Способ получения тонкопленочного анода

Изобретение относится к области электротехники, а именно к способу получения тонкопленочного анода, и может быть использовано при изготовлении литий-ионных аккумуляторных батарей. Повышение циклической стабильности анода с сохранением его высокой удельной емкости и монокристаллической бездефектной структуры является техническим результатом изобретения. В качестве основы выбирают токоснимающую медную фольгу с шероховатой поверхностью, которую помещают в камеру для нанесения тонких пленок методом атомно-слоевого осаждения и сушат в вакууме в течение 1-3 ч, после чего при температуре 150-250°C методом атомно-слоевого осаждения проводят процесс нанесения одного атомного слоя оксида олова(IV) с использованием тетраэтилолова. Далее проводят импульсную термическую обработку при температуре 300-325°C в течение 0,05-0,1 с, и повторяют процесс до формирования толщины монокристаллического тонкопленочного анода 100-200 нм. Столь короткое время термической обработки позволяет структурировать каждый слой соединения SnO2 с формированием монокристаллической структуры. 1 ил., 1 табл.

 

Изобретение относится к электротехнической области и может быть использовано в литий-ионных аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками.

Известен способ изготовления тонкопленочного анода литий-ионных аккумуляторов на основе пленок наноструктурированного кремния, покрытого двуокисью кремния [RU патент №2474011], преимущественно, для использования в литий-ионных аккумуляторах, работающих при большой плотности тока. Предложенный тонкопленочный материал сформирован из наноразмерных кластеров кремния в оболочке из двуокиси кремния, которые получают в одну стадию магнетронным распылением кремниевой мишени в плазме, содержащей аргон и контролируемые добавки кислорода. Указанные наноструктурированные пленки получают в плазме магнетронного разряда, содержащей 1-3% кислорода по объему в аргоне. Содержание двуокиси кремния в пленке находится в пределах 16-41 весовых %, а наноструктурированный кремний в оболочке двуокиси кремния имеет кластерную структуру с размерами кластеров 5-15 нм. Недостатками способа является сложность в получении бездефектной структуры анода.

Известен способ получения тонкопленочного наноструктурированного электродного материала, выбранный за прототип [RU патент №2414771]. Тонкопленочный наноструктурированный электродный материал, содержащий нанокристаллиты одной фазы рутильных твердых растворов оксидов олова и титана, внедренные в матрицу аморфного оксида олова, согласно изобретению, состоит из оксидов олова и титана в соотношении: оксид олова (IV) 100 мас.ч., оксид титана (IV) 3-13 мас.ч., причем степень кристалличности электродного материала (отношение массы кристаллической фазы ко всей массе пленки) находится в пределах 40-60%. Наноструктурированные пленки получают нанесением смешанного раствора хлоридов олова и одного из металлов Sb, Zr, Pb, Bi, In в водной солянокислой среде на металлические подложки и дальнейшей термообработкой на воздухе при 350-450°C. Недостатками способа является много стадийность процесса, сложность в получении бездефектной структуры и чистого химического состава, низкая циклическая стабильность полученного материала.

Задачей изобретения является получение тонкопленочного анода из оксида олова с повышенной циклической стабильностью с сохранением высокой удельной емкости и монокристаллической бездефектной структурой.

Для решения поставленной задачи предложен способ получения тонкопленочного анода из оксида олова (IV). В качестве основы выбирают токоснимающую медную фольгу с шероховатой поверхностью. Далее выбранную фольгу помещают в камеру для нанесения тонких пленок методом атомно-слоевого осаждения и сушат в вакууме в течение 1-3 ч. Далее при температуре 150-250°C методом атомно-слоевого осаждения проводят процесс нанесения одного атомного слоя оксида олова (IV) с использованием тетраэтилолова, после чего происходит формирование аморфного соединения SnO2. Далее проводят импульсную термическую обработку при температуре 300-325°C в течение 0,05-0,1 с. После чего происходит формирование монокристаллического SnO2. Процесс повторяют до формирования толщины монокристаллического тонкопленочного анода 100-200 нм.

Перед запуском процесса атомно-слоевого осаждения требуется удалить всю влагу с поверхности медной фольги, для обеспечения наилучшей конформности покрытий, для этого проводят сушку в вакууме. В основе технологии атомно-слоевого осаждения лежит прохождение самоконтролируемой гетерогенной реакции, которая позволяет получать монокристаллические пленки оксидных систем равномерно на всей поверхности подложки, что приводит к получению равномерной бездефектной структуры с равномерным распределением химических элементов по объему получаемого материала. Во время нанесения тонких пленок их толщина за цикл составляла 1 атомный слой, величина толщины такого порядка позволяет при температурах от 300 до 325°C в течение короткого времени 0,05-0.1 с производить кристаллизацию по объему, вследствие чего происходит образование монокристаллической структуры SnO2. Столь короткое время термической обработки позволяет структурировать каждый слой соединения SnO2, получая монокристаллическую структуру, данная структура позволяет достигнуть теоретической емкости для данного соединения.

В качестве подложки была выбрана медная шероховатая фольга для обеспечения наибольшей разности потенциалов при дальнейшем использовании анода в литий-ионном аккумуляторе. Время сушки фольги от 1 до 3 часов, при нахождении медной фольги в вакууме менее 1 часа вся адсорбировавшаяся влага не испаряется полностью, что приведет к дефектам в наносимых пленках, при сушке более 3 часов на поверхности фольги начинает происходить процесс десорбции поверхностных функциональных групп, что также приводит к ухудшению хемосорбции между фольгой и оксидом олова (IV). Процесс нанесения тонких пленок методом атомно-слоевого осаждения реализуется при температуре 150-250°C. При нанесении тонких пленок методом атомно-слоевого осаждения при температуре ниже 150°C тетраэтилолово не будет раскладываться с образованием оксида олова (IV), поэтому не будет получен нужный химический состав, следовательно, не будет получена высокая удельная емкость, равномерное распределение химического состава по объему и монокристаллическая бездефектная структура. При нанесении тонких пленок методом атомно-слоевого осаждения при температуре выше 250°C тетраэтилолово будет обладать высоким давлением насыщенного пара, следовательно, будет невозможно нанести один атомный слой оксида олова (IV), при нарушении толщины слоя наносимой пленки, будет невозможно полностью произвести кристаллизацию пленки, следовательно, будут возникать дефекты, а эксплуатационные характеристики, такие как удельная емкость и циклическая стабильность будут низкими.

Толщина наносимого на медную фольгу оксида олова (IV) составляет 1 атомный слой, так как при нанесении более 1 атомного слоя или менее одного слоя будет невозможно кристаллизовать пленку для получения монокристаллической бездефектной структуры.

Импульсная термическая обработка при температуре менее 300°C не позволяет получить монокристаллическую структуру касситерита, которая обладает высокими удельными характеристиками. Импульсная термическая обработка при температуре более 325°C, приводит к образованию другой кристаллической структуре, которая обладает низкими электрохимическими характеристиками.

При длительности импульсной термической обработке менее 0,05 с температурное поле не успевает воздействовать на слой соединения SnO2, тем самым не позволяет получить кристаллическую структуру касситерита, которая обладает высокими удельными характеристиками.

При длительности импульсной термической обработке более 0,1 с температурное поле воздействует слишком активно, что приводит к образованию другой кристаллической структуры, которая обладает низкими электрохимическими характеристиками.

Толщина соединения SnO2 была определена в диапазоне 100-200 нм, при толщине менее 100 нм при использовании анода в литий-ионном аккумуляторе происходит короткое замыкание, а толщины более 200 нм не позволяют в полном объеме интеркалировать/деинтеркалировать четырем ионам лития из образовывающейся в ходе циклирования структуры Li4,4Sn, что, в свою очередь, приведет к снижению электрохимических характеристик.

Для получения тонкопленочного анода в качестве начального компонента выбирают токоснимающую медную фольгу, с шероховатой поверхностью. Выбранную фольгу помещают в камеру для нанесения тонких пленок, методом атомно-слоевого осаждения, и сушат в вакууме в течение 1-3 ч. Далее, при температуре 150-250°C методом атомно-слоевого осаждения проводят процесс нанесения одного атомного слоя оксида олова (IV) с использованием тетраэтилолова. Далее проводят импульсную термическую обработку при температуре 300-325°C в течение 0,05-0,1 с. Процесс повторяют до формирования толщины тонкопленочного анода 100-200 нм.

Синтезированный тонкопленочный анод на основе оксида олова (IV) обладает высокой удельной емкостью, которая сохраняется в течение 4000 циклов, что свидетельствует о его повышенной циклической стабильности (фиг. 1). Кроме того, анод имеет монокристаллическую бездефектную структуру с равномерным распределением химического состава по объему.

Способ получения тонкопленочного анода, включающий выбор системы SnO2 и ее термообработку, отличающийся тем, что в качестве основы выбирают токоснимающую медную фольгу с шероховатой поверхностью, которую помещают в камеру для нанесения тонких пленок и сушат в вакууме в течение 1-3 ч, после чего при температуре 150-250°C проводят процесс нанесения атомного слоя оксида олова(IV) с использованием тетраэтилолова, далее проводят термическую обработку в импульсном режиме при температуре 300-325°C в течение 0,05-0,1 с, процесс повторяют до формирования толщины тонкопленочного анода 100-200 нм.



 

Похожие патенты:

Изобретение относится к литиевому электроду, содержащему электродный композит, включающий в себя пористый металлический токоотвод и металлический литий, введенный в поры, присутствующие в металлическом токоотводе, и защитную мембрану для проводимости по иону лития, причем защитная мембрана образована на по меньшей мере одной поверхности электродного композита, при этом металлический литий введен в количестве от 1 до 50 мас.% относительно общей массы электродного композита.
Изобретение относится к аноду, применимому в аккумуляторе литий-ионной батареи, содержащему электролит на основе соли лития и неводного растворителя, к способу изготовления этого анода и к литий-ионной батарее с одним или более аккумуляторами, включающими в себя этот анод.

Изобретение относится к положительному электроду для литиево-воздушной батареи, а также к способу его приготовления. Положительный электрод для литиево-воздушной батареи содержит: токоотвод положительного электрода, образованный пористым металлом; и активный слой положительного электрода, предусмотренный на токоотводе положительного электрода и включающий в себя проводящий материал и катализатор для восстановления кислорода, и при этом пористый металл имеет диаметр пор, равный или больший 20 нм и равный или меньший 1 мм.

Изобретение относится к катоду для литиево-серной батареи, а также к способу его приготовления. Катод для литиево-серной батареи включает активную часть катода, включающую в себя сероуглеродный композит; и слой покрытия катода, предусмотренный по меньшей мере на части поверхности активной части катода и включающий в себя неорганический оксид, при этом слой покрытия катода содержит поры, имеющие средний диаметр от 0,5 до 10 мкм, и пористость слоя покрытия катода составляет от 20 до 70%.

Изобретение относится к композиции положительного электрода для вторичной батареи с неводным электролитом, содержащей: комплексный оксид лития и переходного металла, представленный общей формулойLiaNi1-x-yCoxM1yWzM2wO2(1,0≤a≤1,5, 0≤x≤0,5, 0≤y≤0,5, 0,002≤z≤0,03, 0≤w≤0,02, 0≤x+y≤0,7, М1 означает по меньшей мере один металл, выбранный из группы, состоящей из Mn и Al, М2 означает по меньшей мере один металл, выбранный из группы, состоящей из Zr, Ti, Mg, Ta, Nb и Mo); и исходное соединение бора.
Изобретение относится к катоду, применимому в аккумуляторе литий-ионной батареи, содержащей электролит на основе соли лития и неводного растворителя электролита. Причем катод выполнен на основе полимерной композиции, полученной обработкой расплава и без испарения растворителя, то есть представляет собой продукт реакции горячего компаундирования между активным материалом и добавками, включающими полимерное связующее и электропроводный наполнитель.

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками.

Изобретение относится к литий-ионному вспомагательному аккумулятору и способу его изготовления. Литий-ионный вспомогательный аккумулятор включает в себя: лист положительного электрода, который включает в себя слой активного материала положительного электрода, содержащий частицы активного материала положительного электрода; лист отрицательного электрода; и неводный электролитический раствор, который содержит соединение, содержащее фтор, при этом поверхность частиц активного материала положительного электрода включает в себя пленку, содержащую фтор и фосфор, и отношение Cf/Cp удовлетворяет значению 1,89≤Cf/Cp≤2,61, где Cf представляет собой число атомов фтора в пленке, а Ср представляет собой число атомов фосфора в пленке.
Изобретение относится к технологии получения порошкообразного материала, пригодного для изготовления газодиффузионных гидрофобизированных электродов топливных элементов и воздушно- металлических источников тока.

Изобретение относится к химическим источникам тока, а именно к металлофольговому электроду из литиевой фольги. Предложенный металлофольговый электрод содержит: i) усиливающий слой, образованный из пористой непроводящей подложки, и ii) первый и второй слои металлической фольги, выполненной содержащей литий и/или натрий, причем усиливающий слой расположен между первым и вторым слоями металлической фольги и соединен предпочтительно давлением с ними с образованием композитной структуры, имеющей толщину 100 микрон или менее.

Изобретение относится к электротехнике. Способ регулирования удельной емкости отрицательного электрода литий-ионного аккумулятора при заданной плотности тока разряда включает получение партии отрицательных электродов методом магнетронного распыления кремниевой и алюминиевой мишеней активного материала элементного состава Si-O-Al на металлическую фольгу, выбор одного электрода в качестве контрольного образца для определения его удельной емкости при заданной плотности тока разряда, отличающийся тем, что контрольный образец делят на произвольные участки, каждый участок обрабатывают раствором концентрированной 46-49%-ной плавиковой кислоты и воды в соотношении от HF:H2O=1:100 до HF:Н2О=1:1 по объему, устанавливают соотношение между удельной емкостью Q при заданной плотности тока разряда J и продолжительностью обработки электрода τ, определяют приемлемый участок электрода по достигнутой удельной емкости Q0 при значении времени τ0, обрабатывают всю партию полученных электродов в выбранных условиях.
Изобретение относится к аноду, применимому в аккумуляторе литий-ионной батареи, содержащему электролит на основе соли лития и неводного растворителя, к способу изготовления этого анода и к литий-ионной батарее с одним или более аккумуляторами, включающими в себя этот анод.

Изобретение относится к композициям для предварительной обработки электродов и может быть использовано в литий-ионных батареях. Предложен катод литий-ионной батареи, имеющий электропроводящую подложку, первый слой, покрывающий по меньшей мере часть электропроводящей подложки, содержащий композицию предварительной обработки, содержащую металл группы IIIB и/или группы IV, и второй слой, покрывающий по меньшей мере часть электропроводящей подложки и первого слоя, причем второй слой содержит композицию покрытия, содержащую литийсодержащее соединение.

Изобретение относится к электротехнике, а именно к разработке нового типа электродного материала на основе фторидофосфатов переходных и щелочных металлов для металл-ионных аккумуляторов для применения в крупногабаритных устройствах в альтернативной энергетике.
Изобретение относится к области изготовления щелочных аккумуляторов с металловойлочными оксидно-никелевыми электродами. Предложенный способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных источников тока включает подготовку поверхности пористого полимерного материала путем нанесения первичного слоя металла с последующем покрытием гальваническим никелем, при этом подготовку поверхности пористого полимерного материала осуществляют путем нанесения слоя полианилина при полимеризации анилина, после чего нанесение первичного слоя металла проводят путем гальванического меднения.

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками.

Изобретение относится к химическим источникам тока, а именно к металлофольговому электроду из литиевой фольги. Предложенный металлофольговый электрод содержит: i) усиливающий слой, образованный из пористой непроводящей подложки, и ii) первый и второй слои металлической фольги, выполненной содержащей литий и/или натрий, причем усиливающий слой расположен между первым и вторым слоями металлической фольги и соединен предпочтительно давлением с ними с образованием композитной структуры, имеющей толщину 100 микрон или менее.

Изобретение относится к области электротехники, а именно к неводному электрохимическому элементу, имеющему термостойкое покрытие на по меньшей мере одном из отрицательного электрода, положительного электрода и сепаратора, если он предусматривается.

Изобретение относится к способу вакуумно-дугового нанесения на подложку покрытия из каталитически активного материала и к подложке, полученной указанным способом.
Изобретение относится к области электротехники, а именно к способу изготовления гидрофобизированного катализатора, используемого в электродах топливного элемента (ТЭ) для прямого преобразования химической энергии в электрическую.

Группа изобретений относится к получению наночастиц типа сердцевина/оболочка и материалам для термоэлектрического преобразования. Способ получения наночастиц включает генерирование плазмы в растворе, содержащем два типа растворенных солей металлов, с обеспечением высаживания первого металла и второго металла.
Наверх