Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал для литий-ионных батарей, характеризующийся повышенной удельной емкостью при быстром заряде-разряде, состоящий из покрытых углеродом фосфата лития-железа со структурой оливина (LiFePO4) и серебра при следующих соотношениях компонентов, мас.%: фосфат лития-железа (LiFePO4) 75÷98.9, серебро 0.01÷5, углерод 1÷20, при этом размер частиц фосфата лития-железа составляет от 20 до 500 нм, а толщина углеродного покрытия от 1 до 8 нм. Композиционный катодный материал обеспечивает повышение удельной емкости материала для литий-ионных аккумуляторных батарей при скоростях заряда-разряда выше 5С, что является техническим результатом изобретения. 3 ил., 1 табл.

 

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности.

Известен катодный активный материал LiFePO4/C [US 5910382], который представляет собой фосфат лития-железа со структурой оливина с углеродным покрытием. Литий-ионные аккумуляторы на основе фосфата лития железа имеют значительные преимущества перед стандартными литий-ионными аккумуляторами. Структура LiFePO4 стабильнее за счет более прочного связывания атомов кислорода, что обуславливает повышенную безопасность при эксплуатации, в то время как традиционный катодный материал LiCoO2 при высокой степени зарядки склонен к разложению, которое может сопровождаться взрывом или возгоранием аккумулятора. Кроме того, LiFePO4 заряжается и разряжается практически при одном и том же напряжении около 3.5 В.

Недостатком этого катодного активного материала является несколько более низкое рабочее напряжение, что приводит к уменьшению энергоемкости и ограничению сферы применения литий-ионных аккумуляторов на его основе.

Известно также техническое решение по патенту [СА 2307119]. Сущность заявленного в нем изобретения заключается в повышении поверхностной электронной проводимости фосфата лития-железа за счет электропроводящего углеродного покрытия кристаллов LiFePO4.

Несмотря на удовлетворительную электронную проводимость такого композиционного материала, он не обладает достаточными электрохимическими показателями по емкости из-за низкой ионной проводимости материала.

В известном способе [US 7390473] LiFePO4 получают смешением реагентов в растворе с последующим соосаждением прекурсоров или выпариванием жидкой фазы. Наноразмерный кристаллический LiFePO4 получают после выдержки прекурсоров при температуре от 600 до 800°C.

Существенным недостатком этого способа получения активного материала являются его низкие электронная и ионная проводимости.

К аналогам предлагаемого изобретения также относится техническое решение [RU 2402114], которое заключается в повышении ионной и электронной проводимости фосфата лития-железа путем допирования структуры LiFePO4 катионами поливалентных элементов Со, Ni, Mg, Са, Zn, Al, Cu, Ti, Zr, S, Si, V, Mo. Предложенный материал представляет собой частицы состава LipFexM1-x(PO4)t(AO4)1-t и углеродную добавку, где М=Со, Ni, Mg, Са, Zn, Al, Cu, Ti, Zr, где A=S, Si, V, Mo, где 0<p<2; 0<x<1; 0≤t≤1, с заявленным размером частиц от 20 до 500 нм и толщиной углеродного покрытия до 20 нм.

Недостатком указанного катодного материала, несмотря на увеличение емкости литий-ионного аккумулятора на его основе, является сравнительно низкая ионная проводимость, не позволяющая обеспечить высокую скорость процессов заряда и разряда аккумулятора, а также существенное понижение емкости на больших токах.

Известен активный катодный материал на основе LiFePO4 [RU 2492557], который представляет собой механическую смесь нанокристаллов фосфата лития-железа (LiFePO4) и фосфата LixM2(PO4)3 со структурой Насикон, а именно либо двойного фосфата состава LixM2(PO4)3, где x=1 для М=TiIV, ZrIV; х=3 для М=InIII, CrIII, FeIII; либо сложного фосфата состава Li1+yMIV2-yMIIIy(PO4)3, где y=0,001÷1,999; MIV=TiIV, ZrIV; MIII=InIII, CrIII, FeIII), покрытую углеродом. Заявленный размер кристаллов фосфата лития-железа составляет от 20 до 100 нм, размер кристаллов фосфата со структурой Насикон составляет от 20 до 200 нм, толщина углеродного покрытия составляет от 1 до 5 нм.

Однако достижение приемлемой емкости 154 мА·ч/г возможно лишь при циклировании низким током 0,1С, что соответствует процессу заряда-разряда аккумулятора за 10 часов.

Наиболее близкое техническое решение [RU 2584678], (прототип), направлено на повышение удельной емкости катодного материала путем создания композиционного катодного материала, состоящего из механической смеси фосфата лития-железа с углеродным покрытием (С-LiFePO4) (88-99,5 вес. %), углеродной сажи (не более 4 вес. %), проводящего полимера поли-3,4-этилендиокситиофена, допированного полистиролсульфоновой кислотой (от 0,5 до 4 вес. %) и водного связующего (карбоксиметилцеллюлоза) не более 4 вес. %. Результат достигается за счет частичной или полной замены электрохимически неактивной проводящей углеродной добавки на электрохимически активную одновременно проводящую добавку полимера.

Недостатком прототипа, несмотря на увеличение емкости литий-ионного аккумулятора при токах 0,2-5С, являются относительно низкие емкости при циклировании токами выше 5С.

Изобретение направлено на изыскание состава композиционного катодного материала на основе LiFePO4/C, обладающего повышенной удельной емкостью при скоростях заряда-разряда выше 5С.

Технический результат достигается тем, что предложен композиционный катодный материал для литий-ионных батарей, характеризующийся повышенной удельной емкостью при быстром заряде-разряде, состоящий из покрытых углеродом фосфата лития-железа со структурой оливина (LiFePO4) и серебра при следующих соотношениях компонентов, мас. %:

фосфат лития-железа (LiFePO4) 75÷98.9
серебро 0.01÷5
углерод 1÷20,

при этом размер частиц фосфата лития-железа составляет от 20 до 500 нм, а толщина углеродного покрытия от 1 до 8 нм.

Предложенный композиционный катодный материал получают путем введения катионов серебра в прекурсор фосфата лития железа и в прекурсор раствора полимера, который является источником углерода. В результате образуется композиционный катодный материал с включением наночастиц серебра и равномерным углеродным покрытием, что способствует увеличению электропроводности, ускорению электрохимических процессов и улучшению характеристики катодного материала в целом.

Введение углерода в количестве менее 1 мас. % приводит к ухудшению удельной емкости композиционного катодного материала из-за низкой электропроводности и повышения степени агрегации частиц материала. Введение углерода в количестве более 20 мас. % приводит к существенному снижению содержания электрохимически активного материала в композите и в результате к понижению удельной емкости.

Введение серебра в количестве менее 0.01 мас. % не приводит к заметному улучшению характеристик композиционного катодного материала из-за недостаточного увеличения электропроводности. Введение серебра в количестве более 5 мас. % приводит к снижению массы электрохимически-активного материала и в результате к понижению удельной емкости. Кроме того, себестоимость конечного продукта крайне высока.

Размер частиц фосфата лития-железа от 20 до 500 нм определяется достижением наилучших характеристик катодного материала. Толщина углеродного покрытия от 1 до 8 нм находится в прямой зависимости от заявленного содержания углерода в материале.

Сущность изобретения заключается в том, что в качестве катодного материала на основе LiFePO4 предложен композиционный материал на основе фосфата лития-железа со структурой оливина LiFePO4, дополнительно содержащий серебро с равномерным углеродным покрытием, что позволяет увеличить электропроводность материала и повысить значения удельной емкости литий-ионных аккумуляторов на его основе при быстром заряде-разряде.

Равномерное углеродное покрытие является продуктом пиролиза поливинилиденфторида (PVDF).

Сущность заявляемого изобретения поясняется следующими прилагаемыми иллюстрациями:

Фиг. 1. Зарядно-разрядные кривые для образца LiFePO4+0.5% Ag+5% C (пример 4) при скоростях 6С, 10С, 60С. Восходящие кривые соответствуют заряду, нисходящие - разряду.

Фиг. 2. Изменение удельной разрядной емкости для образца LiFePO4+0.5% Ag+5% C (пример 4) в зависимости от скорости циклирования.

Фиг. 3. Изменение удельной разрядной емкости для образца LiFePO4+0.5% Ag+5% C (пример 4) в зависимости от числа циклов при различных скоростях разряда.

Предлагаемое изобретение реализуется следующим образом.

Заявляемый композиционный катодный материал на основе LiFePO4 получают методом, включающим следующие стадии:

- синтез прекурсора для LiFePO4: приготовление водного раствора из основных компонентов, содержащих катионы лития, железа, фосфат-анионы, катионы серебра; выдерживание реакционной смеси при температурах 150÷500°C;

- приготовление прекурсора для получения углерода путем растворения PVDF и соли серебра в органическом растворителе;

- смешение полученного прекурсора для LiFePO4 и прекурсора углерода в стехиометрических количествах;

- выдерживание полученной смеси при температуре от 500 до 800°C в инертной атмосфере. Время выдержки должно быть достаточным для образования продуктов реакции, обычно 8÷14 часов. Выбор нижнего температурного предела обусловлен недостаточной степенью формирования фосфата лития-железа со структурой оливина и при температуре ниже 500°C. При температурах выше 800°C размер кристаллов продукта реакции становится слишком высоким, происходит агломерация частиц, что приводит к образованию крупнокристаллического продукта с недостаточной электрохимической активностью.

В Таблице «Значения удельной разрядной емкости предпочтительных составов композиционных материалов в зависимости от скорости разряда» приведены примеры продуктов, полученных по заявляемому изобретению. Примеры иллюстрируют, но не ограничивают предложенное техническое решение.

Материалы и методы

Для получения LiFePO4 используются следующие исходные реагенты: ацетат лития, карбонат лития, нитрат лития, гидроксид лития, оксалат железа (II), нитрат железа (III), оксид железа III (Fe2O3, >98%, Sigma Aldrich), фосфат железа III (FePO4, 98%, Fluka), гидрофосфат аммония, дигидрофосфат аммония, дигидрофосфат лития. Для получения наночастиц металлического серебра можно использовать: ацетат серебра, фторацетат серебра, нитрат серебра. В качестве источника углерода используется раствор поливинилиденфторида в органическом растворителе, в качестве органического растворителя можно использовать диметилформамид, диметилацетамид, диметилсульфоксид, N-метилпирролидон, диметилацетат.

Аттестацию полученных материалов осуществляли с использованием рентгенофазового анализа, сканирующей электронной микроскопии. Лабораторные испытания полученных образцов композиционных катодных материалов проводили в тестовых литиевых ячейках согласно стандартной процедуре с использованием литиевого противоэлектрода, полипропиленового сепаратора (НПО «Уфим», Москва) и электролита, представляющего собой раствор 1 М LiPF6 в смеси этиленкарбоната-диэтилкарбонат-диметилкарбонат в объемном соотношении 1:1:1. Для приготовления электродной пасты смешивали 90 мас. % композиционного катодного материала, 5% проводящей сажи (KJEC BLACK) и 5% водного связующего водного (КМЦ-ЛАТЕКС).

Поиск предпочтительных составов материала осуществляли по разрядной емкости.

На Фиг. 1 представлены зарядно-разрядные кривые для образца LiFePO4+0.5% Ag+5% C при скоростях заряда/разряда 6С, 10С, 60С. Видно, что для данного катодного материала при циклировании со скоростью 6С-60С площадки разряда при потенциалах, приемлемых для катодного материала, сохраняются (Фиг. 1). Значения удельной разрядной емкости составляют 114 мА/г при скорости 6С, 98 мА/г при скорости 10С, 90 мА·ч/г при скорости 60С (Фиг. 2). После циклирования токами большой плотности (60С) и возвращения на малые токи (С/8) разрядная емкость возвращается к исходным значениям (Фиг. 3). Это свидетельствует об отсутствии деградации материала при быстром заряде-разряде.

Следует также отметить, что и при низких скоростях заряда-разряда заявляемый материал обладает электрохимическими показателями по емкости, не уступающими или превосходящими уровень техники. Например, повышенное значение емкости 161 мА·ч/г (Фиг. 3) для заявляемого материала достигается при заряде-разряде аккумулятора уже за 8 часов, что соответствует циклированию током С/8.

Заявляемый в качестве изобретения композиционный катодный материал позволяет повысить удельную емкость литий-ионных аккумуляторных батарей при скоростях заряда-разряда выше 5С.

Композиционный катодный материал для литий-ионных батарей, характеризующийся повышенной удельной емкостью при быстром заряде-разряде, состоящий из покрытых углеродом фосфата лития-железа со структурой оливина (LiFePO4) и серебра при следующих соотношениях компонентов, мас.%:

фосфат лития-железа (LiFePO4) 75÷98.9
серебро 0.01÷5
углерод 1÷20,

при этом размер частиц фосфата лития-железа составляет от 20 до 500 нм, а толщина углеродного покрытия от 1 до 8 нм.



 

Похожие патенты:

Изобретение относится к способу получения структуры тонкопленочного катода на основе системы Li2Fe0,5Mn0,5SiO4 и позволяет получить катод с монокристаллической бездефектной структурой с равномерным распределением химического состава по объему.

Изобретение относится к области электротехники, а именно к способу получения тонкопленочного анода, и может быть использовано при изготовлении литий-ионных аккумуляторных батарей.

Изобретение относится к литиевому электроду, содержащему электродный композит, включающий в себя пористый металлический токоотвод и металлический литий, введенный в поры, присутствующие в металлическом токоотводе, и защитную мембрану для проводимости по иону лития, причем защитная мембрана образована на по меньшей мере одной поверхности электродного композита, при этом металлический литий введен в количестве от 1 до 50 мас.% относительно общей массы электродного композита.
Изобретение относится к аноду, применимому в аккумуляторе литий-ионной батареи, содержащему электролит на основе соли лития и неводного растворителя, к способу изготовления этого анода и к литий-ионной батарее с одним или более аккумуляторами, включающими в себя этот анод.

Изобретение относится к положительному электроду для литиево-воздушной батареи, а также к способу его приготовления. Положительный электрод для литиево-воздушной батареи содержит: токоотвод положительного электрода, образованный пористым металлом; и активный слой положительного электрода, предусмотренный на токоотводе положительного электрода и включающий в себя проводящий материал и катализатор для восстановления кислорода, и при этом пористый металл имеет диаметр пор, равный или больший 20 нм и равный или меньший 1 мм.

Изобретение относится к катоду для литиево-серной батареи, а также к способу его приготовления. Катод для литиево-серной батареи включает активную часть катода, включающую в себя сероуглеродный композит; и слой покрытия катода, предусмотренный по меньшей мере на части поверхности активной части катода и включающий в себя неорганический оксид, при этом слой покрытия катода содержит поры, имеющие средний диаметр от 0,5 до 10 мкм, и пористость слоя покрытия катода составляет от 20 до 70%.

Изобретение относится к композиции положительного электрода для вторичной батареи с неводным электролитом, содержащей: комплексный оксид лития и переходного металла, представленный общей формулойLiaNi1-x-yCoxM1yWzM2wO2(1,0≤a≤1,5, 0≤x≤0,5, 0≤y≤0,5, 0,002≤z≤0,03, 0≤w≤0,02, 0≤x+y≤0,7, М1 означает по меньшей мере один металл, выбранный из группы, состоящей из Mn и Al, М2 означает по меньшей мере один металл, выбранный из группы, состоящей из Zr, Ti, Mg, Ta, Nb и Mo); и исходное соединение бора.
Изобретение относится к катоду, применимому в аккумуляторе литий-ионной батареи, содержащей электролит на основе соли лития и неводного растворителя электролита. Причем катод выполнен на основе полимерной композиции, полученной обработкой расплава и без испарения растворителя, то есть представляет собой продукт реакции горячего компаундирования между активным материалом и добавками, включающими полимерное связующее и электропроводный наполнитель.

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками.

Изобретение относится к литий-ионному вспомагательному аккумулятору и способу его изготовления. Литий-ионный вспомогательный аккумулятор включает в себя: лист положительного электрода, который включает в себя слой активного материала положительного электрода, содержащий частицы активного материала положительного электрода; лист отрицательного электрода; и неводный электролитический раствор, который содержит соединение, содержащее фтор, при этом поверхность частиц активного материала положительного электрода включает в себя пленку, содержащую фтор и фосфор, и отношение Cf/Cp удовлетворяет значению 1,89≤Cf/Cp≤2,61, где Cf представляет собой число атомов фтора в пленке, а Ср представляет собой число атомов фосфора в пленке.

Изобретение относится к электротехнике, а именно к разработке нового типа электродного материала на основе фторидофосфатов переходных и щелочных металлов для металл-ионных аккумуляторов для применения в крупногабаритных устройствах в альтернативной энергетике.

Изобретение относится к монофосфатам или смешанным фосфатам металлов типа (M1, M2, M3,...Mx)3(PO4)2⋅aH2O, где 0≤a≤9, и способу их получения. При этом (M1, M2, M3,...Mx) представляют собой металл в монофосфатах металлов или несколько металлов в смешанных фосфатах металлов и металлы выбирают из Mn, Fe, Co, Ni, Sc, Ti, V, Cr, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr, Hf, Re, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb и Lu с условием, что по меньшей мере один металл в фосфате выбирают из Mn, Fe, Co и Ni, причем фосфат содержит не более чем 10 различных металлов M1, М2, М3,…Мх.

Группа изобретений может быть использована в производстве катодов литий-ионных аккумуляторов. Способ получения композита из ортофосфата железа(III) общей формулы FePO4·nH2O, где n≤2,5, и углерода включает диспергирование источника элементарного углерода в водном фосфорнокислом растворе, содержащем ионы Fe2+.

Изобретение относится к электродам свинцово-кислотных аккумуляторных батарей и способам их получения. В частности, электроды содержат активный аккумуляторный материал для свинцово-кислотной аккумуляторной батареи, причем поверхность электрода снабжена слоем покрытия, содержащим углеродную смесь из композитных углеродных частиц, при этом каждая из композитных углеродных частиц содержит частицу первого конденсаторного углеродного материала и частицу второго электропроводящего углеродного материала, при этом размеры частиц первого материала значительно больше, чем у частиц второго электропроводящего углеродного материала, и по меньшей мере 20 % поверхности частиц первого конденсаторного материала покрыто частицами второго электропроводящего углеродного материала.

Изобретение относится к способу изготовления композитного катодного материала. Способ включает следующие стадии: получение гидрогеля или ксерогеля V2O5; выдержка в герметичном тефлоновом автоклаве при температуре 130-200°C и давлении 100-600 МПа в течение суток смеси, содержащей гидрогель или ксерогель V2O5, и углеродного материала с получением композиционного материала, содержащего наностержни V2O5 в оболочке из графена; центрифугирование полученного композиционного материала; промывка композиционного материала; сушка композиционного материала при температуре 50°C.

Изобретение относится к способу получения высокоемких анодных материалов на основе соединений включения лития в графитную спель и способу изготовления из них отрицательных электродов для литий-ионных аккумуляторов.

Изобретение относится к области электротехники, а именно к литий-воздушному аккумулятору и способу его изготовления, и может быть использовано для электропитания различного оборудования.

Заявлен перезаряжаемый литиевый элемент аккумуляторной батареи, имеющий корпус, положительный электрод, отрицательный электрод и электролит, содержащий электропроводящую соль, в котором основой электролита является SO2, и положительный электрод содержит химически активное вещество, имеющее состав LixM'yM"z(XO4)aFb, в котором М' означает, по меньшей мере, один металл, выбранный из группы элементов, включающей Ti, V, Cr, Mn, Fe, Co, Ni, Cu и Zn, М" означает, по меньшей мере, один металл, выбранный из группы, включающей металлы групп IIA, IIIA, IVA, VA, VIA, IB, IIB, IIIB, IVB, VB, VIB и VIIIB, Х выбран из группы элементов, включающей Р, Si и S, х имеет величину больше 0, у имеет величину больше 0, z имеет величину больше или равную 0, а имеет величину больше 0 и b имеет величину больше или равную 0.

Изобретение относится к активному материалу для положительного электрода натриевого аккумулятора, имеющего кристаллическую структуру, принадлежащую к пространственной группе Pn21a, представленному приведенной ниже общей формулой (1): где М представляет, по меньшей мере, один из элементов, выбранный из группы, состоящей из: марганца, железа, кобальта и никеля; А представляет, по меньшей мере, один из элементов, выбранный из группы, состоящей из: кремния, фосфора или серы; x удовлетворяет условию 4≥х≥2; y удовлетворяет условию 4≥y≥1, и оба индекса z и w больше или равны 1.

Изобретение относится к активному материалу на основе литированного фосфата ванадия с углеродным покрытием для использования в составе положительной активной массы литий-ионных аккумуляторов.

Изобретение относится к области электротехники, а именно к способу получения тонкопленочного анода, и может быть использовано при изготовлении литий-ионных аккумуляторных батарей.
Наверх