси на вход 10 вихревой трубы 9. Кроме того, загрязнения атмосферного воздуха интенсифицируют износ лопастей нагнетательного вентилятора 16 и, как следствие, снижается надежность системы гелиотеплохладоснабжения. Снабжение южного 1 воздухопровода суживающимся соплом 22 с завихрителем 23 приводит к тому, что атмосферный воздух с частицами загрязнений после входного отверстия 36 контактирует с входными участками 28, 29, 30, 31 четырех пластин 24, 25, 26 и 27, которые повернуты на прямой угол относительно выходных участков 32, 33, 34 и 35. В результате всасываемый атмосферный воздух в суживающемся сопле разделяется на четыре потока и по мере движения перемещается на 90°, что приводит перед поступлением его в южный 1 воздухопровод во вращательное движение. Под действием центробежных сил загрязненного атмосферного воздуха, частицы загрязнений отбрасываются к внутренней поверхности 37 суживающегося сопла 22 и перемещаются к круговой канавке 38 у входного отверстия 36, откуда поступают в устройство удаления загрязнений 39 для последующего удаления вручную или автоматически (на фиг. не показано).

Следовательно, в нагнетательный вентилятор 16 поступает очищенный от загрязнений атмосферный воздух и привод его потребляет нормированное количество энергии, вне зависимости от погодно-климатических условий эксплуатации системы гелиотеплохладоснабжения.

В теплое время года при температурах атмосферного воздуха выше значений температуры, предусмотренных параметрами микроклимата внутри помещения 7, например 25°С (воздушная заслонка 19 закрыта), атмосферный воздух по южному воздухопроводу 1 нагнетается в подпольный воздухопровод 2 вентилятором 16, установленным в вентиляционной камере 17. Из подпольного воздухопровода 2 по открытой воздушной заслонке 18 атмосферный воздух под избыточным давлением поступает на вход 10 вихревой трубы 9, в которой происходит расслоение на «холодный» (температура несколько ниже входящего в вихревую трубу атмосферного воздуха) и «горячий» (температура несколько выше входящего в вихревую трубу атмосферного воздуха) потоки воздуха. Холодный поток разделенного в вихревой трубе 9 атмосферного воздуха с заданной по условиям микроклимата внутри здания 7 температурой, например 18°С, по холодному каналу 11 вихревой трубы 9 поступает на вход 12 и в фильтр 13, где очищается от твердых частиц загрязнений, а также от жидких частиц сконденсировавшейся в процессе охлаждения парообразной влаги атмосферного воздуха, а, как известно, чем выше температура атмосферного воздуха, тем больше в нем влаги, при этом отделенные загрязнения в фильтре 13 удаляются из него через установку удаления загрязнений, например конденсатоотводчик поплавкового типа. «Горячий» поток атмосферного воздуха по горячему каналу 14 вихревой трубы 9 направляется в грунтовый воздухопровод 5, где охлаждается, отдавая тепло грунту, а сконденсировавшаяся в процессе охлаждения воздуха влага удаляется через теплопроводящие трубы 6 и дренируется в грунте. Охлажденный в грунтовом воздухопроводе 5 воздух поступает к входу 12 фильтра 13, где окончательно очищается от капельнообразных загрязнений и твердых частиц загрязнений, т.е. доводится до параметров, определяемых заданным микроклиматом в помещении 7. Из фильтра 13 обработанный воздух с заданными параметрами по температуре, влажности и степени очистки от твердых частиц поступает внутрь помещения 7.

Воздух из помещения 7 вентилятором 20, установленным в вентиляционной камере 21, направляется в теплообменный воздухопровод 4, где отдает тепло аккумулятору 8, и по северному воздухопроводу 3 выбрасывается в атмосферу.

Размещение вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает дополнительное накопление тепла, выделяемого через корпус вихревой трубы 9, в процессе расслоения обрабатываемого атмосферного воздуха на «холодный» и «горячий» потоки.

В результате тепловой аккумулятор 8 накапливает тепловую энергию, поступающую как от теплообменного воздухопровода 4, так и от корпуса вихревой трубы 9.

При снижении температуры нагнетаемого вентилятором 16 атмосферного воздуха ниже гостированной для заданных условий микроклимата здания 7, например в ночное время температура около 15°С, открывается воздушная заслонка 19 (воздушная заслонка 18 закрыта). Атмосферный воздух по южному воздухопроводу 1 вентилятором 16 через открытую воздушную заслонку 19 подается в фильтр 13, где очищается до заданных условиями микроклимата в помещении 7 параметров. Тепловой аккумулятор 8 отдает тепло всасываемому атмосферному воздуху в подпольном воздухопроводе 2, нагревая его до необходимой температуры. Если тепловой энергии, отдаваемой тепловым аккумулятором 8 атмосферному воздуху, движущемуся по подпольному воздухопроводу 2, недостаточно, то осуществляется подогрев отопительной системой (не указано), затраты которой будут снижены, так как значительная часть тепла поступает от теплового аккумулятора 8 и грунта.

Размещение фильтра 13 после вихревой трубы 9 в тепловом аккумуляторе 8 обеспечивает снижение энергоемкости очистки нагнетаемого вентилятором 16 через южный 1 воздухопровод атмосферного воздуха вовнутрь помещения 7 за счет частичной очистки в процессе расслоения обрабатываемого воздуха (часть твердых загрязнений перемещается в горячий поток и дренируется в грунт по теплообменным трубам 6). Также полученное тепло от аккумулятора 8 при низких температурах атмосферного воздуха устраняет возможность обмерзания фильтрующих элементов, приводящего к возрастанию гидравлического сопротивления при температурах атмосферного воздуха, имеющих значение существенно более низкое, чем предусмотрено параметрами микроклимата внутри помещения 7, вихревая труба 9 воздушной заслонкой 18 отключается от подпольного воздухопровода 2. Всасываемый атмосферный воздух нагревается как в южном воздухопроводе 1 за счет использования тепла солнечной радиации (южный воздухопровод выполнен из поглощающего солнечную радиацию материала), так и от теплового аккумулятора 8 в подпольном воздухопроводе 2. В случае недостатка данного тепла для получения заданной температуры воздуха, нагнетаемого вовнутрь помещения 7, применяется отопительная система (не показана) незначительной мощности.

Оригинальность предлагаемого технического решения заключается в том, что достигается снижение энергозатрат системы отопления для поддержания комфортных условий в помещении путем интенсификации отдачи тепла от вихревой трубы в тепловом аккумуляторе за счет выполнения на ее наружной поверхности ребер с уменьшающимся расстоянием их расположения от входа обрабатываемого воздуха до канала «горячего» потока.

Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменник - с помещением, кроме того, южный воздухопровод снабжен суживающимся соплом, которое установлено вне помещения и выполнено с завихрителем, состоящим из четырех пластин, входные и выходные участки которых расположены один относительно другого под прямым углом, причем у входного отверстия суживающегося сопла на внутренней поверхности выполнена круговая канавка, соединенная с устройством удаления загрязнений, отличающаяся тем, что на внешней поверхности вихревой трубы выполнены ребра с уменьшающимся расстоянием между ними по направлению «горячего» потока.



 

Похожие патенты:

Изобретение относится к области гелиотехники, в частности к установкам с использованием солнечной энергии для нагрева теплоносителя в действующих и проектируемых системах теплоснабжения с естественной и принудительной циркуляцией жидкости в контуре солнечных коллекторов.

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров на судоходных акваториях. Предложен навигационный буй, содержащий обтекаемый герметичный корпус, разделенный на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса, солнечную энергетическую установку, состоящую из светооптического устройства, автономный источник электропитания (аккумулятор) и подзарядное энергетическое устройство с механизмом подключения его к данному источнику, преобразующее тепловую энергию Солнца в электрическую и помещенное внутрь гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, волновую энергетическую установку, установленную во внутренней полости корпуса, содержащую цилиндрическую емкость со статором линейного электрического генератора, по оси которой в направляющих перемещается шток, на котором установлен ротор с постоянными магнитами линейного электрического генератора, на конце штока установлен стабилизирующий балласт, выполненный полым в виде поплавка, обмотка статора соединена с входом зарядного устройства, выход которого соединен с аккумулятором, от которого питается светооптическая аппаратура, при этом введена еще одна солнечная энергетическая установка, выполненная в виде сферы, установленная по периметру светодиодного излучателя и соединенная с аккумулятором.

Изобретение относится к устройствам преобразования солнечной энергии в тепловую, в частности к конструкциям солнечных водонагревательных установок, размещенных на строительных конструкциях зданий (козырьки (навесы) над крыльцом, балконом, террасой и т.д.).

Изобретение направлено на повышение эффективности преобразования тепловой энергии Солнца и механической энергии движения воздуха в электрическую энергию и может использоваться в воздушных электростанциях, способствуя повышению их мощности и экономичности.

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах.

Изобретение раскрывает приемник солнечного излучения для преобразования солнечной энергии в тепловую и электрическую энергию. Приемник (2) солнечного излучения (1) для гелиотермальной параболической антенны имеет тепловой двигатель, расположенный в его фокусе, впускной и выпускной коллекторы (9), группу трубок (8), идущих от впускного коллектора к выпускному коллектору, по которым течет нагреваемая при приеме солнечного излучения (1) рабочая текучая среда.

Изобретение относится к энергетике, а именно к энергетике преобразования солнечного излучения в электричество с помощью тепловых машин, и может быть использовано, в частности, в солнечных электрических станциях башенного типа.

Солнечный коллектор с турбиной или турбокомпрессором для приема солнечного излучения содержит коллектор (1) в форме конусообразной спирали, содержащий трубки круглого или квадратного сечения, причем радиус предыдущего витка трубок больше последующего, так что тень предыдущего витка не падает на последующий, и витки плотно прилегают друг к другу без зазоров между ними вплоть до последнего витка, соединенного с трубкой, питающей ведущую турбину (4); и содержит вход (6) для поступления сжатого воздуха из компрессора (16), содержит защиту указанного коллектора (1), покрывающую его поверхность и поверхность трубок (18) и различные инжекторы (30) для производства тепла посредством инжекции газов, содержит ведущую турбину (4), на которую поступает воздух, разогретый в коллекторе (1) энергией солнечного излучения или другими видами топлива, указанная турбина содержит теплообменник, отделяющий ведущую турбину (4) от компрессора (16), содержит промежуточную секцию, разделяющую компрессор (16) и ведущую турбину (4), с центральным проходом для размещения оси (9) в полости воздухонепроницаемой трубки, по которой лопастями (22) компрессора (16) направляется поток воздуха из окружающей среды наружной температуры по направлению к лопаткам ведущей турбины (4), охлаждая их, а центральными лопастями (21) ведущей турбины воздух выбрасывается наружу, где он смешивается с потоком воздуха, продвигающимся на выход (8).

Изобретение относится к гелиотехнике и может быть использовано в системах горячего водоснабжения. Система солнечного теплоснабжения содержит бак-аккумулятор 1 с высокотемпературной 2 и низкотемпературной 3 секциями, размещенными соответственно в верхней и нижней частях бака-аккумулятора и разделенными перегородкой 33 с односторонней проводимостью теплоносителя.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоцилиндров.

Предлагаемое изобретение относится к системе отопления домов, а также может использоваться для нагрева котлов с подачей пара на турбины и пр. Целью изобретения является расширение применения способа разгона газа и устройства для его осуществления.

Изобретение относится к области устройств дистанционного контроля и управления отопительными системами. Достигаемый технический результат - возможность заблаговременной диагностики состояния отопительной системы, предупреждающего технического обслуживания, обеспечение безопасности процесса контроля.

Заявленное изобретение относится к области использования тепловой энергии для обогрева зданий с индивидуальным котлом. Система отопления с энергонезависимым режимом в два, три, четыре этажа с использованием многослойных потоков воды для осуществления циркуляции содержит котел, установленный на первом этаже, соединенный с подающим розливом, расположенным над полом или в полу второго этажа, подающий розлив закольцовывается стояком с обратным розливом, расширительный бак, стояки и приборы отопления.

Заявленное изобретение относится к области использования тепловой энергии для обогрева зданий с индивидуальным котлом. Система отопления с энергонезависимым режимом, в два, три, четыре этажа, с подключением теплого пола, с использованием многослойных потоков воды для осуществления циркуляции содержит котел, установленный на первом этаже, соединенный с подающим розливом, расположенным над полом или в полу второго этажа, подающий розлив закольцовывается стояком с обратным розливом, расширительный бак, стояки и приборы отопления, а также контуры теплого пола.

Изобретение относится к системам обогрева различных объектов и предназначено преимущественно для использования при подогреве воздуха, подаваемого в шахту. Установка для подогрева воздуха, подаваемого в шахту, содержит камеру сгорания, воздухоподогреватель, вентилятор, дымосос и трубопроводы.

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения и качественного воздухообмена в зданиях содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным воздухопроводом, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, а теплообменный воздухопровод снабжен всасывающим фильтром, который установлен в помещении и выполнен в виде узла очистки внутреннего воздуха, состоит из диффузора с винтообразными продольно размещенными канавками, входящими в круговую канавку, соединенную со сборником загрязнений, в котором размещено осушивающее устройство в виде емкости с адсорбирующим веществом.

Изобретение относится к способам подогрева различных объектов и предназначено преимущественно для использования при подогреве воздуха, подаваемого в шахту. Техническим результатом изобретения является повышение эффективности способа подогрева воздуха в шахтах.

Изобретение относится к теплоэнергетике, в частности к устройствам для создания микроклимата в помещении. .

Изобретение относится к способам обогрева специализированных объектов - плавательных бассейнов, бань, химчисток, саун, сушилок в межотопительный период. .

Изобретение относится к системам отопления с тепловыми насосами, использующими тепло низкотемпературных источников для получения воды, пригодной для автономного отопления и горячего водоснабжения. Задачей предложенного изобретения является повышение эффективности автономной системы отопления и горячего водоснабжения помещений с тепловым насосом компрессионного типа, работающим по схеме грунт-вода, за счет более полного восстановления теплового потенциала грунта в зоне расположения наружного контура теплового насоса. Система отопления и горячего водоснабжения помещений, включающая компрессионный тепловой насос типа грунт-вода, внутренний контур теплового насоса с высокотемпературным теплоносителем, внешний контур теплового насоса с теплообменником с низкотемпературным теплоносителем, а также солнечный коллектор, емкость для горячего водоснабжения, блок управления тепловыми потоками системы, жидкостные насосы для перекачивания теплоносителей и воды горячего водоснабжения, при этом в грунте в непосредственной близости от теплообменника внешнего контура расположен постоянно действующий аккумулятор тепловой энергии, связанный трубопроводами с внешним контуром теплового насоса и с солнечным коллектором. 10 з.п. ф-лы, 4 ил.
Наверх