Охлаждаемая турбинная лопатка (варианты) и способ охлаждения турбинной лопатки

Охлаждаемая турбинная лопатка содержит хвостовик, предназначенный для прикрепления охлаждаемой лопатки к турбинному ротору, аэродинамический профиль, концевой бандаж и один или несколько центральных охлаждающих каналов, ограниченных аэродинамическим профилем. Аэродинамический профиль проходит вдоль радиальной оси от хвостовика и ограничивает один задний охлаждающий канал, который проходит радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля. Задний канал расположен в пределах расстояния от задней кромочной части, которое составляет менее 25% хордовой длины аэродинамического профиля. Концевой бандаж расположен на радиально внешнем конце аэродинамического профиля, проходит в окружном направлении от аэродинамического профиля и ограничивает внутри себя центральную полость повышенного давления и периферическую полость повышенного давления. Аэродинамический профиль ограничивает одно заднее охлаждающее впускное отверстие, предназначенное для прохождения одного заднего потока охлаждающей текучей среды к указанному одному заднему охлаждающему каналу аэродинамического профиля, а также ограничивает одно заднее выпускное отверстие, предназначенное для выпуска одного заднего потока охлаждающей текучей среды из заднего охлаждающего канала к периферической полости повышенного давления. Концевой бандаж ограничивает по меньшей мере одно отверстие периферической полости, предназначенное для выпуска одного заднего потока охлаждающей текучей среды из периферической полости. Каждый из центральных охлаждающих каналов проходит радиально через центральную часть аэродинамического профиля. Аэродинамический профиль ограничивает центральное охлаждающее впускное отверстие, предназначенное для подачи центрального потока охлаждающей текучей среды к одному или нескольким центральным охлаждающим каналам, и по меньшей мере одно центральное охлаждающее выпускное отверстие, предназначенное для выпуска центрального потока охлаждающей текучей среды из одного или нескольких центральных охлаждающих каналов к центральной полости. Задний охлаждающий канал и один или несколько центральных охлаждающих каналов обеспечивают направление заднего потока и центрального потока охлаждающей текучей среды к разным полостям. При этом указанные один или несколько центральных охлаждающих каналов расположены в пределах расстояния от центра аэродинамического профиля, которое составляет менее 25% хордовой длины аэродинамического профиля. Изобретение направлено на улучшение охлаждения задней кромки аэродинамического профиля и концевого бандажа. 3 н. и 13 з.п. ф-лы, 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к лопатке для турбины, такой как турбина двигателя летательного аппарата или газотурбинного двигателя, паровая турбина и т.д. Более конкретно, данное изобретение относится к охлаждению концевого бандажа турбинной лопатки.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0002] Газотурбинный двигатель содержит турбинную секцию, в которой высокотемпературный сжатый газ расширяется для создания энергии вращающегося вала. Указанная турбинная секция, как правило, содержит множество перемежающихся рядов неподвижных лопаток (сопловых лопаток) и вращающихся лопаток (рабочих лопаток турбины). Каждая вращающаяся лопатка имеет аэродинамический профиль и хвостовик, который прикрепляет вращающуюся лопатку к ротору.

[0003] В некоторых случаях на радиально внешнем конце каждой турбинной лопатки в виде неотъемлемой части выполнен концевой бандаж, так что в смонтированном состоянии ряд лопаток образует наружную поверхность, ограничивающую прохождение высокотемпературных сжатых газов через части аэродинамических профилей лопаток. Указанное выполнение неотъемлемых концевых бандажей приводит к увеличению способности турбинной секции совершать работу благодаря использованию высокотемпературных сжатых газов с улучшением при этом эксплуатационных характеристик турбинного двигателя. К сожалению, неотъемлемые концевые бандажи, расположенные на вращающихся аэродинамических профилях, испытывают высокие напряжения, вызванные воздействием механических и аэродинамических сил, а также высокотемпературной окружающей среды, которым они подвержены..

[0004] Для увеличения полезного расчетного срока службы турбинной лопатки используют способы охлаждения. Как правило, охлаждение лопаток осуществляют путем извлечения части сжатой рабочей текучей среды (например, воздуха) из компрессора и проведения ее непосредственно к турбинной секции без дополнительного подогрева охлаждающей текучей среды в секции камеры сгорания. Эта охлаждающая текучая среда является источником относительно холодной текучей среды под давлением, которая легко проходит через каналы, выполненные в турбинных лопатках, и обеспечивают их охлаждение. Таким образом, часто выполняют радиальные каналы для проведения охлаждающей текучей среды в радиально наружном направлении от хвостовика лопатки к ее концевой части, в которой охлаждающая текучая среда выпускается.

[0005] Соответственно, специалистами предпринимаются попытки для создания турбинной лопатки с улучшенным охлаждением задней кромки аэродинамического профиля и концевого бандажа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0006] В соответствии с одним аспектом изобретения охлаждаемая турбинная лопатка содержит хвостовик для прикрепления лопатки к турбинному ротору, аэродинамический профиль, проходящий вдоль радиальной оси от хвостовика, и концевой бандаж, расположенный на радиально внешнем конце аэродинамического профиля. Концевой бандаж проходит в окружном направлении от аэродинамического профиля и ограничивает внутри себя центральную полость повышенного давления и периферическую полость повышенного давления. Аэродинамический профиль ограничивает задний охлаждающий канал, который проходит радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля. Аэродинамический профиль также ограничивает заднее охлаждающее впускное отверстие, предназначенное для прохождения заднего потока охлаждающей текучей среды к заднему охлаждающему каналу аэродинамического профиля. Аэродинамический профиль также ограничивает по меньшей мере одно заднее выпускное отверстие, предназначенное для выпуска заднего потока охлаждающей текучей среды из заднего охлаждающего канала к периферической полости повышенного давления. Указанный концевой бандаж ограничивает по меньшей мере одно отверстие периферической полости, предназначенное для выпуска заднего потока охлаждающей текучей среды из указанной периферической полости.

[0007] В соответствии с другим аспектом данного изобретения предлагается способ охлаждения турбинной лопатки, содержащей аэродинамический профиль и концевой бандаж, проходящий в окружном направлении от конца аэродинамического профиля. Указанный способ включает создание в концевом бандаже центральной полости повышенного давления и периферической полости повышенного давления, а также разделение подачи охлаждающей текучей среды на центральный охлаждающий поток и периферический охлаждающий поток. Периферический поток направляют через задний охлаждающий канал аэродинамического профиля, проходящий радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля, для переноса тепла от задней кромочной части аэродинамического профиля к периферическому охлаждающему потоку. Центральный охлаждающий поток направляют через один или несколько центральных охлаждающих каналов, проходящих через центральную часть аэродинамического профиля, для переноса тепла от указанной центральной части к центральному охлаждающему потоку. Периферический охлаждающий поток направляют из заднего охлаждающего канала к указанной периферической полости, а центральный охлаждающий поток направляют от указанных одного или нескольких центральных охлаждающих каналов к центральной полости. Периферический охлаждающий поток выпускают из периферической полости, а центральный охлаждающий поток выпускают из центральной полости.

[0008] Указанный способ также включает проведение заднего потока охлаждающей текучей среды к заднему охлаждающему каналу через заднее охлаждающее впускное отверстие и выпуск указанного потока охлаждающей текучей среды из периферической полости через по меньшей мере одно выпускное отверстие периферической полости.

[0009] Эти и другие преимущества и свойства будут более понятны из последующего описания с сопроводительными чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0010] Настоящее изобретение подробно и точно изложено в формуле изобретения, приведенной в конце описания. Вышеупомянутые и другие признаки и преимущества данного изобретения очевидны из последующего подробного описания со ссылкой на сопроводительные чертежи, на которых

[0011] фиг.1 изображает иллюстративную охлаждаемую турбинную лопатку,

[0012] фиг.2 изображает вид сверху иллюстративной охлаждаемой турбинной лопатки,

[0013] фиг.3 изображает иллюстративный вариант выполнения данного изобретения в поперечном разрезе,

[0014] фиг.4 изображает другой иллюстративный вариант выполнения данного изобретения в поперечном разрезе,

[0015] фиг.5 изображает вид сверху конструкции, показанной на фиг.3, в соответствии с первым иллюстративным вариантом выполнения, и

[0016] фиг.6 изображает вид сверху конструкции, показанной на фиг.3, в соответствии со вторым иллюстративным вариантом выполнения.

[0017] В подробном описании объясняются варианты выполнения данного изобретения вместе с его преимуществами и признаками путем примера со ссылкой на данные чертежи.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0018] Как показано на фиг.1, турбинная лопатка 100 содержит аэродинамический профиль 112 и хвостовик 114. Аэродинамический профиль 112 проходит вдоль радиальной оси от хвостовика 114 к концевой части 130 лопатки. Аэродинамический профиль 112 имеет переднюю кромочную часть 116 и заднюю кромочную часть 118, при этом расстояние от передней кромки к задней кромке определяет хордовую длину 117 аэродинамического профиля. Между передней и задней кромками, расположенными на противоположных сторонах аэродинамического профиля 112, проходят по существу вогнутая поверхность 120 со стороны высокого давления и по существу выпуклая поверхность 122 со стороны разрежения. В показанном примере хвостовик 114 лопатки 100 содержит хвостовую часть 124 и элемент 126 пазового замка, взаимодействующий с соответствующим пазом пазового замка на роторе, обеспечивая при этом прикрепление турбинной лопатки 100 к ротору.

[0019] Как показано на фиг.1 и 2, на концевой части 130 лопатки расположен концевой бандаж 128, т.е. он расположен смежно с радиально внешним концом аэродинамического профиля 112 и проходит в окружном направлении (т.е. в направлении, которое по существу перпендикулярно радиальной оси) от аэродинамического профиля 112. Концевой бандаж 128 имеет поверхность, обращенную в радиально внутреннем направлении, и поверхность, обращенную в радиально наружном направлении, причем обе эти поверхности испытывают воздействие высокотемпературного сжатого газа, проходящего через турбинную секцию. Каждый бандаж 128 имеет опорные поверхности 136, 138, которыми он контактирует с опорными поверхностями смежного концевого бандажа смежной лопатки. В радиально наружном направлении от бандажа 128 проходит один или несколько дефлекторов 140 для предотвращения протечки высокотемпературного газа вокруг лопатки.

[0020] Как показано на фиг.1, через центральную часть аэродинамического профиля 112 (например, в пределах расстояния, составляющего приблизительно менее 25% хордовой длины от центра аэродинамического профиля) проходит один или несколько центральных охлаждающих каналов 160, а через заднюю кромочную часть аэродинамического профиля 112 проходит задний охлаждающий канал 162. Один или более центральных охлаждающих каналов 160 и задний охлаждающий канал 162 проходят радиально от хвостовика 114, где в каждый из них поступает поток сжатой охлаждающей текучей среды (которая может представлять собой сжатый воздух или другую текучую среду, полученную из компрессорной секции двигателя, в котором установлена турбинная лопатка), к концевой части 130 лопатки, где указанные потоки охлаждающей текучей среды могут быть направлены к охлаждаемому месту или выпущены иным образом. Например, как показано на фиг.3 и 4, для уменьшения температур материала (например, металла или керамики) в участках концевого бандажа, испытывающих высокие напряжения, используют локализованное направленное ударное охлаждение концевого бандажа 128. В частности, бандаж 128 имеет внутреннюю центральную охлаждающую полость 142, снабжающую требуемые участки охлаждающей текучей средой и обеспечивающую ударное охлаждение указанного бандажа 128. Задний охлаждающий канал 162 может иметь форму сечения, совпадающую с наружной формой задней кромочной части аэродинамического профиля 112.

[0021] Указанные радиальные охлаждающие каналы, камеры, полости повышенного давления и охлаждающие каналы, рассматриваемые в данном документе, могут быть выполнены с помощью ряда технологических процессов, таких как электрохимическое сверление. Один такой вид электрохимического сверления известен как электролитическая обработка фасонных труб (STEM), которая обеспечивает обработку канала, имеющего относительно большое соотношение глубины к диаметру, как это имеет место в случае радиальных охлаждающих каналов турбинной лопатки. При сверлении методом STEM каналы выполняют путем анодного растворения с использованием трубчатых катодов с изоляционным внутренним покрытием. Метод STEM позволяет создавать каналы с переменными диаметрами по их длине.

[0022] В дополнение к варьированию диаметра по длине канала сверление методом STEM позволяет также создавать каналы с некруглыми поперечными сечениями. Например, начальная часть охлаждающего канала может быть выполнена путем перемещения электрода в радиальном направлении в турбинную лопатку при условиях, обеспечивающих получение кругового в сечении канала с зазором, распределенным равномерно вокруг электрода. Затем указанный электрод может быть передвинут в направлении, поперечном продольной оси электрода (т.е. в направлении одной стороны стенки канала). После этого выполняют удаление дополнительного материала из этой же стороны стенки канала с созданием тем самым канала с эксцентриковым поперечным сечением. Указанный процесс может быть воспроизведен в различных направлениях для создания канала с требуемым поперечным сечением.

[0023] Как показано на фиг.5, внутренняя центральная охлаждающая камера 142 содержит центральную полость 144 и периферическую полость 146, образованные концевым бандажом 128. Центральные каналы 160 для охлаждающей аэродинамический профиль текучей среды проходят радиально через аэродинамический профиль 112 в концевой бандаж 128 и пересекают центральную полость 144. Задний охлаждающий канал 162 расположен вблизи задней кромки лопатки, при этом указанный канал 162 пересекает периферическую полость 146, а не центральную полость 144. В соответствии с этим иллюстративным вариантом выполнения охлаждающая текучая среда, которая прошла через указанный канал 162, создает повышенное давление в периферической полости 146, но не в центральной полости 144. В показанном варианте выполнения охлаждающий воздух, создавший повышенное давление в периферической полости 146, может быть выпущен через одно или несколько отверстий 156 периферической полости. Однако следует отметить, что в других вариантах выполнения предусматривается проточное сообщение между центральной полостью и периферической полостью. В соответствии с такими вариантами выполнения выпуск из центральной полости 144 в основной газовый поток может уменьшать или исключать необходимость в выпуске воздуха из периферической полости 146 в основной газовый поток, например, через отверстие 156 периферической полости.

[0024] Как показано на фиг.5, задний охлаждающий канал 162 имеет круглое поперечное сечение. Однако следует отметить, что указанный охлаждающий канал также может иметь поперечное сечение в форме, которая более точно совпадает с наружной формой аэродинамического профиля, при этом удовлетворяются требования к минимальной толщине стенок при расположении в относительной близости к задней кромке аэродинамического профиля и обеспечивается требуемая площадь поперечного сечения для размещения необходимого количества и/или скорости потока охлаждающей текучей среды. Например, как показано на фиг.6, иллюстративная конфигурация сечения указанного канала 162 имеет первую стенку, которая по существу параллельна одной наружной поверхности аэродинамического профиля, и вторую стенку, по существу параллельную другой наружной поверхности аэродинамического профиля. Соответственно, указанный канал 162 выполнен так, чтобы удовлетворять требованиям к минимальной толщине стенок с одновременным обеспечением улучшенного охлаждения задней кромки аэродинамического профиля.

[0025] В результате в соответствии с этим вариантом выполнения указанный канал 162 может быть расположен в непосредственной близости к задней кромке аэродинамического профиля (например, в пределах расстояния, составляющего менее приблизительно 25% хордовой длины от кромки аэродинамического профиля) со снижением тем самым рабочих температур материала и улучшенным соответствием техническим требованиям к пластической деформации. Путем создания давления в периферической полости 146, а не в центральной полости 144 указанное размещение охлаждающего канала 162 эффективно изолирует более горячую текучую среду канала 162 внутри периферической полости 146 от центральной полости 144, обеспечивая возможность последующей подачи более горячей текучей среды в область концевого бандажа, которая требует меньшего охлаждения и/или имеет более высокую несущую способность. Такое размещение также обеспечивает возможность большего охлаждения текучей среды, находящейся внутри центральной полости 144, и ее использования в областях концевого бандажа, требующих большего охлаждения и/или имеющих меньшую несущую способность. Получающееся в результате снижение рабочей температуры конструкции концевого бандажа обеспечивает увеличение фактического срока службы части конструкции и/или обеспечивает возможность работы той же части конструкции в окружающей среде с более высокой температурой без ухудшения фактического срока службы.

[0026] В соответствии с данным изобретением ударное охлаждение может быть создано в концевом бандаже путем направления охлаждающей текучей среды от заднего охлаждающего канала или от указанного одного или нескольких охлаждающих центральных каналов через одно или несколько ударных отверстий с образованием одного или нескольких потоков ударной охлаждающей текучей среды, направленных к заданной поверхности. Указанное одно или несколько ударных отверстий могут быть выполнены в виде неотъемлемой части лопатки, при этом это отверстие или отверстия могут быть выполнены литьем в указанной части лопатки или могут быть получены механической обработкой после создания отливки. Примеры ударного охлаждения, которое направлено на сопряжение между аэродинамическим профилем и бандажом, находящихся в единой ударной связке, показаны на фиг.3 и 4. Фиг.3 иллюстрирует ударное охлаждение, направленное в охлаждающую камеру 142, которая обычно открыта. Фиг.4 иллюстрирует ударное охлаждение в охлаждающей камере 142, которая имеет форму узкого канала. Более узкий канал, показанный на фиг.4, обеспечивает увеличенную скорость охлаждающей текучей среды и, соответственно, улучшенный перенос тепла ниже по потоку от ударной зоны. Однако следует понимать, что возможны другие конфигурации удара/потока.

[0027] Обратимся к показанному на фиг.3 схематическому виду в разрезе иллюстративного варианта выполнения. В этом варианте центральная полость 144 содержит герметизированную или в основном герметизированную камеру, расположенную в концевом бандаже 128 и ограниченную им. Центральная полость 144 принимает сжатую охлаждающую текучую среду из одного или нескольких центральный охлаждающих каналов 160 внутри аэродинамического профиля 112, обеспечивая поток сжатой ударной охлаждающей текучей среды. В иллюстративном варианте выполнения эта центральная полость 144 изолирована достаточно (т.е. выпуск достаточно ограничен) так, что в центральной полости 144 может поддерживаться повышенное давление посредством одного или нескольких центральных охлаждающих каналов 160. Таким образом, текучая среда обычным способом поступает в лопатку, например, в области элемента пазового соединения или хвостовой части, проходит через хвостовую часть в аэродинамическую часть 112 и затем вдоль нее к концевому бандажу 128.

[0028] В примере, показанном на фиг.3, текучая среда проходит из аэродинамической части в находящуюся под давлением центральную полость 144 внутри концевого бандажа 128. Затем указанная текучая среда проводится из находящейся под давлением камеры через по меньшей мере одно ударное отверстие 150 и направляется в требуемое место (т.е. в ударную зону 152, например, на заднюю заданную поверхность или стенку концевого бандажа) внутри концевого бандажа 128. На фиг.3 показан вариант выполнения ударного охлаждения концевого бандажа, в котором сопряжение между аэродинамическим профилем и бандажом является заданной ударной зоной. Однако ударные отверстия могут быть направлены к ударным зонам в других местах концевого бандажа. Следует понимать, что ударное охлаждение обеспечивает возможность теплопередачи для локализованного участка по сравнению с более распространенными потоками, проходящими в канале. В варианте выполнения, показанном на фиг.3, дополнительно предусматриваются турбулизаторы внутри охлаждающей камеры (камер) 142 (например, в области сопряжения) для дополнительного улучшения передачи тепла к охлаждающей текучей среде. В иллюстративном варианте выполнения суммарная площадь сечения ударных отверстий меньше, чем суммарная площадь сечения одного или более центральных охлаждающих каналов 160. В результате центральная полость 144 находится под повышенным давлением. Несмотря на то, что указанное обстоятельство обеспечивает лучшую ударную теплопередачу, тем не менее, это не является необходимым. Суммарная площадь ударных отверстий может превышать суммарную площадь сечения одного или нескольких центральных охлаждающих каналов, при этом ударное воздействие по-прежнему будет обеспечиваться, хотя и при сниженной интенсивности.

[0029] Текучая среда в послеударном состоянии проходит из ударной зоны 152 через охлаждающую камеру (камеры) 148 к одному или нескольким выпускным отверстиям 156, 158 периферической полости и поступает в основной газовый поток. Охлаждающая текучая среда также может выходить из выпускного отверстия 156 периферической полости непосредственно из охлаждающей камеры 142. Несмотря на то, что на фиг.3 показана по меньшей мере одна камера 142, тем не менее следует понимать, что проводящий теплоноситель канал (каналы) аэродинамического профиля может выполнять функцию этой полости. В этом случае ударные отверстия будут выходить из указанного проводящего теплоноситель канала аэродинамического профиля и направлять теплоноситель к наружной камере (камерам) турбинной лопатки.

[0030] На схематическом виде в разрезе, изображенном на фиг.4, показано, что в другом варианте выполнения центральная полость 144, которая герметизирована или в основном герметизирована и расположена внутри концевого бандажа 128, используется так, что ударное охлаждение, выполняемое через ударные отверстия 150, направлено через ударную зону 152, которая может превышать ударную зону варианта выполнения, показанного на фиг.3. Кроме того, послеударная охлаждающая текучая среда направляется через охлаждающие камеры 142, которые обеспечивают теплопередачу посредством потока в канале ниже по потоку от ударной зоны 152. Затем отработанная охлаждающая текучая среда проходит к одному или нескольким выпускным отверстиям 156 периферической полости и выпускается в основной газовый поток. Охлаждающая текучая среда также может выходить у выпускного отверстия 156 непосредственно из камеры 142. Более того, в любом из вышерассмотренных вариантов выполнения послеударная охлаждающая текучая среда также может выходить через поверхность, по которой она наносит ударное воздействие, через отверстия тонкого слоя. Соответственно, в этом случае не требуется, чтобы указанная текучая среда проходила через охлаждающие камеры поле ударного воздействия.

[0031] Два возможных вида сверху конструкции, показанной на фиг.3, схематически изображены на фиг.5 и 6. На фиг.5 ударные отверстия 150 выходят в соединенные охлаждающие камеры 142. На фиг.6 показан второй возможный вариант выполнения, в котором смежные охлаждающие камеры 142 не соединены. Следует понимать, что возможно использование любого количества камер 142 и отверстий 150, при этом указанные камеры могут быть изолированы или соединены в зависимости от необходимости или требования, например для обеспечения потока в канале ниже по потоку от ударной зоны (зон).

[0032] Несмотря на то, что данное изобретение подробно описано в отношении лишь ограниченного количества вариантов выполнения, следует хорошо понимать, что данное изобретение не ограничивается рассмотренными вариантами выполнения. Наоборот, данное изобретение может быть видоизменено с включением любого количества вариантов, изменений, замен или эквивалентных конструкций, не рассмотренных в данном документе, но которые подпадают под сущность и объем правовой охраны данного изобретения. Кроме того, несмотря на то, что были рассмотрены различные варианты выполнения данного изобретения, следует понимать, что аспекты данного изобретения могут включать только некоторые из приведенных вариантов выполнения. Соответственно, данное изобретение не должно рассматриваться как ограниченное вышеприведенным описанием, оно ограничено лишь объемом правовой охраны, изложенным в прилагаемой формуле изобретения.

1. Охлаждаемая турбинная лопатка, содержащая

хвостовик, предназначенный для прикрепления охлаждаемой лопатки к турбинному ротору,

аэродинамический профиль, проходящий вдоль радиальной оси от хвостовика и ограничивающий один задний охлаждающий канал, который проходит радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля, причем указанный задний канал расположен в пределах расстояния от задней кромочной части, которое составляет менее 25% хордовой длины аэродинамического профиля,

концевой бандаж, расположенный на радиально внешнем конце аэродинамического профиля, проходящий в окружном направлении от аэродинамического профиля и ограничивающий внутри себя центральную полость повышенного давления и периферическую полость повышенного давления,

при этом аэродинамический профиль ограничивает одно заднее охлаждающее впускное отверстие, предназначенное для прохождения одного заднего потока охлаждающей текучей среды к указанному одному заднему охлаждающему каналу аэродинамического профиля, а также ограничивает одно заднее выпускное отверстие, предназначенное для выпуска указанного одного заднего потока охлаждающей текучей среды из указанного заднего охлаждающего канала к периферической полости повышенного давления, а концевой бандаж ограничивает по меньшей мере одно отверстие периферической полости, предназначенное для выпуска указанного одного заднего потока охлаждающей текучей среды из указанной периферической полости, и

один или несколько центральных охлаждающих каналов, ограниченных указанным аэродинамическим профилем, при этом каждый из указанного одного или несколько центральных охлаждающих каналов проходит радиально через центральную часть аэродинамического профиля, при этом указанный аэродинамический профиль ограничивает центральное охлаждающее впускное отверстие, предназначенное для подачи центрального потока охлаждающей текучей среды к указанным одному или нескольким центральным охлаждающим каналам, и по меньшей мере одно центральное охлаждающее выпускное отверстие, предназначенное для выпуска центрального потока охлаждающей текучей среды из указанного одного или нескольких центральных охлаждающих каналов к центральной полости, причем указанный задний охлаждающий канал и указанный один или несколько центральных охлаждающих каналов обеспечивают направление заднего потока и центрального потока охлаждающей текучей среды к разным полостям, при этом указанные один или несколько центральных охлаждающих каналов расположены в пределах расстояния от центра аэродинамического профиля, которое составляет менее 25% хордовой длины аэродинамического профиля.

2. Охлаждаемая турбинная лопатка по п. 1, в которой концевой бандаж ограничивает по меньшей мере одно ударное отверстие центральной полости, предназначенное для образования потока ударной охлаждающей текучей среды и его направления из центральной полости к заданной поверхности.

3. Охлаждаемая турбинная лопатка по п. 1, в которой концевой бандаж ограничивает по меньшей мере одно ударное отверстие периферической полости, предназначенное для образования потока ударной охлаждающей текучей среды и его направления из периферической полости к заданной поверхности.

4. Охлаждаемая турбинная лопатка по п. 1, в которой задний охлаждающий канал аэродинамического профиля имеет круглое поперечное сечение.

5. Охлаждаемая турбинная лопатка по п. 1, в которой задний охлаждающий канал имеет поперечное сечение в форме, которая совпадает с наружной формой задней кромочной части аэродинамического профиля.

6. Охлаждаемая турбинная лопатка по п. 5, в которой первая стенка заднего охлаждающего канала по существу параллельна поверхности задней кромочной части аэродинамического профиля со стороны повышенного давления, а вторая стенка заднего охлаждающего канала по существу параллельна поверхности задней кромочной части аэродинамического профиля со стороны разрежения.

7. Охлаждаемая турбинная лопатка по п. 2, в которой суммарная площадь сечения указанного по меньшей мере одного центрального охлаждающего выпускного отверстия превышает суммарную площадь сечения указанного по меньшей мере одного ударного отверстия центральной полости.

8. Охлаждаемая турбинная лопатка по п. 3, в которой суммарная площадь сечения указанного по меньшей мере одного заднего охлаждающего выпускного отверстия превышает суммарную площадь сечения указанного по меньшей мере одного ударного отверстия периферической полости.

9. Охлаждаемая турбинная лопатка по п. 2, в которой указанная заданная поверхность представляет собой внутреннюю стенку сопряжения между аэродинамическим профилем и концевым бандажом.

10. Охлаждаемая турбинная лопатка по п. 3, в которой указанная заданная поверхность представляет собой внутреннюю стенку сопряжения между аэродинамическим профилем и концевым бандажом.

11. Охлаждаемая турбинная лопатка по п. 1, в которой указанный концевой бандаж имеет опорную поверхность, предназначенную для взаимодействия с другим концевым бандажом другой охлаждаемой турбинной лопатки.

12. Охлаждаемая турбинная лопатка по п. 11, в которой указанное по меньшей мере одно отверстие периферической полости расположено смежно с указанной опорной поверхностью.

13. Способ охлаждения турбинной лопатки, имеющей аэродинамический профиль и концевой бандаж, проходящий в окружном направлении от концевой части аэродинамического профиля, включающий

создание в концевом бандаже центральной полости повышенного давления и периферической полости повышенного давления,

разделение подачи охлаждающей текучей среды на центральный охлаждающий поток и один периферический охлаждающий поток,

направление указанного одного периферического охлаждающего потока через один задний охлаждающий канал аэродинамического профиля, проходящий радиально через аэродинамический профиль проксимально к задней кромочной части указанного профиля, с обеспечением переноса тепла от задней кромочной части аэродинамического профиля к указанному одному периферическому охлаждающему потоку, причем указанный один задний канал расположен в пределах расстояния от задней кромочной части, которое составляет менее 25% хордовой длины аэродинамического профиля, направление центрального охлаждающего потока через один или несколько центральных охлаждающих каналов аэродинамического профиля, проходящих через центральную часть аэродинамического профиля, с обеспечением переноса тепла от центральной части к центральному охлаждающему потоку, при этом указанный один или несколько центральных охлаждающих каналов расположен в пределах расстояния от центра аэродинамического профиля, которое составляет менее 25% хордовой длины аэродинамического профиля,

направление указанного одного периферического охлаждающего потока из указанного одного заднего охлаждающего канала к указанной периферической полости,

направление центрального охлаждающего потока из указанного одного или нескольких центральных охлаждающих каналов к центральной полости,

создание повышенного давления в периферической полости под действием указанного одного периферического охлаждающего потока для изолирования указанного потока от центральной камеры;

выпуск указанного одного периферического охлаждающего потока из периферической полости и

выпуск центрального охлаждающего потока из центральной полости.

14. Способ по п. 13, в котором дополнительно направляют по меньшей мере часть центрального охлаждающего потока через по меньшей мере одно ударное отверстие к заданной поверхности.

15. Способ по п. 13, в котором дополнительно направляют по меньшей мере часть периферического охлаждающего потока через по меньшей мере одно ударное отверстие к заданной поверхности.

16. Охлаждаемая турбинная лопатка, содержащая

хвостовик, предназначенный для прикрепления охлаждаемой лопатки к турбинному ротору,

аэродинамический профиль, проходящий вдоль радиальной оси от хвостовика и ограничивающий один задний охлаждающий канал аэродинамического профиля, который проходит радиально через аэродинамический профиль проксимально к задней кромочной части аэродинамического профиля, причем указанный один задний охлаждающий канал расположен в пределах расстояния от задней кромочной части, которое составляет менее 25% хордовой длины аэродинамического профиля, и

концевой бандаж, расположенный на радиально внешнем конце аэродинамического профиля, проходящий в окружном направлении от аэродинамического профиля и ограничивающий внутри себя центральную полость повышенного давления и периферическую полость повышенного давления,

при этом аэродинамический профиль ограничивает одно заднее охлаждающее впускное отверстие, предназначенное для прохождения одного заднего потока охлаждающей текучей среды к заднему охлаждающему каналу, и одно заднее охлаждающее выпускное отверстие, предназначенное для выпуска указанного одного заднего потока охлаждающей текучей среды из указанного одного заднего охлаждающего канала к периферической полости повышенного давления, причем центральная полость проточно сообщается с периферической полостью, и

один или несколько центральных охлаждающих каналов, ограниченных указанным аэродинамическим профилем, при этом каждый из указанного одного или нескольких центральных охлаждающих каналов проходит радиально через центральную часть аэродинамического профиля, при этом указанный аэродинамический профиль ограничивает центральное охлаждающее впускное отверстие, предназначенное для подачи центрального потока охлаждающей текучей среды к указанным одному или нескольким центральным охлаждающим каналам, и по меньшей мере одно центральное охлаждающее выпускное отверстие, предназначенное для выпуска центрального потока охлаждающей текучей среды из указанного одного или нескольких центральных охлаждающих каналов к центральной полости, причем указанный задний охлаждающий канал и указанный один или несколько центральных охлаждающих каналов обеспечивают направление заднего потока и центрального потока охлаждающей текучей среды к разным полостям, при этом указанный один или несколько центральных охлаждающих каналов расположен в пределах расстояния от центра аэродинамического профиля, которое составляет менее 25% хордовой длины аэродинамического профиля.



 

Похожие патенты:

Изобретение относится к энергетике. Предложена ступень газотурбинного двигателя.

Описан ротор турбины низкого давления для теплоэлектростанции. Диск (3) прикреплен к валу (4) и выполнен с возможностью вращения вокруг базовой оси (Δ), при этом диск (3) имеет на своей периферии первую поверхность (5) контакта.

Изобретение относится к области авиадвигателестроения. Рабочее колесо первой ступени ротора, включающего вал барабанно-дисковой конструкции компрессора низкого давления (КНД) турбореактивного двигателя (ТРД) содержит диск, наделенный пазами, и лопаточный венец, при этом диск выполнен в виде моноэлемента, включающего ступицу с центральным отверстием, полотно и обод, а лопатки содержат каждая хвостовик и перо с профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными входной и выходной кромками.

Подвижная лопатка турбомашины содержит бандажную полку, а также входной и выходной герметизирующие выступы, продолжающиеся радиально наружу от бандажной полки. Бандажная полка образует наружную поверхность прохода для газа и имеет первый и второй противоположные боковые края.

Лопатка ротора турбомашины содержит полку на своем наружном конце, а также расположенный выше по потоку и расположенный ниже по потоку уплотняющие выступы. Полка лопатки образует наружную поверхность канала для газа, проходящего через турбомашину, и имеет первый и второй противоположные боковые края.

Колесо ступени турбомашины содержит средства межлопаточной герметизации, включающие вкладыши, введенные в продольные полости боковых кромок платформ лопаток и упирающиеся в рабочем режиме в боковые кромки платформ соседних лопаток.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора, и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и воздухоохлаждаемых теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и воздухоохлаждаемых теплозащитных экранов статора, установленных в держателе направляющих лопаток.

Турбинная лопатка включает удлиненную лопасть, основание и бандажный элемент. Основание расположено на ближнем к месту крепления конце удлиненной лопасти и содержит плоский элемент, выступ и элемент для пазового соединения.

Лопатка газовой турбины содержит перо с расположенным на его верхнем конце сегментом бандажной ленты, который вместе с сегментами бандажной ленты других лопаток одного ряда образует кольцеобразную, ограничивающую канал газовой турбины для горячих газов бандажную ленту.

Устройство секционного охлаждения для подачи охлаждающего потока в турбине с потоком газообразных продуктов сгорания содержит турбинную сопловую лопатку, дефлектор для охлаждающей среды и инжекционную пластину.

Слоистый лист для детали газовой турбины содержит первый и второй покрывающие слои и первый промежуточный слой. Первый покрывающий слой, второй покрывающий слой и первый промежуточный слой сложены вместе один на другой.

Данное изобретение относится к турбинному узлу (10, 10а), содержащему в основном полую лопатку (12) и по меньшей мере одно дефлекторное устройство (14, 14а, 14d), при этом полая лопатка (12) имеет по меньшей мере первую боковую стенку (16, 18), проходящую от входной кромки (20) к выходной кромке (22) полой лопатки (12), и по меньшей мере одну полость (24), в которой в собранном состоянии упомянутого по меньшей мере одного дефлекторного устройства (14, 14а, 14d) в полой лопатке (12) упомянутое по меньшей мере одно дефлекторное устройство (14, 14а, 14d) расположено на заданном расстоянии относительно внутренней поверхности (26) полости (24) для струйно-дефлекторного охлаждения этой по меньшей мере одной внутренней поверхности (26) и с образованием проточного канала (28) для охлаждающей среды (30), проходящего от входной кромки (20) к выходной кромке (22), и при этом упомянутое по меньшей мере одно дефлекторное устройство (14, 14а, 14d) содержит первую деталь (42) и вторую деталь (44), расположенные бок о бок в осевом направлении (78), причем вторая деталь (44) расположена за первой деталью (42) при рассматривании в осевом направлении (78), и с осевым расстоянием друг от друга с образованием первого проточного прохода (46), обеспечивающего прохождение с одной стороны лопатки (12) к противоположной стороне лопатки (12).

Двухконтурный турбореактивный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину, аппарат закрутки турбины, сообщенный и с транзитными полостями лопаток соплового аппарата турбины, и с каналами подвода воздуха высокого давления, вращающийся направляющий аппарат и каналы подвода воздуха низкого давления, сообщенные с внутренними полостями охлаждаемых рабочих лопаток турбины.

Сопловой аппарат турбины высокого давления содержит перо лопатки, ограниченное входной и выходной кромками, наружную и внутреннюю полки, внутреннее кольцо и наружное кольцо, установленные на внутренней полке с образованием между ними кольцевой щели нижней воздушной завесы.

В настоящей заявке описан держатель уплотнения, используемый вокруг ряда отверстий в платформе сопловой лопатки турбины, предназначенных для прохождения воздуха. Держатель уплотнения может иметь внутреннюю поверхность, обращенную к платформе и имеющую выполненные на ней пазы, совмещенные с проточными отверстиями платформы, и противоположную внешнюю поверхность, вокруг которой расположено уплотнение.

Полая лопатка имеет аэродинамический профиль, простирающийся в продольном направлении, и содержит основание, конец, внутренний канал охлаждения внутри аэродинамического профиля, полость, расположенную в конце, открытую к свободному окончанию лопатки и ограниченную торцевой стенкой и ободом.

Газотурбинный двигатель содержит камеру сгорания и узел направляющих лопаток. Узел направляющих лопаток содержит первый и второй узлы направляющих лопаток, расположенные вдоль окружного направления турбины, а также дополнительный первый узел направляющих лопаток.

Элемент турбины газотурбинного двигателя содержит подложку, имеющую наружную поверхность, внутреннюю поверхность и торец. Внутренняя поверхность ограничивает по меньшей мере одно полое внутреннее пространство.

Узел инжекционного охлаждения для использования во внутренней платформе сопловой лопатки турбины содержит вставку инжекционного охлаждения, камеру инжекционного охлаждения и трубный элемент.

Деталь содержит внутренний охлаждающий канал. Охлаждающий канал дополнительно содержит: первую и вторую внутренние поверхности соответствующих первой и второй наружных стенок детали; и первую и вторую боковые поверхности, проходящие между упомянутыми внутренними поверхностями. Поперечное сечение канала имеет профиль в форме песочных часов, в котором боковые поверхности сближаются друг с другом до горловины, ширина которой меньше, чем ширина каждой из первой и второй внутренних поверхностей. Общее направление потока охладителя в канале перпендикулярно упомянутому профилю в форме песочных часов. Деталь дополнительно содержит множество турбулизаторов на каждой из боковых поверхностей, которые поджимают охладитель к внутренним поверхностям. Вершина в центральном участке каждого турбулизатора образует горловину охлаждающего канала. Изобретение повышает эффективность и результативность охлаждающих каналов. 3 н. и 12 з.п. ф-лы, 10 ил.
Наверх