Способ сухого обогащения доломита

Изобретение относится к процессам обогащения сухим способом доломита, применяемого для приготовления стекольной шихты и асфальтобетонных смесей, и может быть использовано для обогащения известняка и других нерудных материалов. Способ сухого обогащения доломита включает операции сушки, измельчения, осаждения и пылеулавливания тонкодисперсного доломита из аспирационного воздуха и отходящих сушильных газов, трехстадийной сепарации с выделением после первой и третьей стадий сепарации смеси крупнодисперсного и тонкокодисперсного измельченного доломита, а также недоизмельченного доломита, направляемого в поток рециркуляции на операцию измельчения. На второй стадии сепарации, осуществляемой с помощью регулируемой аэроклассификации из смеси крупнодисперсного и тонкодисперсного измельченного доломита, полученной после первой стадии сепарации, дополнительно выделяют тонкодисперсный и крупнодисперсный измельченный доломит. Крупнодисперсный измельченный доломит смешивают со смесью крупнодисперсного и тонкодисперсного измельченного доломита, выделенной после третьей стадии сепарации. Тонкодисперсный измельченный доломит, полученный в процессе регулируемой аэроклассификации, смешивают с тонкодисперсным доломитом, осажденным при пылеулавливании из аспирационного воздуха и отходящих сушильных газов. Измеряют общее количество тонкодисперсного доломита, полученного за контролируемый период времени, и, если требуется уменьшение общего количества тонкодисперсного доломита в смеси крупнодисперсного и тонкодисперсного измельченного доломита, отсевы недоизмельченного доломита с третьей стадии сепарации отправляют на дополнительное измельчение в валковой дробилке, а если необходимо увеличение общего количества тонкодисперсного доломита, выделенного из смеси крупнодисперсного и тонкодисперсного измельченного доломита, измельчение отсевов недоизмельченного доломита с третьей стадии сепарации производят в дробилке ударного действия. Технический результат - повышение эффективности выделения тонкодисперсной фракции из измельченного доломита. 1 ил., 3 пр.

 

Изобретение относится к процессам обогащения сухим способом доломита, применяемого для приготовления стекольной шихты и асфальтобетонных смесей, и может быть использовано для обогащения известняка и других нерудных материалов.

Доломит является одним из основных материалов для совместного введения в состав стекла оксидов кальция и магния. Также молотый доломит в виде мелко измельченного минерального порошка используется в качестве одного из основных ингредиентов в производстве асфальтобетонных смесей для улучшения качества дорожных покрытий.

Производимая на многих стекольных заводах в отделениях по обработке сырьевых материалов доломитовая мука, выпускаемая по ГОСТ 23672 «Доломит для стекольной промышленности», не в полной мере отвечает технологическим требованиям к эксплуатации стекловаренных печей и варке стекла. Это прежде всего связано с высоким содержанием (до 80%) пылевидных фракций в молотом доломите и повышенным пылением при дозировании и загрузке шихты в стекловаренную печь, что приводит к активному уносу и осаждению доломитовой пыли в насадках регенераторов и сокращению кампании печи. Кроме того, процесс диссоциации тонкодисперсного доломита (фракции частиц менее 0,1 мм) при варке стекла начинается уже в загрузочном кармане и в меньшей степени способствует последующим процессам осветления и усреднения стекломассы. Поэтому для успешного ведения процессов приготовления шихты и варки высококачественного стекла молотый доломит должен представлять собой крупнозернистые порошки, в которых 80-90% материала составляют частицы размером от 0,1 мм до 2,0 мм.

Но в связи с тем, что при дроблении кускового доломита в зависимости от его твердости образуется от 25 до 35 процентов пылевидных частиц, необходимо снижать это количество тонкодисперсного доломита и частично выделять его из общей смеси крупнодисперсного и тонкодисперсного измельченного доломита, если данный материал предназначен для приготовления стекольной шихты. При этом по технологическим требованиям ряда стекольных заводов гранулометрический состав измельченного доломита должен содержать: 5-10% частиц размером 1,6-2 мм; 10-15% частиц размером 1,0-1,6 мм; 10-15% частиц размером 0,63-1,0 мм; 10-15% частиц размером 0,315-0,63 мм; 30-40% частиц размером 0,1-0,315 мм; и 10-20% частиц размером меньше 0,1 мм. Однако следует отметить, что не весь тонкодисперсный доломит с размером частиц менее 0,315 мм необходимо выделять из этой смеси, так как частички тонкой фракции доломита в процессе приготовления и увлажнения стекольной шихты вместе с частичками кальцинированной соды и других компонентов должны обволакивать зерна кварцевого песка, облегчая их последующее плавление на начальной стадии стекловарения.

Выделенный же частично из этой смеси измельченного доломита тонкодисперсный продукт с размером частиц меньше 0,315 мм можно использовать в различных отраслях промышленности и в том числе для производства асфальтобетонных смесей в качестве минерального наполнителя.

Известен способ [1] сухого обогащения материалов известковой группы (известняк, доломит, мел, барит), включающий технологические операции дробления в щековых дробилках, сушки в сушильных барабанах, тонкого помола в шаровых мельницах или молотковых дробилках, рассева по фракциям и, магнитной сепарации. Данный способ сухого обогащения доломита наиболее часто применяется в отделениях по обработке сырьевых материалов составных цехов стекольных заводов. Недостатками подобной технологии является одностадийная сепарация, позволяющая отделять только недоизмельченный материал от измельченного, и то, что уловленная и осажденная в циклонах и фильтрах пыль возвращается в обогащенный доломит.

Известен также способ сухого обогащения доломита, реализованный на заводе по производству молотого доломита [2], который включает в себя операции сушки, измельчения с рециркуляцией недоизмельченного продукта, двухстадийной сепарации, магнитной сепарации, а также осаждения и пылеулавливания тонкодисперсных фракций доломита из аспирационного воздуха и отходящих сушильных газов. Полученные и выделенные при этом тонкодисперсные фракции доломита не смешиваются с конечным измельченным материалом, а используются для других производств. Недостатком же этого способа является малое количество тонкодисперсной фракции, выделяемой только из аспирационного воздуха и отходящих дымовых газов. Это не позволяет достигнуть требуемого гранулометрического состава молотого доломита для варки стекла и ограничивает объем полученной мелкой фракции, применяемой в качестве побочного продукта для производства асфальтобетонных смесей. Кроме того, в способе отсутствуют технологические операции, позволяющие оптимизировать соотношение тонкодисперсных и крупнодисперсных фракций измельченного доломита.

Наиболее близким техническим решением является способ сухого обогащения каолина [3], который также можно использовать для сухого обогащения доломита, известняка и других неметаллорудных материалов. Способ содержит операции сушки, измельчения, трехстадийной сепарации, рециркуляции недоизмельченного продукта, осаждения и выделения из аспирационного воздуха и отходящих сушильных газов тонкодисперсной фракции материала. Способ позволяет более эффективно выделять по отдельности тонкодисперсную и крупнодисперсную фракции обогащаемого материала, но не обеспечивает полидисперсный гранулометрический состав доломита, необходимый для стекловарения. Отсутствует в данном способе и возможность изменять соотношение тонкодисперсной и крупнодисперсной фракций материала в полидисперсной смеси конечного продукта. А выделяемый на второй стадии сепарации продукт не используется и должен подлежать утилизации.

Решаемая задача - снижение количества тонкодисперсной фракции материала в обогащаемом доломите, используемом для стекольной промышленности, и обеспечение возможности регулируемого изменения количества получаемой тонкодисперсной фракции, применяемой для производства асфальтобетонных смесей.

Указанный технический результат достигается тем, что в способе сухого обогащения доломита, включающем операции сушки, измельчения, осаждения и пылеулавливания тонкодисперсного доломита из аспирационного воздуха и отходящих сушильных газов, трехстадийной сепарации с выделением после первой и третьей стадий сепарации смеси крупнодисперсного и тонкодисперсного измельченного доломита, а также недоизмельченного доломита, направляемого в поток рециркуляции на операцию измельчения, на второй стадии сепарации, осуществляемой с помощью регулируемой аэроклассификации, из смеси крупнодисперсного и тонкодисперсного измельченного доломита, полученной после первой стадии сепарации, дополнительно выделяют тонкодисперсный и крупнодисперсный измельченный доломит, причем крупнодисперсный измельченный доломит смешивают со смесью крупнодисперсного и тонкодисперсного измельченного доломита, выделенной после третьей стадии сепарации, а тонкодисперсный измельченный доломит, полученный в процессе регулируемой аэроклассификации, смешивают с тонкодисперсным доломитом, осажденным при пылеулавливании из аспирационного воздуха и отходящих сушильных газов, при этом измеряют общее количество тонкодисперсного доломита, полученного за контролируемый период времени, и, если требуется уменьшение общего количества тонкодисперсного доломита в смеси крупнодисперсного и

тонкодисперсного измельченного доломита, отсевы недоизмельченного доломита с третьей стадии сепарации отправляют на дополнительное измельчение в валковой дробилке, а если необходимо увеличение общего количества тонкодисперсного доломита, выделяемого из смеси крупнодисперсного и тонкодисперсного измельченного доломита, измельчение отсевов недоизмельченного доломита с третьей стадии сепарации производят в дробилке ударного действия.

Преимуществом предлагаемого способа сухого обогащения доломита является более эффективное выделение тонкодисперсной фракции материала из доломита, предназначенного для стекольной промышленности. В данном способе к пылевидному материалу, полученному из аспирационного воздуха и отходящих сушильных газов, добавляется тонкодисперсный измельченный доломит после его аэроклассификации.

Другим преимуществом является возможность контролировать и изменять общее количество тонкодисперсной фракции измельченного доломита в зависимости от технологических параметров (например, можно учитывать твердость доломита) и сезонной потребности в минеральных порошках (в зимнее время тонкодисперсный минеральный порошок на основе измельченного доломита не используется для приготовления асфальто-бетонных смесей). Изменение количества получаемой тонкодисперсной фракции доломита достигается как за счет разных способов доизмельчения недоизмельченного доломита, осуществляемых либо раздаливанием в валковой дробилке, либо ударным воздействием в молотковой дробилке, так и за счет регулирования режимов аэроклассификации. Причем в некоторых случаях, когда при дроблении доломита с повышенной твердостью образуется меньшее количество тонкодисперсных фракций, режим аэроклассификации можно отключать.

Еще одним преимуществом является возможность получения полидисперсного гранулометрического состава измельченного доломита, в котором повышено содержание крупнодисперсных частиц (размер частиц больше 0,315 мм и меньше 2,0 мм) и понижена концентрация тонкодисперсных фракций. Такой результат достигается за счет трехстадийной сепарации, вторая стадия которой осуществляется с помощью регулируемой аэроклассификации. При этом из смеси крупнодисперсных и тонкодисперсных фракций выделяется часть тонкодисперсных частиц и добавляется в смесь крупнодисперсный материал после аэроклассификации. Все это также повышает свойства текучести материала и ускоряет его последующие операции загрузки и разгрузки из бункеров и различных транспортных средств.

Реализация данного способа поясняется чертежом, на котором изображена технологическая линия сухого обогащения доломита, включающая в себя: приемный бункер 1 необогащенного доломита; питатель 2, установленный на выходе приемного бункера 1; промежуточный ленточный конвейер 3; сушильный барабан 4; группу циклонов 5, предназначенную для осаждения тонкодисперсных фракций доломита из отходящих сушильных газов; рукавный фильтр пыли 6; дымосос 7 с дымовой трубой 8; дробилку 9 ударного действия; ковшовый элеватор 10; двухситовый витретебрационный грохот 11 первой стадии сепарации; односитовый вибрационный грохот 12 й стадии сепарации; переключатель 13 потока; промежуточный бункер 14, оборудованный регулируемым питателем 15 разгрузки; ковшовый элеватор 16; регулируемый аэроклассификатор 17 второй стадии сепарации; сборочный конвейер 18; переключатель потока 19; валковую дробилку 20; магнитный сепаратор 21; ковшовый элеватор 22; переключатель 23 потока; две силосных банки 24, 25; ленточный конвейер 26 осажденной и уловленной тонкодисперсной фракции доломита; винтовой конвейер 27 тонкодисперсной фракции доломита; ковшовый элеватор 28; накопительный бункер 29 тонкодисперсной фракции доломита; и аспирационную систему 30.

Технологическая линия, реализующая данный способ, работает следующим образом. Исходное сырье, в виде кусков размером 20-40 мм и влажностью до 8% с помощью автомобильного транспорта загружается в приемный бункер 1 необогащенного доломита. Из этого бункера кусковой доломит с помощью питателя 2 и промежуточного ленточного конвейера 3 подается в сушильный барабан, в котором влажность обогащаемого материала понижается до 0,2-0,5%. При этом отходящие из сушильного барабана дымовые сушильные газы, насыщенные испаренной влагой и пылевидной тонкодисперсной фракцией доломита, проходят через группу циклонов 5 и рукавный фильтр 6, где они очищаются, и с помощью дымососа 7 выбрасываются через дымовую трубу 8 в атмосферу.

Осажденная в группе циклонов 5 и рукавном фильтре 6 тонкодисперсная пылевидная фракция доломита выгружается из этих агрегатов на ленточный конвейер 26 и далее с помощью винтового конвейера 27 и ковшового элеватора 28 загружается в накопительный бункер 29, заполнение которого контролируется с помощью тензометрической весовой системы (не показана). В этот же накопительный бункер 29 выгружается и тонкодисперсная фракция доломита из аспирационной системы 30, очищающей воздух с выбросами пыли, образующимися на ленточном конвейере 26 и вибрационных грохотах 11, 12.

Высушенный кусковой доломит из сушильного барабана поступает на вход дробилки 9 ударного действия (роторная или молотковая дробилка), где он интенсивно измельчается. Измельченный до частиц разного размера, доломит поднимается ковшовым элеватором 10 и направляется на верхнюю сетку двухситового вибрационного грохота 11. Надрешетный продукт с этой сетки, имеющей размер ячеек 7×7 мм, сбрасывается в дробилку 9 ударного действия и рециркулирует до тех пор, пока не доизмельчится до меньших размеров. Остальные измельченные частицы доломита проваливаются сквозь верхнюю сетку и попадают на нижнюю сетку с размером ячеек 2×2 мм. При этом примерно половина провалившегося сквозь верхнюю сетку измельченного материала просеиваится через нижнюю сетку двухситового вибрационного грохота 11, а вторая половина, не успев просеяться, направляется на вход односитового вибрационного грохота 12, сетка которого также имеет размер ячеек 2×2 мм.

Частицы доломита, имеющие размер больше, чем 2×2 мм, отсеиваются односитовым вибрационным грохотом 12 и через переключатель потока 19 сбрасываются на доизмельчение либо в валковую дробилку 20, либо в дробилку ударного действия 9. Частицы же меньшего размера проваливаются через сетку и попадают на сборочный конвейер 18, на который также выгружается крупнодисперсная фракция доломита после операции аэроклассификации.

Аэроклассификация, при которой из подрешетного продукта нижней сетки двухситового вибрационного грохота 11 выделяются тонкодисперсная (размером меньше 0,315 мм) и крупнодисперсная (с размером больше 0,315, но меньше 2,0 мм) фракции измельченного доломита, осуществляется следующим образом. Подрешетный продукт с нижней сетки двухситового вибрационного грохота 11 через переключатель 13 потока поступает в промежуточный бункер 14, из которого с помощью регулируемого питателя 15 он направляется на вход регулируемого аэроклассификатора 17. Аэроклассификация измельченного доломита производится по принципу аэродинамического разделения частиц, имеющих разный вес, в закрученном скоростном потоке воздуха, создаваемом турбиной, установленной внутри аэроклассификатора. Изменяя количество подаваемого материала с регулируемого питателя 15 и меняя частоту вращения турбины (регулировка осуществляется частотными преобразователями (не показаны)), можно регулировать степень разделения фракций по размеру частиц.

Тонкодисперсная фракция измельченного доломита после регулируемого аэроклассификатора подается на вход винтового конвейера 27 и вместе с тонкодисперсной пылью, осажденной в группе циклонов 5 и рукавном фильтре 6, загружается в накопительный бункер 29, в который подается пыль и из аспирационной системы 30. По мере накопления в бункере 29 тонкодисперсная фракция доломита в виде минерального порошка отгружается соответствующим потребителям.

Со второго выхода регулируемого аэроклассификатора 17 выделенная крупнодисперсная фракция измельченного доломита выгружается на сборочный конвейер 18, на который в процессе сепарации также выгружается подрешетный продукт с односитового вибрационного грохота 12. Следует отметить, что этот подрешетный продукт содержит значительно меньше тонкодисперсной фракции, чем подрешетный продукт нижней сетки двухситового вибрационного грохота 11, так как основной объем мелких частиц проваливается через нижнюю сетку грохота 11 и поступает на аэроклассификацию. Поэтому на сборочном конвейере 18 образуется оптимальная смесь частиц с основным размером больше 0,315 мм и меньше 2,0 мм, хотя в этой смеси частично присутствует и мелкодисперсная фракция, которая в небольших количествах необходима для приготовления стекольной шихты.

Далее смесь с пониженным содержанием мелкодисперсной фракции измельченного доломита проходит через магнитный сепаратор 21, отделяющий ферромагнитные включения, и с помощью ковшового элеватора 22 и переключателя потока 23 направляется в одну из силосных банок 24, 25 для хранения и последующей отгрузки на стекольные заводы.

В процессе второй стадии сепарации измельченного доломита, включающей в себя аэроклассификацию материала, система управления (не показана) контролирует скорость заполнения накопительного бункера 29 мелкодисперсной фракцией. Если заполнение накопительного бункера 29 происходит с меньшей производительностью, чем требуется (повышенное количество минерального порошка для производства асфальта необходимо летом), то доизмельчение крупных частиц доломита, отсеиваемых односитовым вибрационным грохотом 12, необходимо осуществлять, в дробилке 9 ударного действия, которая при дроблении материала дает значительное количество мелких пылевидных частиц. Для этого переключатель 19 потока переключается в соответствующее положение и соединяет поток материала с надрешетного выхода грохота 12 со входом дробилки 9 ударного действия. Тонкодисперсной фракции в этом случае образуется больше и больше ее осаждается аспирационной системой 30 и выделяется регулируемым аэроклассификатором 14. Кроме сезонной повышенной потребности в увеличенном количестве тонкодисперсной фракции измельченного доломита, необходимость увеличения количества получаемого мелкодисперсного материала возникает при дроблении доломита повышенной твердости, который при дроблении дает меньше пыли и который из-за повышенной твердости (4-4,5 еденицы по шкале Мооса) лучше доизмельчать в молотковой или роторной дробилке.

Если в процессе дробления доломита образуются излишки тонкодисперсной фракции, что может быть при дроблении относительно мягкого доломита (2-2,5 единицы по шкале Мооса) или при снижении спроса на минеральный порошок в зимнее время, доизмельчение крупных частиц, отсеиваемых односитовым вибрационным грохотом 12, целесообразно выполнять с помощью валковой дробилки 20. Уменьшение количества мелких частиц при дроблении отсевов в валковой дробилке обусловлено сдавливанием дробимых частиц между валами, что позволяет получать меньше пыли, чем при ударном дроблении. Чтобы обеспечить подобный режим доизмельчения, переключатель 19 потока переключается в положение, при котором поток материала из надрешетного выхода односитового вибрационного грохота 12 направляется на валковую дробилку 20 и далее на вход ковшового элеватора 10 для прохождения повторной сепарации.

При дроблении и сепарации относительно твердых партий доломита (твердость доломита даже на одном месторождении может зависеть от глубины - залегания различных пластов) возможна ситуация, когда при пониженном спросе на минеральные порошки и при малом количестве образующейся тонкодисперсной фракции доломита нецелесообразно осуществлять аэроклассификацию на второй стадии сепарации. В этом случае переключатель потока 13 переключается в положение, при котором подрешетный продукт с нижней сетки двухситового вибрационного грохота 11 направляется на сборочный конвейер 18, где он смешивается с подрешетным продуктом односитового вибрационного грохота 12. Полученная смесь далее через магнитный сепаратор 21, ковшовый элеватор 22 и переключатель потока 23 направляется в одну из силосных банок 24, 25. Наличие переключателя потока 23 позволяет раздельно хранить в одной из банок измельченный доломит с повышенным содержанием тонкодисперсных фракций материала, а в другой банке - с пониженной концентрацией мелких пылевидных частиц измельченного доломита. Подобная возможность раздельного получения и хранения измельченного доломита, имеющего различный фракционный состав, вызвана разными технологическими требованиями, предъявляемыми различными стекольными заводами к данному продукту.

Реализация способа сухого обогащения доломита поясняется примерами.

Пример №1.

Производительность технологической линии, реализующей данный способ, составляет 50 т/час. Линия работает без аэроклассификации, а домол недоизмельченного доломита твердостью 2,0-2,5 единицы производится с помощью дробилки 9 ударного действия. Количество тонкодисперсной фракции (размер частиц меньше 0,315 мм), уловленной системой аспирации 30 составляет 5 т/час. При этом распределение частиц по фракциям в смеси молотого материала, собираемого на сборочном конвейере 18 в количестве 45 т/час, получается следующее: (1,0-2,0)мм - 2%; (0,63-1,0)мм - 8%; (0,315-0,63)мм - 20%; (0,1-0,315)мм - 35,%; (меньше 0,1)мм - 35%. Очевидно, что при дроблении относительно мягкого доломита образуется значительное количество нежелательной для варки стекла тонкодисперсной фракции. Количество же тонкодисперсной фракции, выделенной с помощью аспирационной системы 30, является небольшим (всего 10%) и не может обеспечить потребности в этом продукте сторонних потребителей.

Пример №2.

Производительность технологической линии составляет 50 т/час. Количество уловленной системой аспирации пыли составляет 5 т/час. Линия работает с аэроклассификацией, а домол недоизмельченного доломита твердостью 2,0-2,5 единицы производится с помощью дробилки 9 ударного действия. Аэроклассификатор 17 дополнительно выделяет 3-4 т/час. тонкодисперсной фракции с размером частиц меньше 0,1 мм. При этом распределение частиц по фракциям в смеси молотого доломита, собираемого на сборочном конвейере 18 в количестве 41-42 т/час., имеет следующий вид: (1,0-2,0)мм - 2,2%; (0,63-1,0)мм - 8,8%; (0,315-0,63)мм - 22%; (0,1-0,315)мм - 38,4%; (меньше 0,1)мм - 28,6%. Общее количество выделенной тонкодисперсной фракции, применяемой в качестве минерального порошка, увеличилось до 8-9 т/час., но в смеси тонкодисперсной и крупнодисперсной фракций измельченного доломита, собираемого на сборочном конвейере 18 еще присутствует повышенное содержание мелких частиц. Поэтому при относительно мягком доломите его додрабливание целесообразно производить в валковой дробилке 20.

Пример №3.

Производительность технологической линии составляет 50 т/час. Количество уловленной системой аспирации пыли составляет 5 т/час (это количество пыли в основном улавливается циклонами 5 и рукавным фильтром 6 в процессе сушки кускового доломита). Линия работает с аэроклассификатором, о домол недоизмельченного доломита производится на валковой дробилке 20. Аэроклассификатор дополнительно выделяет 3-4 т/час тонкодисперсной фракции. При этом распределение частиц по фракциям в смеси молотого доломита, собираемого на сборочном конвейере 18 в количестве 41-42 т/час. следующее: (1,0-2,0)мм - 8%; (0,63-1,0)мм - 15%; (0,315-0,63)мм - 26%; (0,1-0,315)мм - 34%; (меньше 0,1)мм - 17%. Общее количество фракции меньше 0,315 мм уменьшилось по сравнению с примером №2 на 6%, но значительно снизилось количество частиц размером меньше 0,1 мм, что при использований подобного доломита для производства стекольной шихты благоприятно влияет на процесс стекловарения.

Если же использовать более жесткий (4 -4,5 единицы твердости по шкале Мооса) кусковой доломит, то после дробления измельченный доломит будет иметь фракционный состав, приближенный к оптимальному.

Таким образом, использование предлагаемого способа сухого обогащения доломита позволяет увеличивать количество выделяемой тонкодисперсной фракции, применяемой в качестве минерального порошка в производстве асфальтобетонных смесей, и оптимизирует гранулометрический состав доломита, используемого для приготовления стекольной шихты. Причем гранулометрический состав по содержанию тонкодисперсных и крупнодисперсных фракций может варьироваться в зависимости от твердости доломита и технологических требований стекольных заводов, выпускающих различную продукцию из стекла.

Источники информации

1. Сивко А.П. Технология электролампового стекла - Саранск. Издательство Мордовского университета. 2015 г. - 190 с.

2. Ефременков В.В. Комплексный подход к проектированию и строительству предприятий по обработке сырьевых компонентов стекольной шихты. Стеклянная тара, №11, 2011 г., С. 6-9.

3. Шамриков А.С. и др. Способ сухого обогащения каолина. Патент РФ на изобретение №2187387. Опубликовано 20.08.2002.

Способ сухого обогащения доломита, включающий операции сушки, измельчения, осаждения и пылеулавливания тонкодисперсного доломита из аспирационного воздуха и отходящих сушильных газов, трехстадийной сепарации с выделением после первой и третьей стадий сепарации смеси крупнодисперсного и тонкокодисперсного измельченного доломита, а также недоизмельченного доломита, направляемого в поток рециркуляции на операцию измельчения, отличающийся тем, что на второй стадии сепарации, осуществляемой с помощью регулируемой аэроклассификации, из смеси крупнодисперсного и тонкодисперсного измельченного доломита, полученной после первой стадии сепарации, дополнительно выделяют тонкодисперсный и крупнодисперсный измельченный доломит, причем крупнодисперсный измельченный доломит смешивают со смесью крупнодисперсного и тонкодисперсного измельченного доломита, выделенной после третьей стадии сепарации, а тонкодисперсный измельченный доломит, полученный в процессе регулируемой аэроклассификации, смешивают с тонкодисперсным доломитом, осажденным при пылеулавливании из аспирационного воздуха и отходящих сушильных газов, при этом измеряют общее количество тонкодисперсного доломита, полученного за контролируемый период времени, и, если требуется уменьшение общего количества тонкодисперсного доломита в смеси крупнодисперсного и тонкодисперсного измельченного доломита, отсевы недоизмельченного доломита с третьей стадии сепарации отправляют на дополнительное измельчение в валковой дробилке, а, если необходимо увеличение общего количества тонкодисперсного доломита, выделенного из смеси крупнодисперсного и тонкодисперсного измельченного доломита, измельчение отсевов недоизмельченного доломита с третьей стадии сепарации производят в дробилке ударного действия.



 

Похожие патенты:

Изобретение относится к устройствам, сепарирующим зерновые материалы, и может быть применено при очистке зерна в сельском хозяйстве. Гравитационно-пневматический зерноочистительный сепаратор включает гравитационную колонку, внутри которой установлены зигзагообразные ряды вогнутых просеивающих поверхностей для сепарирования обрабатываемого материала по крупности, а также загрузочное приспособление, пневмосепарирующий канал и патрубки вывода разделенных фракций.

Группа изобретений относится к сельскохозяйственной промышленности. Фракцию подсолнечного шрота, содержащую, по меньшей мере, 50% белков и менее 10% сырых волокон получают следующим способом.

Изобретение относится к сельскому хозяйству, в частности к способу послеуборочной обработки семян подсолнечника, преимущественно повышенной засоренности. Указанный способ включает разделение вороха по плотности на пневмосортировальном столе с выделением легких и тяжелых примесей, затем - по размерам на ветро-решетной машине с выделением крупных примесей, битых, щуплых семян и семян сорняков, а затем - снова по плотности на пневмосортировальном столе.

Изобретение относится к сельскому хозяйству и может быть использовано для послеуборочной подготовки семян. Семяочистительный агрегат включает приемное устройство, отделение для первичной очистки зернового вороха, отделение с силосами для хранения очищенного зерна и отделение для вторичной очистки зерна на фотосепараторе.

Изобретение относится к сельскому хозяйству и может быть использовано для послеуборочной обработки семян подсолнечника. Способ включает подачу семенного вороха в контейнерах, предварительную его очистку, первичную очистку и разделение по плотности на пневмосортировальном столе.

Изобретение относится к гравитационному обогащению, а именно к сухой сепарации и обогащению гранул диаметром меньше 1 мм. Способ сухой сепарации и обогащения включает использование дробилки для дробления и сухого помола, потом производят грубую сепарацию на фрикционном сепараторе, в ходе которой получают частицы руды размером 0,1-0,06 мм, 0,25-0,1 мм и 0,45-0,2 мм.

Группа изобретений относится к сельскохозяйственной технике и, конкретно, к послеуборочной обработке очесанного зернобобового вороха сои и его очистке с распределением на семенную и товарную фракции.

Изобретение относится к сельскохозяйственному машиностроению и предназначено для послеуборочной обработки семян сельскохозяйственных культур. Линия включает машину первичной очистки, машину ветро-решётную семяочистительную, блок триерный, стол пневмосортировальный и фотосепаратор.

Изобретение относится к технике для разделения зерна и других сыпучих материалов, для выделения грубых и крупных посторонних и соломистых примесей с целью предохранения от засорения приемно-распределительных устройств последующего зерноочистительного оборудования.

Изобретение относится к области природоохранительной деятельности, экологии и коммунального хозяйства и предназначено для сортировки твердых отходов производства и потребления с целью извлечения вторичного сырья.

Изобретение относится к сельскому хозяйству, в частности к технологическим процессам послеуборочной обработки зерна и семян, преимущественно зерновых культур. Способ послеуборочной обработки зерна и семян включает очистку, разделение и сушку зерна. Зерновой ворох после комбайна загружают в приемный бункер аэродинамического сепаратора, где зерновой поток одновременно подвергают резистивному и конвекционному тепловому воздействию. Затем зерновой поток подают в камеру сепарации аэродинамического сепаратора, в которой проводят дополнительное конвекционное тепловое воздействие на зерновой поток и одновременно очищают и разделяют зерно на фракции сформированным воздушным потоком, который подается в камеру сепарации. Разделенное на фракции зерно направляют в соответствующие сборники и далее на хранение и переработку. Технический результат - повышение эффективности технологического процесса и получение конечного продукта высокого качества. 6 з.п. ф-лы, 1 ил.

Предложенное изобретение относится к процессам обогащения сухим способом доломита, применяемого для приготовления стекольной шихты и асфальтобетонных смесей, и может быть использовано для обогащения известняка и других нерудных материалов. Технологическая линия сухого обогащения доломита содержит приемный бункер кускового доломита, оснащенный пластинчатым питателем разгрузки, промежуточный ленточный конвейер подачи кускового доломита в сушильный барабан, оборудованный группой циклонов, рукавным фильтром и дымососом, предназначенными для удаления дымовых газов и улавливания тонкодисперсной фракции доломита, транспортную цепочку подачи уловленной тонкодисперсной фракции в накопительный бункер, состоящую из ленточного конвейера, винтового конвейера и первого ковшового элеватора, локальную аспирационную систему, соединенную с накопительным бункером и транспортно-технологическим оборудованием, дробилку ударного действия, установленную на выходе сушильного барабана, второй ковшовый элеватор. Вход последнего соединен с выходом дробилки ударного действия, а выход подключен к входу двухситового вибрационного грохота. Надрешетный выход верхней сетки двухситового вибрационного грохота связан с входом дробилки ударного действия. Надрешетный выход его нижней сетки соединен с входом односитового вибрационного грохота, с подрешетного выхода которого просеянный доломит ссыпается на первый вход сборочного конвейера, подающего просеянный доломит через магнитный сепаратор, третий ковшовый элеватор и первый переключатель потока в одну из двух силосных банок. Линия дополнительно снабжена вторым переключателем потока, вход которого соединен с подрешетным выходом двухситового вибрационного грохота, а первый выход подключен ко второму входу сборочного конвейера, промежуточным бункером, связанным своим входом со вторым выходом второго переключателя потока, винтовым питателем разгрузки, вход которого соединен с выходом промежуточного бункера, четвертым ковшовым элеватором, связанным своим входом с выходом винтового питателя разгрузки, регулируемым аэроклассификатором, вход которого подключен к выходу четвертого ковшового элеватора, а также третьим переключателем потока и валковой дробилкой. С первого выхода регулируемого аэроклассификатора выделенная крупнодисперсная фракция просеянного доломита выгружается на третий вход сборочного конвейера. Со второго выхода выделенная тонкодисперсная фракция просеянного доломита подается на вход винтового конвейера. Недоизмельченная фракция просеянного доломита с надрешетного выхода односитового вибрационного грохота поступает на вход третьего переключателя потока, первый выход которого подключен к входу дробилки ударного действия, а второй выход связан с валковой дробилкой, соединенной своим выходом с входом второго ковшового элеватора. Технический результат - повышение эффективности выделения тонкодисперсной фракции из измельченного доломита, применяемого в качестве минерального порошка. 1 ил., 3 пр.

Предложенное изобретение относится к технике обогащения кварцевого песка, поставляемого на стекольные заводы автомобильным и железнодорожным транспортом, и может использоваться для обогащения различных сыпучих материалов в строительной химической и других отраслях промышленности. Устройство для обогащения кварцевого песка состоит из расходного бункера необогащенного кварцевого песка, оборудованного питателем разгрузки, подъемно-транспортного механизма, подающего необогащенный кварцевый песок из расходного бункера на вход вибрационного сита, магнитного сепаратора, вход которого соединен с подрешетным выходом вибрационного сита, а выход подключен к бункеру обогащенного кварцевого песка, и бункера отсевов кварцевого песка. Устройство дополнительно снабжено реверсивным питателем разгрузки бункера отсевов кварцевого песка и переключателем потока, вход которого соединен с надрешетным выходом вибрационного сита. Первый выход переключателя потока связан с входом подъемно-транспортного механизма. Второй выход переключателя потока подключен к бункеру отсевов кварцевого песка, связанному своим выходом с входом реверсивного питателя разгрузки, первый выход которого соединен с входом подъемно-транспортного механизма, а со второго выхода осуществляется отгрузка отсевов на утилизацию. Технический результат - сокращение потерь кварцевого песка. 3 ил.

Машина зерноочистительная комбинированная состоит из воздушного канала для сепарации зерна восходящим воздушным потоком и окон для приема исходного и вывода обрабатываемого зернового материала. Воздушный канал образован передней, задней и боковыми стенками и содержит установленную с наклоном от передней стенки к задней поддерживающую сетку. Поперек боковых стенок над поддерживающей сеткой с зазором на расстоянии друг от друга установлены не менее двух V-образных пластин. Угол ϕ между пластинами связан с критической скоростью начала разрушения семян. Машина зерноочистительная комбинированная обеспечивает эффективную очистку зерна. 2 з.п. ф-лы, 14 ил.

Изобретение относится к устройствам сепарации пластикового лома, который представляет собой полимерные отходы разной фактуры, имеющие различную плотность и аэродинамические характеристики, и может быть использовано для сепарации измельченных отходов, образующихся при переработке ПЭТ бутылки. Устройство сепарации измельченных полимерных отходов, содержащих две фракции с различным удельным весом, содержит сепарационную камеру с одним впускным окном для подачи потока измельченных отходов, размещенным в верхней части упомянутой камеры, и по меньшей мере двумя выпускными окнами, одно из которых, предназначенное для приема тяжелой фракции, выполнено в нижней части камеры и размещено непосредственно под впускным окном, а другое для приема легкой фракции, циклон для отделения воздуха от потока измельченных отходов, выходной патрубок которого расположен над упомянутой сепарационной камерой, и нагнетающий вентилятор для подачи потока воздуха с измельченными отходами в циклон. Устройство снабжено по меньшей мере одним воздуходувным агрегатом, связанным воздуховодом с входным окном, выполненным в боковой стенке сепарационной камеры, для формирования в верхней части последней, в зоне впускного окна, горизонтально направленного рабочего потока воздуха, и негерметично примыкающим к выходному патрубку циклона распределителем потока измельченных отходов, связывающим его с впускным окном сепарационной камеры. Впускное окно сепарационной камеры выполнено в ее верхней стенке, имеет щелевидную форму и расположено вдоль боковой стенки камеры для образования в сепарационной камере двух перекрещивающихся потоков воздуха - рабочего, подаваемого в горизонтальном направлении через упомянутое входное отверстие, и второго - несущего вышеупомянутые измельченные отходы, поступающие сверху через впускное окно в сепарационную камеру. Выпускное окно тяжелой фракции снабжено диффузором, расширяющимся в сторону впускного окна. Выпускное окно легкой фракции выполнено в нижней части камеры и расположено за выпускным окном тяжелой фракции по направлению движения горизонтального воздушного потока в сепарационной камере. Технический результат – повышение эффективности сепарации, а также увеличение ее производительности. 2 з.п. ф-лы, 2 ил.
Наверх