Периферийное осесимметричное колено центробежной ступени

Изобретение относится к центробежным турбомашинам и может использоваться в центробежных ступенях, имеющих периферийное осесимметричное колено, выпуклый и вогнутый обводы которого выполнены по радиусам. Изобретение позволяет уменьшить потери напора рабочей среды в колене за счет оптимизации выходной ширины и радиуса выпуклого обвода. Рекомендуемые значения этих параметров зависят как от входной ширины колена, так и от входного угла потока рабочей среды в радиальной плоскости. Потери напора уменьшаются благодаря совокупной минимизации кривизны и длины пространственных линий тока рабочей среды в колене. 10 ил.

 

Изобретение относится к энергетическим турбомашинам и может использоваться в центробежных компрессорах, нагнетателях и насосах.

Известно периферийное осесимметричное колено центробежной ступени, в котором меридиональные обводы представляют собой полуэллипсы (USA 4344737, 17.08.1982). Недостатком такого колена является сложность технологии изготовления меридиональных обводов.

Отмеченный недостаток устранен в периферийных осесимметричных коленах, меридиональные обводы которых имеют простую форму. Известное периферийное осесимметричное колено (Евдокимов В.Е., Репринцев А.И. О совершенствовании обратного направляющего аппарата ЦКМ // Энергомашиностроение, 1984, №10, с.2-5) содержит меридиональные обводы, выполненные по радиусам. Благодаря этому технология изготовления обводов не сложна.

Недостаток известного периферийного осесимметричного колена заключается в повышенных потерях напора рабочей среды. Причина повышенных потерь напора состоит в том, что рекомендуемые выходная ширина колена и радиус его выпуклого обвода задаются зависящими только от входной ширины колена, в то время как в действительности оптимальные величины их зависят также и от входного угла потока рабочей среды в радиальной плоскости.

Задачей настоящего изобретения является уменьшение потерь напора в периферийном осесимметричном колене центробежной ступени путем задания выходной ширины и радиуса выпуклого обвода зависящими как от входной ширины колена, так и от входного угла потока рабочей среды.

Указанная задача достигается тем, что в известном периферийном осесимметричном колене, содержащем выполненные по радиусам выпуклый и вогнутый меридиональные обводы, выходная ширина bвых колена и радиус rвып его выпуклого обвода определяются соотношениями

в которых

bвх - входная ширина колена;

αвх - входной угол потока рабочей среды в радиальной плоскости, выраженный в радианах.

Данное техническое решение соответствует критерию "существенные отличия", так как оно, в отличие от известных технических решений, устанавливает зависимость оптимальных величин выходной ширины и радиуса выпуклого обвода колена как от входной ширины, так и от входного угла потока рабочей среды в радиальной плоскости.

На фиг.1 изображено периферийное осесимметричное колено центробежной ступени, меридиональный разрез; на фиг.2 - радиальный разрез А-А на фиг.1; на фиг.3 - радиальный разрез Б-Б на фиг.1; на фиг.4 - зависимости оптимальных значений отношений bвых/bвх и rвып/bвх от угла αвх; на фиг.5 - зависимости коэффициента потерь напора в колене ζ от отношения bвых/bвх при различных rвып/bвх для типичного в центробежных ступенях угла αвх=30 град=0.5236 рад; на фиг.6 - зависимости ζ от отношения bвых/bвх при различных rвып/bвх для малого αвх=10 град=0.1745 рад; на фиг.7 - зависимости ζ от отношения bвых/bвх при различных rвып/bвх для предельно большого αвх=90 град=1.5708 рад; на фиг.8 - зависимости ζ от отношения rвып/bвх при различных bвых/bвх для αвх=30 град=0.5236 рад; на фиг.9 - зависимости ζ от отношения rвып/bвх при различных bвых/bвх для αвх=10 град=0.1745 рад; на фиг.10 - зависимости ζ от отношения rвып/bвх при различных bвых/bвх для αвх=90 град=1.5708 рад.

Периферийное осесимметричное колено содержит выпуклый меридиональный обвод 1 и вогнутый меридиональный обвод 2. Выпуклый меридиональный обвод 1 выполнен по радиусу rвып. Вогнутый меридиональный обвод 2 выполнен по радиусу rвогн. Выходная ширина bвых колена и радиус rвып соответствуют изобретению. Радиус rвогн однозначно определяется входной шириной bвх, радиусом rвып и выходной шириной bвых:rвогн=(bвх+2rвып+bвых)/2.

Периферийное осесимметричное колено работает следующим образом.

Поток рабочей среды поступает во входное сечение 3 колена со скоростью cвх и входным углом αвх. При этом меридиональная составляющая cm.вх скорости cвх направлена от оси ступени. По мере перемещения рабочей среды по колену меридиональная составляющая cm скорости c, благодаря изогнутости колена в меридиональной плоскости на 180 град, постепенно изменяет направление на противоположное и в выходном сечении 4 колена направлена к оси ступени. Окружная составляющая cu скорости c изменяется в колене главным образом в соответствии с законом постоянства момента количества движения. Вследствие этих закономерностей изменения cm и cu линии тока рабочей среды в колене - криволинейные и пространственные. Течение рабочей среды по колену сопровождается потерями напора вследствие трения рабочей среды о выпуклый 1 и вогнутый 2 меридиональные обводы, а также вследствие поперечных и продольных градиентов скорости c.

Величина коэффициента потерь напора ζ определяется в основном отношениями bвых/bвх и rвып/bвх. Оптимальные значения этих отношений (bвых/bвх)опт и (rвып/bвх)опт, соответствующие минимуму ζ, зависят от угла αвх (фиг.4). Графики (bвых/bвх)опт=f(αвх) и (rвып/bвх)опт=f(αвх), изображенные на фиг.4, построены на базе зависимостей ζ=f(bвых/bвх; rвып/bвх); рассчитанных для ряда значений αвх в диапазоне 5…90 град. Примеры зависимостей ζ=f(bвых/bвх; rвып/bвх) представлены на фиг.5…10. Величины ζ рассчитывались по уточненному варианту методики, изложенной на с.371…377 тома II Трудов XV Международной научно-технической конференции по компрессорной технике, г. Казань, 2011 г.

Изображенные на фиг.4 графики (bвых/bвх)опт=f(αвх) и (rвып/bвх)опт=f(αвх) с незначительной погрешностью аппроксимируются следующими аналитическими выражениями:

в которых размерность αвх - радианы.

Фиксированный коэффициент 1.2 в выражении (3) может быть заменен диапазоном 1.13…1.43, так как согласно фиг.5…7 изменение отношения bвых/bвх в пределах 0.94…1.19 от значения (bвых/bвх)опт увеличивает ζ не более чем на 1%.

Фиксированный коэффициент 6 в выражении (4) может быть заменен диапазоном 3.6…6.6, так как согласно фиг.8…10 изменение отношения rвып/bвх в пределах 0.6…1.1 от значения (rвып/bвх)опт увеличивает ζ не более чем на 1%. Замена коэффициента 1.2 в выражении (3) и коэффициента 6 в выражении (4) указанными диапазонами дает

Из выражений (5) и (6) следуют соотношения (1) и (2) для рекомендуемых изобретением величин bвх и rвып.

Задание bвх колена в соответствии с соотношением (1) и rвып в соответствии с соотношением (2) обеспечивает минимальный коэффициент потерь напора в колене ζ. Одновременно с ζ минимизируются и потери напора, поскольку они равны произведению ζ на (Галеркин Ю.Б. Турбокомпрессоры, 2010, с.417). Согласно соотношениям (1) и (2) рекомендуемые изобретением выходная ширина bвх и радиус rвып выпуклого обвода зависят как от входной ширины bвх колена, так и от входного угла αвх потока рабочей среды. Таким образом, задача настоящего изобретения решена.

Периферийное осесимметричное колено центробежной ступени, содержащее выполненные по радиусу выпуклый и вогнутый меридиональные обводы, отличающееся тем, что выходная ширина bвых колена и радиус rвып его выпуклого обвода определяются соотношениями

в которых bвх - входная ширина колена;

αвх - входной угол потока рабочей среды в радиальной плоскости, выраженный в радианах.



 

Похожие патенты:

Группа изобретений относится к нефтяному машиностроению, в частности к насосам для откачки пластовой жидкости из скважин. Установка содержит: двигатель, протектор с осевой опорой вала и по крайней мере одну насосную секцию.

Диффузор центробежного компрессора содержит два фланца, между которыми заключено множество расположенных по окружности лопаток (60), и по меньшей мере один поперечный передний проход (63, 64), выполненный в корытцах (6i) или спинках (6e) лопаток (60).

Изобретение относится к энергетическим турбомашинам и может использоваться в центробежных компрессорах, нагнетателях и насосах. Оно применимо к таким входным устройствам, которые содержат расположенные последовательно по ходу рабочей среды радиально ориентированный переходник с круглого входного сечения на прямоугольное, секцию увеличения ширины сечения в радиальной плоскости, промежуточную камеру и радиально-осевой осесимметричный конфузор, причем переходник в направлении хода рабочей среды расширяется в радиальной плоскости и сужается в меридиональной, секция и камера сужаются в направлении хода рабочей среды в меридиональной плоскости с одинаковым углом, граничное сечение между камерой и конфузором - цилиндрическое, а выпуклый меридиональный обвод конфузора закруглен по радиусу.

Изобретение относится к области ракетного двигателестроения и может быть использовано в турбонасосных агрегатах (ТНА) ЖРД верхних ступеней ракет в качестве разгонных блоков многоразового включения и с продолжительным временем работы.

Центробежный компрессор с по меньшей мере одной ступенью, в котором указанная или каждая ступень компрессора содержит крыльчатку с множеством подвижных лопастей, которая установлена в проточной части соответствующей ступени компрессора, причем проточная часть соответствующей ступени компрессора ограничена профилем ступицы и профилем корпуса или покрывного диска.

Изобретение относится к области машиностроения и может быть использовано в центробежных компрессорах. Изобретение направлено на осуществление истечения воздуха путем установки диска, имеющего оптимизированную форму.

Группа изобретений относится к электрическим скважинным насосным установкам. Установка содержит приводимый двигателем насос, имеющий ряд ступеней.

Изобретение относится к машиностроению и может быть использовано при изготовлении погружных электроцентробежных насосов для добычи нефти. Способ изготовления рабочего колеса и направляющего аппарата ступени погружного многоступенчатого центробежного насоса включает ввод алюминия под поверхность расплава при температуре 1410-1480°С.

Изобретение относится к нефтяному машиностроению и может быть использовано для откачки из скважин пластовой жидкости с высоким содержанием газа. Погружной лопастной мультифазный насос содержит n-число ступеней.

Устройства, системы и способы в соответствии с примерными вариантами выполнения обеспечивают диффузоры, например, в виде части турбомашины 300, с диффузорными лопатками, имеющими S-образные средние линии.

Изобретение относится к области конструирования газотурбинных двигателей (ГТД), преимущественно конструированию узла статора осевого компрессора. Направляющий аппарат осевого компрессора содержит корпус, выполненный с продольным разъемом, внутренние полукольца и поворотные лопатки, установленные своими внутренними цапфами в полукольца. Взаимная фиксация полуколец выполнена при помощи шипа с установленным на нем подпружиненным штифтом и паза с отверстием под штифт. Изобретение позволяет жестко соединить внутренние полукольца направляющего аппарата первой ступени статора компрессора ГТД, имеющего продольный разъем, и при этом обеспечить удобную сборку и разборку. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области конструирования газотурбинных двигателей (ГТД), преимущественно конструированию узла статора осевого компрессора. Направляющий аппарат осевого компрессора содержит корпус, выполненный с продольным разъемом, внутренние полукольца и поворотные лопатки, установленные своими внутренними цапфами в полукольца. Взаимная фиксация полуколец выполнена при помощи шипа с установленным на нем подпружиненным штифтом, имеющим возможность фиксации в утопленном положении, и паза с отверстием под штифт. Изобретение позволяет жестко соединить полукольца направляющего аппарата любой ступени статора компрессора ГТД, имеющего продольный разъем, упростить сборку и разборку НА и повысить технологичность корпуса компрессора. 2 з.п. ф-лы, 5 ил.

Изобретение относится к нефтяному машиностроению, а именно к погружным многоступенчатым центробежным насосам с изделиями из полимерных материалов, и может быть использовано в насосах для подъема пластовой жидкости из нефтяных скважин с повышенным содержанием механических примесей, в том числе солей, с переменной вязкостью. Ступень погружного многоступенчатого центробежного насоса содержит рабочее колесо и направляющий аппарат, состоящий из стакана, верхнего диска, металлической втулки, нижнего диска и лопаток. Лопатки направляющего аппарата расположены только на верхнем диске, который соединен с металлическим стаканом. Металлическая втулка соединена с нижним диском. Диски и лопасти рабочего колеса и диски и лопатки направляющего аппарата выполнены из полимерного материала, включающего стеклонаполнитель и термопластичный материал. Изобретение направлено на повышение коэффициента полезного действия, ремонтопригодности, стойкости к абразивному износу и осаждению механических примесей, в том числе солей, в каналах направляющего аппарата и рабочего колеса ступени, а также снижение падения подачи насоса при повышении вязкости пластовой жидкости. 5 з.п. ф-лы, 10 ил.

Изобретение относится к области компрессоростроения, а именно к устройствам радиальных лопаточных диффузоров центробежных компрессоров. Изменение конфигурации передней стенки радиального диффузора обеспечивает перераспределение процесса расширения рабочего тела по длине лопаточного диффузора так, что уменьшается расширение на входном и выходном его участках, а основной процесс расширения осуществляется на среднем участке канала диффузора. В результате уменьшаются потери полного давления и КПД возрастает на 1-2%, что особенно важно для малоразмерных вспомогательных газотурбинных двигателей с невысокими КПД элементов турбокомпрессора. Технический результат заключается в снижении потерь полного давления, увеличении диапазона устойчивой работы центробежного компрессора, а также в повышении КПД диффузора за счет изменения конфигурации одной из его боковых стенок. 2 ил.

Диффузор // 2637421
Изобретение относится к области машиностроения, в частности к выхлопным диффузорам турбомашин. Диффузор содержит внешний обвод 1, выполненный коническим, на внутренней стороне которого выполнено оребрение, содержащее основные ребра 2 и вспомогательные ребра 3. Основные ребра 2 выполнены клиновидными переменной высоты, линейно возрастающей от нулевого значения в области входной кромки 4, расположенной во входном сечении 5 диффузора, до значения h1 в области выходной кромки 6, расположенной в выходном сечении 7 диффузора. Угловой шаг установки β1 между основными ребрами 2 не превышает 5°. Свободная кромка 8 основных ребер 2 параллельна продольной оси О диффузора. Вспомогательные ребра 3 установлены в середине между основными ребрами 2. Угловой шаг установки β2 между основным ребром 2 и вспомогательным ребром 3 равен половине углового шага установки β1. Вспомогательные ребра 3 выполнены трапециевидными переменной высоты. Входные кромки 9 вспомогательных ребер 3 расположены на расстоянии L1 от входного сечения 5 диффузора, выбранном равным половине осевой длины диффузора L. Выходные кромки 10 вспомогательных ребер 3 расположены в выходном сечении 7 диффузора. Свободная кромка 11 вспомогательных ребер 3 параллельна продольной оси О диффузора. Высота вспомогательных ребер 3 выполнена линейно возрастающей от значения h2 в области их входной кромки 9 до значения h3 в области их выходной кромки 10. При этом значение h2 выбрано равным половине значения h1, а значения h3 и h1 равны и выбраны как , где - число Рейнольдса, где c1 - среднерасходная скорость во входном сечении 5 диффузора, ν - коэффициент кинематической вязкости движущегося рабочего тела. Использование изобретения позволяет повысить надежность элементов турбомашин за счет эффективной стабилизации потока у широкоугольных диффузоров с углами раскрытия проточной части свыше 12° вследствие предотвращения образования отрывных зон, приводящих к резкому увеличению амплитуд пульсаций давления. 4 ил.

Домовая станция (1) водоснабжения имеет электродвигатель (8) и приводимый им в движение центробежный насос (7), который имеет по меньшей мере одно центробежное рабочее колесо (10), создающее основной нагнетаемый поток (29) через кольцевое пространство (12), а также поток (30) охлаждающей жидкости через пространство (28), окружающее двигатель (8). Это кольцевое пространство (12) разделяется двумя направляющими лопатками (22) на отдельные кольцевые пространства (23, 24), которые при эксплуатации имеют различные уровни давления. Каждое отдельное кольцевое пространство (23, 24) соединено с пространством (28), окружающим двигатель (8), через которое движется поток охлаждающей жидкости. Изобретение направлено на обеспечение достаточного охлаждения двигателя без направления основного нагнетаемого потока вдоль двигателя. 2 н. и 11 з.п. ф-лы, 5 ил.
Наверх