Способ обзора воздушного пространства радиолокационной станцией с активной фазированной антенной решеткой

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС), в которых в качестве антенны используется активная фазированная антенная решетка. Достигаемый технический результат - одновременное осуществление приема и излучения зондирующего сигнала на разных угловых позициях путем раздельной перестройки диаграммы направленности антенны (ДНА) на прием и передачу. Указанный результат достигается за счет того, что формируют передающую и приемную диаграммы направленности антенны, излучают зондирующие сигналы в виде пачки импульсов, принимают отраженные от целей импульсы, при этом на время излучения зондирующих импульсов запирают приемные каналы приемо-передающих модулей активной фазированной антенной решетки, при этом приемную и передающую ДНА формируют независимо друг от друга активной фазированной антенной решеткой, а после излучения зондирующих импульсов перемещают передающую ДНА в следующую угловую позицию, а приемную ДНА оставляют на предыдущей угловой позиции до момента приема всех отраженных от цели импульсов излученной пачки, после чего перемещают приемную ДНА в следующую угловую позицию, повторяют описанную последовательность действий для необходимого количества угловых позиций. 1 ил.

 

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС), в которых в качестве антенны используется активная фазированная антенная решетка.

Задача обзора воздушного пространства для обнаружения целей наиболее просто решается посылкой определенной части энергии радиоволн широким лучом диаграммы направленности антенны (ДНА) в пределах заданного пространственного угла. Однако в этом случае потребуется большая мощность передатчика РЛС при ограниченном времени на обнаружение целей и, кроме того, будет затруднено разрешение целей в пространстве по угловым координатам. В большинстве случаев применяются различные способы обзора узкими лучами ДНА РЛС. При построчном обзоре луч ДНА перемещается в горизонтальной плоскости. На границе зоны обзора луч смещается на величину, достаточную, чтобы при дальнейшем движении по горизонтали по другой строке обеспечить обзор без пропуска целей. Обзор в этом случае характеризуется равномерным распределением энергии по всем направлениям в пределах зоны обзора, а перемещение луча определяется шагом обзора. При спирально-поступательном обзоре луч ДНА совершает коническое сканирование, при этом ось вращения медленно перемещается по горизонтали. Возможны комбинации указанных способов. [Радиолокационные системы многофункциональных самолетов. Т. 1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов. / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: «Радиотехника», 2006 г., стр. 182-188].

Недостатком указанных способов является большое время обзора пространства.

Известен «Способ радиолокационного обзора пространства» [RU 2400767, опубликовано 27.09.2010, МПК G01S 13/00], основанный на взаимодействии разнесенных в пространстве радиолокационных станций, таким образом, что независимо работающие РЛС, действующие в контролируемом пространстве, обмениваются информацией а) о координатах просмотренных участков, в которых отсутствуют цели, или а) и б) о координатах обнаруженных целей или а), б) и данными об их распознавании и с учетом полученной информации путем установки различных приоритетов просмотра участков пространства, входящих в зону ответственности РЛС, увеличивают затраты энергии на просмотр угловых направлений, в которых может находиться цель, за счет сокращения затрат, а при необходимости вплоть до их исключения на просмотр угловых направлений, в которых цель отсутствует.

Недостатком указанного способа является сложность его реализации из-за взаимодействия нескольких РЛС.

Известен «Способ радиолокационного обзора зоны пространства» [RU 2400768, опубликовано 27.09.2010, МПК G01S 13/00]. Способ включает последовательный осмотр угловых направлений, поочередный пропуск осмотра угловых направлений на каждом периоде обзора, принятие решения об обнаружении цели, если уровень принятого сигнала превысил порог обнаружения. По сигналу, превысившему дополнительный порог, но не превысившему порог обнаружения, формируют строб обзора на следующий период, в котором входящие в него угловые направления осматривают без пропуска. В указанном способе вводится дополнительный порог, более низкий, чем порог обнаружения. Дополнительный порог устанавливают исходя из допустимой вероятности ошибочного осмотра угловых направлений, подлежащих пропуску. Если принятый сигнал при осмотре направления не превысил основной порог обнаружения, но превысил дополнительный, то следует предположить, что это отраженный сигнал от еще не обнаруженной цели, и по мере ее приближения к РЛС она может быть обнаружена, когда сигнал превысит порог обнаружения.

Недостатком указанного способа является недостаточное уменьшение времени обзора пространства, поскольку за счет низкого значения дополнительного порога растет вероятность ложной тревоги, что сократит количество пропускаемых угловых направлений при сложной реализации способа.

Наиболее близким является способ радиолокационного обзора зоны, заключающийся в зондировании угловых направлений сигналами радиолокационной станции при пошаговом перемещении игольчатого луча антенны в пространстве [Теоретические основы радиолокации. Под ред. Я.Д. Ширмана. – М.: Сов. радио, 1970, с. 242, п. 3, рис. 5.21, в].

В данном способе возможны два варианта радиолокационного обзора зоны пространства. В первом случае передающую и приемную ДНА перемещают в следующее угловое положение сразу после окончания излучения сигнала. В этом случае недостатком является снижение дальности обнаружения целей из-за недостаточного времени приема (накопления) сигнала, вызванного одновременной перестройкой приемного и передающего лучей ДНА сразу после окончания излучения сигнала.

Во втором случае передающую и приемную ДНА перемещают в следующее угловое положение сразу после окончания приема сигнала, В этом случае недостатком является длительное время обзора, связанное с накоплением временных задержек, пропорциональных дальности до цели на каждом угловом положении.

Техническим результатом предлагаемого способа является одновременное осуществление приема и излучения зондирующего сигнала на разных угловых позициях путем раздельной перестройки ДНА на прием и передачу.

Задачей предлагаемого изобретения является увеличение дальности обнаружения целей, без увеличения времени обзора воздушного пространства.

Сущность изобретения заключается в том, что формируют передающую и приемную ДНА, излучают зондирующие сигналы в виде пачки импульсов, принимают отраженные от целей импульсы, при этом на время излучения зондирующих импульсов запирают приемные каналы приемо-передающих модулей активной фазированной антенной решетки.

Новым является то, что приемную и передающую ДНА формируют независимо друг от друга активной фазированной антенной решеткой с приемо-передающими модулями, содержащими по крайней мере по одному фазовращателю в приемном и передающем каналах, а после излучения зондирующих импульсов перемещают передающую ДНА в следующую угловую позицию, а приемную ДНА оставляют на предыдущей угловой позиции до момента приема всех отраженных от цели импульсов излученной пачки, после чего перемещают приемную ДНА в следующую угловую позицию, повторяют описанную последовательность действий для необходимого количества угловых позиций.

На чертеже изображена временная диаграмма излучения и приема зондирующего сигнала.

В современных активных фазированных антенных решетках (АФАР) фазирование передающего и приемного каналов осуществляется независимо друг от друга. Для этого в приемо-передающих модулях (ППМ), которые формируют АФАР, используются два отдельных фазовращателя. Пример исполнения такого ППМ приведен в статье [«Электромагнитное взаимодействие компонентов приемного и передающего каналов в приемо-передающих модулях АФАР Х-диапазона» / В.А. Коломейцев, А.В. Езопов // Вестник Саратовского государственного технического университета. - 2011 г. - №1, Том. 2 - С. 17-21]. Использование двух каналов с отдельными фазовращателями исключает принудительное переключение ППМ при смене режимов "прием-передача" и обеспечивает эффективную защиту приемного канала от сигнала развязки во время излучения зондирующего сигнала. Однако, несмотря на наличие двух фазовращателей, в настоящее время при обзоре пространства осуществляют одновременную перестройку передающего и приемного лучей по угловой позиции.

Заявляемый способ может осуществляться посредством радиолокационной станции, приведенной, например, в монографии [Радиолокационные системы многофункциональных самолетов. Т. 1. РЛС - информационная основа боевых действий многофункциональных самолетов. Системы и алгоритмы первичной обработки радиолокационных сигналов. / под ред. А.И. Канащенкова и В.И. Меркулова. - М.: «Радиотехника», 2006, стр. 126-131, рис. 3.2.5.], имеющей в своем составе АФАР, приемопередающий тракт, вычислительную систему. Система управления АФАР включает диаграммообразующую схему или специализированный процессор управления диаграммой направленности антенны, которые используются для формирования диаграммы направленности антенны в различных режимах работы.

Заявляемый способ осуществляется следующим образом.

В начальный момент времени обзора воздушного пространства АФАР РЛС одновременно формирует независимые ДНА на передачу и прием в одной и той же угловой позиции, подачей соответствующих одинаковых управляющих команд на фазовращатели ППМ АФАР (ТфПрд - длительность фазирования передающего канала, ТфПрм - приемного канала на чертеже). АФАР осуществляет излучение пачки импульсов в направлении предполагаемой цели и прием отраженных импульсов в соответствии с временной диаграммой (чертеж). На диаграмме отмечена временная зона излучения (Тизл) и приема (Тприема) сигнала. После завершения излучения зондирующих импульсов осуществляется перестройка передающей ДНА АФАР в следующее угловое положение. После формирования передающей ДНА АФАР в новом угловом положении излучение зондирующих импульсов производится в новом угловом положении, а прием отраженных импульсов продолжается в старом угловом положении, накапливая импульсы, приходящие с больших дальностей. Передача и прием импульсов происходит поочередно бланкированием приемного канала на время излучения импульсов, при этом одновременно существуют две диаграммы направленности.

После завершения приема импульсов приемная ДНА перестраивается в следующую угловую позицию, - совпадающую с позицией передающей ДНА, и проводится прием отраженных импульсов с нового углового направления.

Перестройка передающей ДНА по угловой позиции при окончании излучения пачки импульсов, в то время как приемная ДНА оставлена в текущей угловой позиции, приводит к потере в приеме первых импульсов в следующей угловой позиции (Тпропуска на чертеже) (если цель в следующей угловой позиции находится на более близком расстоянии к РЛС, чем цель в текущей угловой позиции). Однако потенциал отраженных импульсов от близко расположенных целей выше и отсутствие первых импульсов по приему не окажут существенного влияния на определение наличия близко расположенных целей, в то время как прием импульсов, приходящих с большей временной задержкой, позволит обнаружить более удаленные цели.

Повторяя описанные выше операции, можно осуществлять различные виды обзора (построчный, спирально-поступательный и т.д.) воздушного пространства с сокращенным временем обзора по сравнению с прототипом. Поскольку если проводить полный прием пачки импульсов и только после этого производить перестройку приемной и передающей ДНА по угловой позиции, то на каждой угловой позиции появится задержка, пропорциональная дальности. Причем эта задержка будет увеличиваться при каждой перестройке луча в новую угловую позицию. В предложенном способе максимальное значение задержки пропорционально значению максимальной дальности, на которой находится цель, и это значение не увеличивается при перестройке ДНА в новую угловую позицию. Таким образом, решается поставленная перед изобретением задача.

Способ обзора воздушного пространства радиолокационной станцией с активной фазированной антенной решеткой, заключающийся в том, что формируют передающую и приемную ДНА, излучают зондирующие сигналы в виде пачки импульсов, принимают отраженные от целей импульсы, при этом на время излучения зондирующих импульсов запирают приемные каналы приемо-передающих модулей активной фазированной антенной решетки, отличающийся тем, что приемную и передающую ДНА формируют независимо друг от друга активной фазированной антенной решеткой с приемо-передающими модулями, содержащими по крайней мере по одному фазовращателю в приемном и передающем каналах, а после излучения зондирующих импульсов перемещают передающую ДНА в следующую угловую позицию, а приемную ДНА оставляют на предыдущей угловой позиции до момента приема всех отраженных от цели импульсов излученной пачки, после чего перемещают приемную ДНА в следующую угловую позицию, повторяют описанную последовательность действий для необходимого количества угловых позиций.



 

Похожие патенты:

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта.

Изобретение относится к системе взимания платы за проезд. Технический результат изобретения заключается в повышении эффективности контроля проезжающих транспортных средств за счет размещения антенной системы вдоль продольного направления контролирующего транспортного средства.

Изобретение относится к радиолокации, в частности к радиолокационным измерениям, и может быть использовано при создании радиолокационных измерительных комплексов.

Изобретение относится к локационным способам и средствам измерения глубин морских акваторий с помощью эхолотов. Способ определения расстояния от объекта до источника электромагнитного поля путем излучения электромагнитного поля звукового диапазона в направлении дна, приема отраженного сигнала, измерения промежутка времени между моментом излучения до момента приема сигнала и вычисления по полученным результатам глубины посредством эхолота, в котором дополнительно измеряют скорость звука в диапазоне 1400-1600 м/с, с разрешением 0,001 м/с на горизонте установки излучателя и приемной антенны, а также на n-горизонтах по глубине в фиксированных точках, включая придонный горизонт, посредством профилографа скорости звука, установленного на автономном аппарате типа «SONOBOT», при этом также измеряют температуру воды, гидростатическое давление в диапазоне 10, 50, 100, 300 и 600 бар и электропроводность в тех же фиксированных точках, в которых измеряют скорость звука.

Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Достигаемый технический результат - уменьшение времени обзора и повышение точности измерения координат объектов.

Изобретение относится к области радиолокации и может быть использовано для повышения вероятности обнаружения целей. Достигаемый технический результат - снижение уровня боковых лепестков корреляционной функции для любых зондирующих сигналов при априорно неизвестных характеристиках приемо-передающего тракта.

Изобретение относится к области радиосвязи. Техническим результатом является повышение надежности классификации движущихся транспортных средств, а также обеспечение возможности одновременно классифицировать несколько транспортных средств.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к способам обработки сверхширокополосных сигналов (СШС) с линейной частотной модуляцией (ЛЧМ) в радио и акустических системах локации, навигации и связи при наличии искажений этих сигналов за счет нелинейности фазочастотных характеристик приемопередающих трактов и канала распространения. Технический результат состоит в осуществлении компенсации фазовых искажений ЛЧМ. Для этого принятый входной сигнал сначала умножают на опорный сигнал, согласованный с сигналом передатчика, с образованием двух квадратурных каналов, затем в каждом квадратурном канале всех N дальностных каналов осуществляют обработку, согласованную с пачками из подымпульсов, формируя матрицу комплексных сигналов в виде двух квадратурных составляющих и далее, исходя из матрицы S, осуществляют оценку фазовых искажений Δψko в каждом подымпульсе и эти поправки вносят в соответствующие по номеру сигнала подымпульсов всех каналов, которые затем в каждом дальностном канале суммируют, формируя результирующие N комплексных выборок выходного сигнала. 6 з.п. ф-лы, 19 ил.

Изобретение относится к области радиолокации и может быть использовано для обнаружения, сопровождения и получения координатной и некоординатной информации о ракетах-носителях и космических аппаратах в секторе электронного сканирования (СЭС), оценки помеховой обстановки в СЭС, а также обобщения информации о целевой и помеховой обстановке, полученной в активном и пассивном режимах функционирования. Достигаемый технический результат – обеспечение работы радиолокационной станции (РЛС) в непрерывном режиме, что позволяет максимально использовать ее временные и энергетические ресурсы, и возможность одновременного сопровождения и обнаружения объектов наблюдения в разных угловых направлениях за счет возможности приема и излучения сигналов в разных угловых направлениях, а также повышает надежность РЛС как в рабочем положении, так и при ее транспортировке. Указанный результат достигается за счет того, что мобильная радиолокационная станция включает в себя две раздельные антенные системы, приемную и передающую, представляющие собой цифровые активные фазированные решетки, расположенные на транспортных средствах, имеющих возможность размещения на удалении друг от друга, и систему управления, обработки и отображения информации, включающую в себя средства формирования диаграмм направленности и цифровой обработки и формирования сигналов на передачу и на прием, при этом каждая из антенных систем снабжена кожухом, состоящим из двух частей, каждая из которых выполнена с силовыми ребрами и опорами, имеющих возможность перемещения во взаимно противоположных направлениях до упора опор в поверхность, на которой расположено соответствующее транспортное средство. 2 з.п. ф-лы, 2 ил.

Изобретение относится к обзорным радиолокационным станциям (РЛС), конкретно к РЛС кругового обзора со стационарными антеннами, и может быть использовано в системах контроля и управления воздушным движением (УВД). Достигаемый технический результат - повышение производительности при одновременном увеличении дальности действия. Указанный результат достигается за счет того, что РЛС кругового обзора содержит секторную антенну кругового обзора, включающую четыре секторные антенны метрового диапазона электромагнитных волн, установленные по периметру правильного многоугольника, в центре которого установлены кабина управления и обработки радиолокационных сигналов, а также радиостанция цифровой связи и передачи данных и наземный радиозапросчик «свой-чужой». Средства, входящие в состав РЛС кругового обзора, определенным образом выполнены и взаимосвязаны между собой. 9 з.п. ф-лы, 11 ил.

Изобретение относится к радиолокации, в частности к способам определения эффективной площади рассеяния (ЭПР) объектов, и может быть использовано для расчета эффективной площади рассеяния летательных аппаратов в полете штатными средствами радиолокационных станций. Достигаемый технический результат – повышение точности определения ЭПР воздушных объектов (ВО). Указанный результат достигается за счет того, что облучают зондирующим сигналом ВО, принимают отраженный сигнал, измеряют мощность излучаемого сигнала, дальность до воздушного объекта, при определении значения ЭПР ВО для их классификации по критериям размерности «большая», «средняя», «малая» измеряют значение угла горизонтального ракурса ВО, измеряют амплитуду принятого сигнала, сравнивают амплитуду принятого сигнала с заранее заданным порогом, при превышении амплитудой принятого сигнала заранее заданного порога, записывают в запоминающее устройство измеренные значения мощности излучаемого сигнала, дальности до ВО, угла горизонтального ракурса ВО, амплитуды принятого сигнала, затем повторяют указанные выше операции до накопления в запоминающем устройстве массива, состоящего не менее чем из пяти измеренных значений мощности излученного сигнала, дальности до ВО, угла горизонтального ракурса ВО и амплитуды принятого сигнала, рассчитывают массив значений ЭПР ВО для каждого из запомненных измерений по определенной формуле, при этом, используя полученный массив значений ЭПР ВО и измеренный массив значений угла ракурса ВО, находят минимальное и максимальное значения углов ракурса ВО, определяют диапазон изменения угла горизонтального ракурса, затем определяют среднее значение ЭПР ВО в измеренном диапазоне углов горизонтального ракурса, после чего на основании полученного значения ЭПР проводят классификацию цели по заранее заданным критериям отнесения объекта к классам размерности «большая», «средняя», «малая». 1 ил.

Изобретение относится к области радиолокации и может быть использовано при радиолокационном обзоре заданной зоны с помощью мобильных радиолокационных станций кругового обзора с антенной в виде одномерной фазированной антенной решетки с электронным управлением лучом по углу места и механическим вращением по азимуту. Достигаемый технический результат - уменьшение затрат временных и энергетических ресурсов на осмотр области зоны обзора с большими углами места при сохранении обнаружения целей и сопровождения их траекторий в этой области. Указанный результат достигается за счет того, что заданную зону обзора по азимуту делят на азимутальные сектора с постоянными границами, в каждом из которых независимо от других секторов осуществляют осмотр одной из двух частей зоны обзора, которые рассчитывают частично перекрывающимися в плоскости дальность - угол места, в каждом азимутальном секторе текущего периода обзора осуществляют выбор части зоны обзора для осмотра этого азимутального сектора на следующем периоде обзора в зависимости от положения сопровождаемых траекторий целей. 5 ил.

Изобретение относится к радиолокации, а именно к способам формирования диаграммы направленности цифровыми антенными решетками при обзоре пространства и земной поверхности, и может быть использовано в радиолокационных станциях (РЛС). Технической проблемой, решаемой предлагаемым изобретением, является расширение функциональных возможностей антенны. А техническим результатом предлагаемого изобретения является повышение коэффициента усиления антенны на прием. Способ основан на том, что формируют подрешетками цифровой антенной решетки (ЦАР) передающую диаграмму направленности антенны (ДНА) вида cosec2 по углу места и игольчатую по азимуту и излучают зондирующий сигнал. Для достижения технического результата осуществляют прием отраженного сигнала каждой подрешеткой ЦАР, формируют приемную многолучевую ДНА по углу места и игольчатую по азимуту посредством цифрового диаграммообразования таким образом, что ее лучи по углу места перекрывают по ширине передающую ДНА cosec2, формируют массив комплексных амплитуд отраженных сигналов, принятых по каждому лучу ДНА. 3 ил.

Предлагаемые устройства относятся к радиолокационным и гидролокационным системам с импульсным сжатием многофазных кодов. Технический результат заключается в повышении качества сжатия сигналов, производится подавление боковых лепестков, возникающих в процессе сжатия, при котором обеспечивается увеличение числа многофазных кодов длины N, для всех значений временных сдвигов (отсчетов), исключая двух ±N, в которых относительный уровень боковых лепестков находится в диапазоне от -20 lgN -6 до -20 lgN -8 dB за счет использования симметрично усеченных кодов, образованных последовательным удалением равного числа первых и последних символов кодов большей длины. При этом ширина главного лепестка на уровне -6 dB равна 2τ, на уровне PSL лежит в диапазоне 3÷4τ, а потери сигнал/шум на выходе устройства составляют -1.7 dB. Устройство подавления боковых лепестков при импульсном сжатии симметрично усеченных многофазных кодов длины N содержит соединенные по входу первый цифровой фильтр с КИХ порядка N-1 и формирователь цифрового корректирующего сигнала, состоящий из последовательно соединенных преобразователя кода в комплексно сопряженный код и второго цифрового фильтра с конечной импульсной характеристикой порядка N+1, выход которого соединен с первым входом сумматора, а выход первого цифрового фильтра подключен к линии задержки на длительность одного кодового элемента и к первому входу вычитателя, второй вход которого соединен с выходом линии задержки, а выход подключен ко второму входу сумматора. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, а именно к океанологическим измерениям, и может быть использовано для контроля солености морской воды на разных акваториях Мирового океана. В предложенном способе заданный контролируемый участок морской поверхности облучают СВЧ радиоволнами заданной частоты вертикальной поляризации, регистрируют рассеянный назад сигнал на той же поляризации (вертикальной), изменяют поляризацию излучателя и приемника на ортогональную и на той же частоте зондируют тот же участок морской поверхности, регистрируют рассеянный назад сигнал, после чего по данным двух последовательных зондирований вычисляют поляризационное отношение, по которому рассчитывают соленость. Повышение точности измерения солености морской воды за счет исключения влияния на результат измерений изменчивости шероховатости морской поверхности, является техническим результатом изобретения.

Изобретение относится к ультразвуковым системам обнаружения препятствий, предназначенным для регистрации и обработки сигналов, получаемых с акустических датчиков, и может быть использовано в подвижных дистанционно-управляемых объектах военного или двойного назначения для определения расстояний до препятствий. Ультразвуковая система обнаружения препятствий движению подвижного объекта содержит излучающие и приемные приборы средств обнаружения объектов, выполненные в виде n приемопередающих преобразователей (ППП) 1, располагающихся по периметру подвижного объекта (ПО) 2, блок обработки данных состоит из независимых каналов оцифровки (НКО) 3 аналоговых сигналов ППП 1, содержащих предварительные широкополосные операционные усилители (ШОУ) 4, усилители (У) 5 для согласования по уровню сигналов предварительных усилителей и аналого-цифровых преобразователей и аналого-цифровые преобразователи (АЦП) 6, обеспечивающие оцифровку аналоговых сигналов, устройства дальнейшей реализации алгоритма цифровой обработки и регистрации сигналов, выполненного на базе программируемой логической интегральной схемы (ПЛИС) 7, генератора тактовой частоты (ГТЧ) 8, импульсного преобразователя напряжения (ИПН) 9, преобразователя интерфейса USB 2.0 (ПИ) 10 для передачи результатов измерений, транзисторных ключей (К) 11, предназначенных для реализации цифрового управления ППП 1 по сигналам, поступающим с ПЛИС 7. Обеспечивается определение расстояния до препятствия с высокой точностью, работа в режиме локатора с возможностью измерения как очень малых, так и больших расстояний. 5 ил.

Изобретение относится к способам дистанционного охранного мониторинга местности и может быть использовано в случаях применения однопозиционного радиоволнового средства обнаружения (СО) для сигнализационного прикрытия двух лежащих рядом дорог, одна из которых имеет изгиб. Способ заключается в развертывании СО на участке дорог, где они лежат к друг другу на расстоянии, не превышающем 80% от максимально возможной длины зоны обнаружения (ЗО) СО, так, чтобы СО находилось с внешней стороны угла изгиба дороги, за дорогой с прямым участком; ось ЗО совпадала с биссектрисой угла изгиба дороги; выдаче сигнала тревоги СО в случае пересечения нарушителем его ЗО; анализе доплеровской добавки частоты отраженного сигнала на выходе схемы обработки сигналов СО в течение всего времени нахождения нарушителя в его ЗО; последующем применении алгоритма определения направления движения нарушителя по дороге с прямым участком по наличию положительной или отрицательной доплеровской добавки частоты отраженного сигнала и определения движения по дороге с изгибом по наличию знакопеременной доплеровской добавки частоты отраженного сигнала. Обеспечивается повышение точности указания направления движения обнаруженного нарушителя и получение высокой достоверности результата с применением только одного однопозиционного радиоволнового средства обнаружения. 8 ил.
Наверх