Способ нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты

Изобретение относится к формированию на поверхности медных электрических контактах покрытий и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошков молибдена и никеля, взятых в соотношении 10:1 массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы Mo-Ni-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30. Изобретение направлено на получение электроэрозионностойкого покрытия с высокой адгезией с основой на уровне когезии. 2 пр., 2 ил.

 

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на медных электрических контактах покрытий на основе молибдена, меди и никеля, которые могут быть использованы в электротехнике как электроэрозионностойкие покрытия с высокой адгезией с основой на уровне когезии.

Известен способ [1] нанесения электроэрозионностойких покрытий на основе вольфрама и меди на медные электрические контакты, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка вольфрама массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы W-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Недостатком способа является низкая стабильность структуры в процессе эксплуатации электрических контактов с такими покрытиями. В процессе эксплуатации электрических контактов с такими покрытиями происходит оплавление их поверхности, под воздействием искрообразования и возникновения электрической дуги возникает локальное оплавление и разбрызгивание металла, в результате чего металлическое изделие нарушает свою целостность, изменяет размеры и форму. Поскольку вольфрам и медь являются несмешивающимися компонентами во всем температурном и концентрационном интервале, при взаимодействии искры или дуги при коммутации контактов на поверхности покрытия возникают различного вида дефекты. В процессе испытаний легкоплавкая медь испаряется и основным элементом покрытия становится молибден, который образует матрицу с включениями меди с размерами порядка нескольких микрометров [2]. Это может стать причиной преждевременного отказа в работе электрических контактов.

Наиболее близким к заявляемому является способ [3] нанесения электроэрозионностойких покрытий на основе молибдена и меди на медные электрические контакты, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника из порошка молибдена массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы Мо-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Недостатком способа является низкая стабильность структуры в процессе эксплуатации электрических контактов с такими покрытиями. В процессе эксплуатации электрических контактов с такими покрытиями происходит оплавление их поверхности, под воздействием искрообразования и возникновения электрической дуги возникает локальное оплавление и разбрызгивание металла, в результате чего металлическое изделие нарушает свою целостность, изменяет размеры и форму. Поскольку вольфрам и медь являются несмешивающимися компонентами во всем температурном и концентрационном интервале, при взаимодействии искры или дуги при коммутации контактов на поверхности покрытия возникают различного вида дефекты. В процессе испытаний легкоплавкая медь испаряется и основным элементом покрытия становится молибден, который образует матрицу с включениями меди с размерами порядка нескольких микрометров [2]. Это может стать причиной преждевременного отказа в работе электрических контактов.

Задачей заявляемого изобретения является получение композиционных покрытий на основе молибдена, меди и никеля с наполненной микрокристаллической структурой, обладающих высокой стабильностью структуры, когезией между фазами вольфрама и меди вследствие добавления никеля, высокой степенью гомогенизации структуры их поверхностного слоя, зеркальным блеском поверхности и высокой электроэрозионной стойкостью.

Поставленная задача реализуется способом нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошков молибдена и никеля, взятых в соотношении 10:1 массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы Mo-Ni-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Продукты разрушения композиционного электрически взрываемого проводника образуют плазменную струю, служащую инструментом формирования на поверхности медного электрического контакта композиционного покрытия с наполненной структурой [4], образованного псевдосплавом молибдена и меди с добавлением никеля. Добавка никеля обусловлена тем, что он растворяется в молибдене и образует неограниченные твердые растворы с медью. Последующая импульсно-периодическая ЭПО покрытия сопровождается переплавлением его поверхностного слоя толщиной 20-30 мкм. Дефекты в виде микропор и микротрещин, выявляемые после ЭВН [2], в нем не наблюдаются. Импульсно-периодическая ЭПО приводит к формированию в покрытии высокодисперсной и однородной структуры. Никель обеспечивает «связь» между фазами молибдена и меди. Размеры включений меди в молибденовой матрице с растворенным никелем или молибдена в медной матрице уменьшаются в 2-4 раза по сравнению с их размерами сразу после ЭВН. Поверхность покрытия приобретает зеркальный блеск. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с низкой шероховатостью, повышенной адгезией по сравнению с электровзрывными покрытиями, получаемыми в способе [3], и гомогенизированной структурой, что увеличивает срок их службы и расширяет область практического применения контактов в электротехнической аппаратуре.

Способ поясняется чертежом, где на фиг. 1 представлена структура электровзрывного композиционного покрытия системы Mo-Ni-Cu на границе электровзрывного покрытия с основой, на фиг. 2 - общий вид поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы Mo-Ni-Cu после переплавления при ЭПО.

Исследования методом сканирующей электронной микроскопии показали, что при ЭВН на поверхность медного электрического контакта путем электрического взрыва композиционного электрически взрываемого проводника при поглощаемой плотности мощности 4,5-6,5 ГВт/м2 происходит формирование покрытия с композиционной наполненной структурой, когда в молибденовой матрице с растворенным никелем располагаются включения меди с размерами от 0,1 до 2,0 мкм (фиг. 1). В покрытии наблюдаются дефекты в виде микропор и микротрещин. Указанный режим, при котором поглощаемая плотность мощности составляет 4,5-6,5 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 4,5 ГВт/м2 не происходит образование рельефа между покрытием и медным электрическим контактом, вследствие чего возможно отслаивание покрытия, а выше 6,5 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы медной фольги менее 60 мг становится невозможным изготовление из нее композиционного электрически взрываемого проводника. При значении массы медной фольги более 360 мг покрытие с композиционной наполненной структурой на медных электрических контактах обладает большим количеством дефектов. При значении массы сердечника композиционного электрически взрываемого материала менее 0,5 или более 2,0 массы фольги покрытие с композиционной наполненной структурой на медных электрических контактах также обладает дефектной структурой. При нарушении стехиометрии порошков молибдена и никеля 10:1 локально возникают участки обогащения никелем, вследствие чего формируется неоднородность свойств по объему покрытия. Граница электровзрывного покрытия с основой не является ровной (фиг. 2), что позволяет увеличить адгезию покрытия с основой.

Импульсно-периодическая ЭПО поверхности электровзрывного покрытия с поверхностной плотностью поглощаемой энергии 40-60 Дж/см2, длительностью импульсов 150-200 мкс, количеством импульсов 10-30 приводит к выглаживанию рельефа поверхности до образования зеркального блеска. Толщина модифицированных слоев после ЭПО изменяется в пределах от 20 до 40 мкм и незначительно увеличивается с ростом плотности энергии пучка электронов. Электронно-пучковая обработка, сопровождающаяся переплавлением слоя покрытия, приводит к формированию композиционной наполненной [4] структуры (фиг. 2). Дефекты в виде микропор и микротрещин в нем не наблюдаются. Размеры включений меди в молибденовой матрице с растворенным никелем изменяются в пределах от 0,1 до 0,2 мкм, при этом размеры включений меди изменяются в пределах от 0,1 до 2,0 мкм. Импульсно-периодическая ЭПО поверхностного слоя приводит к формированию в нем более дисперсной и однородной структуры. Указанный режим является оптимальным, поскольку при поверхностной плотности энергии меньше 40 Дж/см2, длительности импульсов короче 150 мкс, количестве импульсов менее 10 имп. не происходит образования однородной структуры на основе молибдена и меди и диспергирования меди и молибдена в покрытии. При поверхностной плотности энергии больше 60 Дж/см2, длительности импульсов длиннее 200 мкс, количестве импульсов более 30 имп. происходит формирование рельефа поверхности.

Электроэрозионную стойкость покрытий, полученных заявленным способом, в условиях дуговой эрозии измеряли на контактах электромагнитных пускателей марки ПМА 4100. Испытания на коммутационную износостойкость в режиме АС-4 согласно ГОСТу [5] проводили на испытательном комплексе ООО «ЗЭТА» (г. Кемерово) при токе коммутирования 378 А, который в 6 раз превышал номинальный, и cosϕ=0,35. Число циклов включений-отключений до полного разрушения составило ~10000-11000. Это соответствует требованиям ГОСТа [5] для таких контактов.

Испытания покрытий на электроэрозионную стойкость в условиях искровой эрозии проводили при точечном контакте. Ток составлял 3 А и напряжение - 220 В. После 10000 включений-отключений измеряли потерю массы образца. Формирующееся при ЭВН покрытия обладают большей электроэрозионной стойкостью в условиях искрового разряда по сравнению с исходной для меди марки М00 и покрытиями, полученными по способу [3]. Относительное изменение электроэрозионной стойкости в условиях искровой эрозии покрытий с композиционной наполненной структурой mэ/m составляет 10,93, где mэ - потеря массы меди марки М00, принятой за эталон, при 10000 циклов включений-отключений.

Примеры конкретного осуществления способа:

Пример 1

Обработке подвергали контактную поверхность медного электрического контакта командоконтроллера ККТ 61 площадью 1,5 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошков молибдена и никеля, при этом оболочка состояла из двух слоев электрически взрываемой плоской медной фольги массой 60 мг, а масса сердечника составляла 30 мг. Порошки молибдена и никеля были взяты в соотношении 10:1. Сформированной плазменной струей оплавляли поверхность медного электрического контакта при поглощаемой плотности мощности 4,5 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы Mo-Ni-Cu. После самозакалки покрытия при теплоотводе в объем основы медного контакта осуществляли импульсно-периодическую ЭПО поверхности электровзрывного покрытия при поверхностной плотности энергии 40 Дж/см2, длительности импульсов - 150 мкс, количестве импульсов - 10 имп.

Получили электроэрозионностойкое покрытие с высокой адгезией покрытия с основой на уровне когезии. На ОАО «Новокузнецкий вагоностроительный завод» медные контакты, упрочненные заявляемым способом, показали увеличенный ресурс коммутационного износа в 1,6…2,1 раза по сравнению с серийными контактами.

Пример 2

Обработке подвергали медную электроконтактную поверхность контактов пускателей марок ПВИ-320А площадью 0,8 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошков молибдена и никеля, при этом оболочка состояла из двух слоев электрически взрываемой плоской медной фольги массой 360 мг, а масса сердечника составляла 720 мг. Порошки молибдена и никеля были взяты в соотношении 10:1. Сформированной плазменной струей оплавляли медную электроконтактную поверхность контактов пускателей марок ПВИ-320А при поглощаемой плотности мощности 6,5 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы Mo-Ni-Cu. После самозакалки покрытия при теплоотводе в объем основы медного контакта осуществляли импульсно-периодическую ЭПО электровзрывного покрытия при поверхностной плотности энергии 60 Дж/см2, длительности импульсов - 200 мкс, количестве импульсов - 30 имп.

Получили электроэрозионностойкое покрытие с высокой адгезией покрытия с основой на уровне когезии. На ОАО «Ремкомплект», г. Новокузнецк медные контакты, упрочненные заявляемым способом, показали ресурс коммутационного износа на уровне в 2,1 раза выше контактов пускателей марок ПВИ-320А.

Источники информации

1. Патент РФ №2546939 на изобретение «Способ нанесения электроэрозионно-стойких покрытий на основе вольфрама и меди на медные электрические контакты» / Романов Д.А., Олесюк О.В., Будовских Е.А., Громов В.Е.; заявл. 16.12.2013; опубл. 10.04.2015, Бюл. №10. 8 с.

2. Электровзрывное напыление износо- и электроэрозионностойких покрытий / Д.А. Романов, Е.А. Будовских, В.Е. Громов, Ю.Ф. Иванов. - Новокузнецк: Изд-во ООО «Полиграфист», 2014. - 203 с.

3. Патент РФ №2545852 на изобретение «Способ нанесения электроэрозионностойких покрытий на основе молибдена и меди на медные электрические контакты» / Романов Д.А., Олесюк О.В., Будовских Е.А., Громов В.Е.; заявл. 16.12.2013; опубл. 10.04.2015, Бюл. №10. 8 с.

4. Мэттьюз М., Ролингс Р. Композиционные материалы. Механика и технология. - М.: Техносфера, 2004. - 408 с.

5. ГОСТ 2933-83. Испытание на механическую и коммутационную износостойкость. Аппараты электрические низковольтные. Методы испытаний. - М.: Изд-во стандартов, 1983. - 26 с.

Способ нанесения электроэрозионностойкого покрытия на основе молибдена, меди и никеля на медные электрические контакты, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошков молибдена и никеля, взятых в соотношении 10:1 массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы Mo-Ni-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.



 

Похожие патенты:

Изобретение относится к области получения электрических контактов, в частности к формированию на медных электрических контактах покрытий на основе вольфрама, никеля и меди, которые могут быть использованы в электротехнике.

Изобретение относится к области металлургии, в частности к термообработке сплавов на основе золота, и может быть использовано при производстве слаботочных скользящих контактов (ССК), применяемых в коллекторах приборов и систем.

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения.

Изобретение относится к области цветной металлургии, в частности к производству графитсодержащих композиционных материалов электротехнического назначения на основе меди, и может быть использовано для изготовления электрических разрывных контактов низковольтной аппаратуры.

Изобретение относится к формированию на медных электрических контактах покрытий на основе вольфрама, углеродистого вольфрама и меди, и может быть использовано в электротехнике.

Изобретение относится к формированию на медных электрических контактах покрытий на основе вольфрама и меди, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка вольфрама массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы W-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.
Изобретение относится к способу получения легированного оксидом индия серебряно-оловооксидного материала для электроконтактов и может применяться в электротехнической промышленности.

Изобретение относится к формированию покрытий на медных электрических контактах и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка диборида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы TiB2-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Изобретение относится к формированию на медных электрических контактах покрытий на основе молибдена, углеродистого молибдена и меди, которые могут быть использованы в электротехнике как электроэрозионно-стойкие покрытия с высокой адгезией с основой на уровне когезии.

Изобретение относится к порошковой металлургии, в частности к получению порошка сплава серебро-кадмий для изготовления контактов. Раствор нитратов серебра и кадмия обрабатывают раствором гидроксида натрия, выдерживают пульпу и отделяют осадок смеси AgOH и Cd(OH)2 от маточного раствора.

Изобретение относится к способу изготовлению детали из хромосодержащего жаропрочного сплава на основе никеля и может найти применение при изготовлении деталей газотурбинных двигателей.

Изобретение относится к способам антикоррозионной обработки поверхности изделий из алюминия или алюминиевых сплавов. Поверхность изделия подвергают импульсному энергетическому воздействию излучением импульсного оптоволоконного иттербиевого лазера с длиной волны 1,065 мкм при удельной мощности излучения 4,539⋅1010…8,536⋅1010 Вт/см2, частоте следования импульсов 20…40 кГц и скорости сканирования поверхности лазерным излучением 250…700 мм/с.

Изобретение относится к способу аддитивной обработки деталей из сплавов системы Al-Si и может быть использовано в машиностроительных отраслях для изготовления и восстановления малоразмерных изделий и их конструктивных элементов, преимущественно, поперечного размера в субмиллиметровом диапазоне (менее 1 мм).

Изобретение относится к способам нанесения покрытия из алюминида титана на металлическое изделие и к металлическому изделию с указанным покрытием. Способ нанесения покрытия из алюминида титана на металлическое изделие включает холодное напыление алюминида титана на изделие для формирования покрытия из алюминида титана, причем покрытие из алюминида титана включает тонкую гамма/альфа2 структуру, а алюминид титана, нанесенный на изделие холодным напылением, имеет состав, включающий 45 мас.

Изобретение относится к области нанесения покрытий и может быть использовано для упрочнения режущего инструмента и металлических деталей машин. Способ плазменного нанесения покрытия на металлическую заготовку включает нагрев поверхности заготовки и плазменное напыление слоя покрытия на ее поверхность, при этом осуществляют нагрев участка поверхности, на который наносят покрытие, плазменной струей до температуры, при которой размер расширенного тепловым потоком участка поверхности будет равен размеру наносимого покрытия на упомянутом участке при температуре напыления, после нанесения требуемого слоя напыление прекращают и измеряют температуру поверхности покрытия и температуру поверхности заготовки на границе напыленного слоя и устраняют разницу в температурах путем регулирования подачи охлаждающей среды на границу раздела напыленного слоя и заготовки до их остывания.

Изобретение относится к области получения электрических контактов, в частности к формированию на медных электрических контактах покрытий на основе вольфрама, никеля и меди, которые могут быть использованы в электротехнике.

Изобретение относится к способу армирования передней кромки (16) лопасти (12) для ее защиты, а также к лопасти с армированием и может найти применение при изготовлении или восстановлении лопасти турбинного двигателя, вертолета или пропеллера.

Изобретение относится к области металлургии, а именно к деформационно-термической обработке покрытий титан-никель-гафний с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине.

Изобретение относится к системам и устройствам для получения продуктов из распыленных металлов и сплавов. Получают поток жидкого сплава и/или ряд капель жидкого сплава.

Изобретение относится к способу нанесения покрытия путем термического напыления, в частности к нанесению покрытия на внутреннюю поверхность гильзы цилиндра путем плазменно-дугового напыления.

Изобретение относится к конструкционным изделиям ИК-оптики, обеспечивающим, наряду с основной функцией пропускания излучения в требуемом спектральном диапазоне, защитные функции приборов и устройств от воздействий внешней среды.
Наверх