Способ навигационных астрономических измерений координат местоположения подвижного объекта и устройство для его реализации

Изобретение относится к области навигационного приборостроения и может найти применение для определения координат местоположения подвижного объекта, например летательного аппарата (ЛА). Технический результат – повышение точности. Для этого в качестве источников подвижных объектов используют искусственные спутники Земли (ИСЗ). При этом способ включает измерение зенитных углов пеленгуемых ИСЗ, приведение измеренного зенитного угла к центральному зенитному углу, вычисление по измеренному и приведенному углу и координатам ИСЗ координат местоположения подвижного объекта. Предлагаемые способ и устройство позволяют повысить точность определения координат подвижного объекта - ЛА в 1,9-2 раза, а также в 2-2,5 раза уменьшить время пеленгации для достижения требуемой точности (1,85 км). 2 н.п. ф-лы, 2 ил.

 

Область техники.

Изобретение относится к области навигации, конкретно к способам навигационных астрономических измерений координат местоположения подвижного объекта (ПО) и устройствам для его реализации.

Уровень техники.

Известны способы и устройства навигационных астрономических измерений координат местоположения ПО /1-4/.

Наиболее близким из известных по назначению и технической сущности является способ астрономических навигационных измерений /1/, основанный на стабилизации астротелескопа относительно местной вертикали, пеленгации навигационной звезды, измерений курсового угла звезды и вычисления курса ПО.

Недостатками данного способа и устройства является низкая точность измерения координат местоположения ПО из-за низкой точности и информативности пеленгации астроориентиров (звезд).

Задачей и техническим результатом настоящего изобретения является повышение точности навигационных измерений координат местоположения ПО.

Сущность изобретения.

Решение поставленной задачи и достижение заявленного технического результата обеспечивается тем, что способ навигационных астрономических измерений координат местоположения подвижного объекта основан на стабилизации астротелескопа, установленного на подвижном объекте относительно местной вертикали, пеленгации астротелескопом не менее трех источников навигации (астроориентиров), измерении их текущих угловых координат относительно текущей местной вертикали астротелескопа ПО и вычислении координат местоположения ПО по измеренным значениям зенитных углов источников навигации.

Согласно изобретению в качестве источников навигации для ПО используют искусственные спутники земли (ИСЗ) с известными текущими координатами Xc, Yc, Zc, производят их автосопровождение астротелескопом ПО, измеряют текущие зенитные углы bc каждого ИСЗ относительно нормали гиростабилизированной платформы ПО, переводят измеренные значения зенитных углов bc каждого ИСЗ к центральному зенитному углу b с вершиной в центре Земли и вычисляют координаты ПО согласно выражениям вида:

где i - порядковый номер ИСЗ;

I - количество наблюдаемых ИСЗ, причем I≥2;

R=X+Y+Z - расстояние от центра Земли до ПО в прямоугольной системе координат;

Rc=Хс+Yc+Zc - расстояние от центра Земли до ИСЗ в прямоугольной системе координат;

Ro=(Xc-X)+(Yc-Y)+(Zc-Z)-расстояние от ПО до ИСЗ в прямоугольной системе координат.

Вывод выражений (1) и (2) осуществляется следующим образом. Согласно фиг. 1 расстояние от центра Земли до ИСЗ можно записать:

Приравнивая правые части выражений 1 и 2, получим:

После преобразования (3) выражение для определения зенитного угла bc примет вид:

Из 4 выражение искомой величины R примет вид:

Пересчет прямоугольных координат X, Y, Z в географические F, L, Н возможен путем решения следующей системы уравнений:

В соответствии с теоремой косинусов зенитный угол (b) может быть определен согласно фиг. 1 из следующего выражения:

Из 9 следует:

где OK - расстояние от центра Земли до второго ИСЗ;

F - широта ПО - ЛА в географической системе координат;

L - долгота ПО - ЛА в географической системе координат;

Н - высота полета ПО - ЛА над поверхностью Земли в географической системе координат.

Новыми признаками, обладающими существенными отличиями, являются:

- использование в качестве астроориентира искусственного спутника Земли (ИСЗ);

- приведение измеренного зенитного угла к центральному зенитному углу;

- новые аналитические зависимости вычисления координат подвижного объекта;

- новая схема устройства навигационных астрономических измерений.

Данные признаки обладают существенными отличиями, так как среди известных технических решений предлагаемый способ не обнаружен.

Применение всех новых признаков позволяет повысить точность астрономических навигационных измерений или сократить время пеленгации астроориентира для достижения требуемой точности за счет того, что в качестве астроориентира вместо навигационной звезды используется подвижный объект - ИСЗ, координаты которого известны с высокой точностью.

Указанное утверждение основано на известном факте, что угловая скорость низко- и среднеорбитальных ИСЗ значительно больше углового перемещения звезды, а информативность измерения тем выше, чем больше угловая скорость линии визирования, следовательно, информативность ИСЗ как астроориентира значительно выше, чем навигационной звезды.

Также известно, что точность навигационных измерений и время обработки информации для достижения требуемой точности определяются информативностью измерений, т.е. наблюдаемостью измерений, и она тем выше, чем выше информативность [3].

Описание чертежей

На фиг. 1 изображена схема пеленгации астроориентиров, поясняющая предложенный способ.

На фиг. 2 - блок-схема устройства для реализации способа навигационных астрономических определений.

Сущность предлагаемого способа навигационных астрономических измерений координат местоположения подвижного объекта поясняется с помощью устройства для его реализации и его работе по предлагаемому способу.

Описание устройства, реализующего предлагаемый способ.

Устройство для реализации предлагаемого способа навигационных астрономических измерений координат местоположения подвижного объекта содержит гиростабилизированную платформу 1. Механический выход платформы 1 через систему наведения 2 и следящую систему 3 соединен с механическим входом астротелескопа 4. Электрический вход астротелескопа 4 через следящую систему 3 и систему наведения 2 связан с выходом блока 5 наведения. Первый вход блока 5 связан с внешним источником информации, а второй - с электрическим выходом гиростабилизированной платформы 1. Электрический выход следящей системы 3 связан с первым входом блока 6 вычисления углов, второй вход которого связан с внешним источником информации. Выход блока 6 вычисления углов связан с входом блока 7 вычисления координат, выход которого является выходом 8 предлагаемого устройства.

Работа устройства навигационных астрономических измерений координат местоположения подвижного объекта по предлагаемому способу.

Работа устройства навигационных астрономических измерений координат местоположения подвижного объекта по предлагаемому способу состоит в следующем.

С помощью гиростабилизированной платформы 1 через систему наведения 2 и следящую систему 3 осуществляется стабилизация астротелескопа 4 относительно местной вертикали. В блоке 5 наведения по дополнительной информации о координатах ИСЗ Хс, Yc, Zc и углам ориентации ЛА от гиростабилизированной платформы 1 вычисляются углы наведения bci на ИСЗ, которые поступают в систему наведения 2. Система наведения 2 через следящую систему 3 разворачивает астротелескоп 4 по линии визирования на ИСЗ, который захватывает спутник и с помощью следящей системы 3 сопровождает его. При этом происходит измерение зенитного угла bc ИСЗ, относительно местной вертикали, информация о котором поступает в блок 6 вычисления углов. В блоке 6 вычисления углов осуществляется приведение измеренного зенитного угла bc к центральному зенитному углу b с вершиной в центре Земли. Аналогичным образом производится пеленгация еще одного или двух ИСЗ, в зависимости от необходимости определения двух или трех координат местоположения и измерения их зенитных углов. Информация о зенитных углах bc, и центральных зенитных углах bi i-го ИСЗ поступает в блок 7 вычисления координат, в котором осуществляется определение координат местоположения (X, Y, Z) ПО - ЛА согласно указанных выше выражений (1 и 2).

Ввиду того, что расстояние от ПО - ЛА до ИСЗ значительно меньше расстояния от ПО - ЛА до звезд, поэтому угловая скорость линии визирования ИСЗ выше, что, в свою очередь, повышает информативность и соответственно точность измерений.

Промышленная применимость

Применение предложенного изобретения позволяет повысить точность навигационных астрономических измерений координат местоположения ПО - ЛА за счет увеличения информативности измерений, выполняемых по ПО - ИСЗ. Достоверность повышения точности предлагаемым способом подтверждается указанными выше известными фактами по процессу пеленгации подвижного объекта в сравнении с неподвижным и теорией информативности измерений. Кроме того, авторами проведены сравнительные исследования методом математического моделирования способа изложенного в прототипе и предлагаемого способа при одних и тех же начальных ошибках измерения и условиях. В результате получено, что для ИСЗ с периодом обращения Т=120 мин предложенный способ позволяет повысить точность определения координат ПО - ЛА в 1,9-2 раза, а также в 2-2,5 раза уменьшить время пеленгации для достижения требуемой точности (1,85 км).

Кроме того, данный способ позволяет сократить время пеленгации астроориентира для достижения требуемой точности.

Источники информации

1. И.И. Помыкаев, В.П. Селезнев, Д.А. Дмитроченко. Навигационные приборы и системы. - М.: Машиностроение, 1983, с. 201.

2. В.И. Кузнецов, Т.В. Данилова, Д.М. Косулин. Способ автономной навигации и ориентации космических аппаратов на основе виртуальных измерений зенитных расстояний звезд. Патент №2010144278.

3. В.В. Малышев, М.Н. Красильников, В.И. Карлов. Оптимизация наблюдения и управления летательных аппаратов. - М.: Машиностроение, 1989, 311 с.

4. Авиационные приборы и навигационные системы / Под ред. О.А. Бабича. - М.: ВВИА им. Н. Е. Жуковского.

1. Способ навигационных астрономических измерений координат местоположения подвижного объекта (ПО), основанный на стабилизации астротелескопа, установленного на ПО относительно местной вертикали, пеленгации астротелескопом не менее трех источников навигации, измерении их текущих угловых координат относительно текущей местной вертикали астротелескопа ПО и вычислении координат местоположения ПО по измеренным значениям зенитных углов источников навигации, отличающийся тем, что в качестве источников навигации для ПО используют искусственные спутники земли (ИСЗ) с известными текущими координатами Хс, Ус, Zc, производят их автосопровождение астротелескопом ПО, измеряют текущие зенитные углы bc каждого ИСЗ относительно нормали гиростабилизированной платформы ПО, переводят измеренные значения зенитных углов bc каждого ИСЗ к центральному зенитному углу b с вершиной в центре Земли и вычисляют координаты ПО согласно выражениям вида:

bci=arcctg(ctg(b)-R/(Rci*sin(b)),

bi=arccos((Rci+R-Ro)/(2Rci*R)),

где i - порядковый номер ИСЗ;

I - количество наблюдаемых ИСЗ, причем I≥2;

R=X+Y+Z - расстояние от центра Земли до ПО в прямоугольной системе координат;

Rc=Хс+Yc+Zc - расстояние от центра Земли до ИСЗ в прямоугольной системе координат;

Ro=(Xc-X)+(Yc-Y)+(Zc-Z) - расстояние от ПО до ИСЗ в прямоугольной системе координат.

2. Устройство для реализации способа по п. 1 содержит гиростабилизированную платформу, механический выход которой через систему наведения и следящую систему соединен с механическим входом астротелескопа, электрический вход которого через следящую систему и систему наведения связан с выходом блока наведения, первый вход которого связан с внешним источником информации, а второй - с электрическим выходом гиростабилизированной платформы, первый вход блока вычисления углов связан с электрическим выходом следящей системы, а второй - с внешним источником информации, выход блока вычисления углов связан с входом блока вычисления координат, выход которого является выходом предлагаемого устройства.



 

Похожие патенты:

Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата.

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА).

Изобретение относится к спутниковой навигации и управлению воздушным движением (УВД). Технический результат - расширение функциональных возможностей.

Изобретение относится к космической навигации. Способ повышения точности определения ориентации по звездам заключается в проецировании изображения звезд через оптическую систему на матричный приемник излучения.

Изобретение относится к спутниковой навигации и может использоваться для оперативного контроля целостности навигационного поля глобальной навигационной спутниковой системы (ГНСС).

Изобретение относится к оптико-электронным приборам астроориентации и может быть использовано в космических системах различного назначения для получения информации об ориентации.

Изобретение относится к космической навигации и может быть использовано для оперативного точного определения ориентации космического аппарата относительно инерциальной системы координат.

Изобретение относится к бортовым системам навигации (БСН) искусственных спутников Земли (ИСЗ) на низких (с высотой до 500-600 км) орбитах. БСН содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в параметры движения центра масс (ЦМ) ИСЗ и блок прогнозирования параметров движения ЦМ.

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения географических координат объекта, в том числе подвижного.

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу.

Изобретение относится к системам автономной навигации и ориентации космических аппаратов (КА) и может быть использовано в бортовых системах слежения за космическими объектами контроля. Технический результат – расширение функциональных возможностей. Сущность изобретения состоит в автономном, на борту визирующего КА (КА-1), определении фактов изменения орбиты визируемого КА (КА-2) на основе автономного формирования высокоточных оценок параметров орбиты КА-2. Эти оценки определяются путем решения навигационной задачи по разработанному способу слежения, базирующемуся на измерениях координат звезд и их звездных величин в оптико-электронном приборе (ОЭП), помещенном в карданов подвес и визирующем КА-2. Ориентация линии визирования "КА-1-КА-2" относительно системы координат, связанной с корпусом КА-1, рассчитывается в результате измерений характеристик звездного поля, наблюдаемого в ОЭП, жестко закрепленном на корпусе КА-1. Факты изменения орбиты КА-2 устанавливаются путем анализа сумм поправок к орбите КА-2 и сумм невязок измерений, формируемых в процессе решения навигационной задачи по способу слежения. При этом обеспечивается: автономное высокоточное формирование оценок орбиты наблюдаемого КА, автономное определение факта изменения орбиты наблюдаемого КА на основе пассивных измерений, использующих излучения только естественных полей и исключающих активные измерения дальности и радиальной скорости. Тем самым бортовой комплекс управления приобретает новую функцию - слежение за космическими объектами контроля и выявление фактов изменения их орбит. 2 ил., 8 табл.
Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации и может найти применение при осуществлении навигации высокодинамичных ЛА в сложных навигационных условиях. Технический результат - расширение функциональных возможностей навигационного комплекса и повышение живучести, надежности и отказобезопасности работы комплексной навигационной системы. В основу предлагаемого способа положено многократное резервирование каналов информационного обмена, датчиков, вычислителей и средств контроля и реконфигурация архитектуры вычислительных устройств и структуры навигационного комплекса в зависимости от состояния модулей вычислительных устройств и бортовых систем навигации ЛА. Способ предусматривает использование инерциальной навигации, системы воздушных сигналов, спутниковой навигации, радиотехнических систем, оптикоэлектронной системы навигации и астронавигации и других бортовых навигационных систем, а также применение фильтра Калмана. Дополнительно контролируют модули вычислителей, все входящие и выходящие сигналы на предмет адекватности их пороговым и модельным значениям, назначаемым самим комплексом на основе анализа текущих параметров. Осуществляют обработку множества измеренных параметров первичной навигационной информации, полученных от различных бортовых навигационных систем, путем нахождении оптимальной, адаптивной или робастной оценки текущих навигационных параметров ЛА. При этом используют модифицированные оптимальные, адаптивные и робастные алгоритмы обработки навигационной информации в зависимости от уровня ошибок, шумов, достоверности и возникшей проблемной ситуации с поступающей информацией, а также программу логических моделей и (или) нейросетевые алгоритмы для принятия решения о реконфигурации архитектуры вычислительных модулей резервированных вычислителей и реорганизации структуры всего комплекса навигации. 3 з.п. ф-лы.

Изобретение относится к способам определения ориентации по координатам наблюдаемых звезд, преимущественно для навигационных целей. В частности, для космической навигации путем определения положения космического аппарата относительно изображений звезд, наблюдаемых на небесной сфере. Способ определения ориентации по изображениям участков звездного неба заключается в том, что предварительно составляют и запоминают бортовой каталог координат звезд, ограничивая выбор звезд звездной величиной, отображаемой используемой системой наблюдения. Затем в процессе определения ориентации формируют изображение участка звездного неба, выбирают наиболее яркую звезду в центральной части поля зрения, выбирают соседние с ней звезды. Далее определяют попарные расстояния на изображении от выбранной центральной звезды до выбранных соседних звезд, а затем сравнивают измеренные на полученном изображении расстояния между звездами с расстояниями, полученными из бортового каталога. При совпадении всех этих расстояний отождествляют выбранную центральную звезду на изображении с соответствующей звездой из каталога и определяют ориентацию, учитывая положение этой звезды на изображении в приборной системе координат. При этом каждую звезду при составлении бортового каталога дополнительно характеризуют значениями расстояний до двух ближайших к ней звезд и расстоянием между самими этими звездами или до трех ближайших к ней звезд и по результатам этих определений формируют трехкоординатное признаковое пространство. В процессе определения ориентации, для выбранной на изображении звезды, по указанным измеренным расстояниям определяют положение этой звезды в признаковом пространстве, а затем по ее каталожным координатам на звездном небе определяют ее положение и находят ориентацию аппарата. Техническим результатом заявленного способа является повышение эффективности работы используемых датчиков звездной ориентации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области навигационного приборостроения и может найти применение для определения координат местоположения подвижного объекта, например летательного аппарата. Технический результат – повышение точности. Для этого в качестве источников подвижных объектов используют искусственные спутники Земли. При этом способ включает измерение зенитных углов пеленгуемых ИСЗ, приведение измеренного зенитного угла к центральному зенитному углу, вычисление по измеренному и приведенному углу и координатам ИСЗ координат местоположения подвижного объекта. Предлагаемые способ и устройство позволяют повысить точность определения координат подвижного объекта - ЛА в 1,9-2 раза, а также в 2-2,5 раза уменьшить время пеленгации для достижения требуемой точности. 2 н.п. ф-лы, 2 ил.

Наверх