Способ дистанционного определения относительной диэлектрической проницаемости среды под границей атмосфера-океан

Использование: для дистанционного контроля относительной диэлектрической проницаемости среды под границей атмосфера-океан на разных акваториях Мирового океана. Сущность изобретения заключается в том, что контролируемый участок морской поверхности облучают СВЧ-радиоволнами на наклонной поляризации, регистрируют рассеянный назад сигнал одновременно на вертикальной и горизонтальной поляризациях, затем вычисляют поляризационное отношение, по которому рассчитывают относительную диэлектрическую проницаемость среды под границей атмосфера-океан. Технический результат - повышение точности измерений за счет того, что величины удельной эффективной площади рассеяния на разных поляризациях определяются одновременно.

 

Изобретение относится к области океанологических измерений и преимущественно может быть использовано для дистанционного контроля относительной диэлектрической проницаемости среды под границей атмосфера-океан на разных акваториях Мирового океана.

Физической основой предложенного способа дистанционного определения относительной диэлектрической проницаемости среды под границей вода-воздух является следующее. В случае зондирования морской поверхности при углах падения θ от 25 до 75° рассеянный назад сигнал определяет резонансный (брегговский) механизм рассеяния. Если резонансные составляющие поля поверхностных волн распространяются по плоской поверхности, нормированное сечение обратного рассеяния можно представить в формуле

где p - вид поляризации, первый индекс соответствует поляризации излучаемого сигнала, второй - принимаемого;

k - волновое число радиоволны;

- геометрический коэффициент, зависящий от вида поляризации излучаемого и принимаемого радиолокационного сигнала и от электрофизических (диэлектрическая проницаемость) параметров морской воды, первый индекс соответствует поляризации падающей радиоволны, второй - отраженной;

- спектр морской поверхности, соответствующий волновому вектору резонансной компоненты.

Из выражения (1) следует, что уровень резонансно рассеянного сигнала является функцией геометрического коэффициента . Геометрический коэффициент зависит от угла падения радиоволн на морскую поверхность, вида поляризации и относительной диэлектрической проницаемости воды. Для вертикальной (ν) и горизонтальной (h) поляризации функция Gpp(θ) соответственно имеет вид [Valenzuela G. Theories for the interaction of electromagnetic and ocean waves. – A. Review // Boundary Layer Meteorology. 1978. Vol. 13, №1-4. P. 61-85]:

где εr - комплексная относительная диэлектрическая проницаемость среды под границей атмосфера-океан.

В выражение (1) входит спектр морской поверхности , на который влияет большое число физических факторов, среди которых основным является изменчивость поля скорости ветра. Вследствие этого спектр подвержен сильной изменчивости [Христофоров Г.Н., Запевалов А.С., Смолов В.Е. О предельной точности скаттерометрического определения со спутника скорости ветра над океаном // Исследование Земли из космоса. 1987. №2. С. 57-65]. В результате при прямом определении величины εr на основе дистанционных измерений возникает ошибка. Для исключения влияния изменчивости спектра на определяемую величину εr в работе [Заявка №2015142497 на выдачу патента Российской Федерации на изобретение «Способ дистанционного определения солености морской воды», авторы Запевалов А.С. и Пустовойтенко В.В., дата поступления заявки в ФИПС 06.10.2015, входящий №065683] было предложено использовать отношение (поляризационное отношение) R сигналов, измеренных на вертикальной и горизонтальной поляризациях, соответственно:

Поскольку на обеих поляризациях сигнал пропорционален уровню шероховатости, который в данном случае характеризуется спектром , поляризационное отношение определяется тремя параметрами: εr, θ и длиной (частотой) зондирующих радиоволн. Поскольку при радиозондировании морской поверхности угол падения и длина зондирующей волны являются известными параметрами, зная поляризационное отношение, можно рассчитать величину εr.

Известен способ дистанционного определения солености морской воды, основанный на определении относительной диэлектрической проницаемости среды под границей атмосфера-океан [Терехин Ю.В., Пустовойтенко В.В. Влияние температуры и солености морской воды на характеристики радиолокационного сигнала СВЧ-диапазона // Исследование Земли из Космоса. 1986. №2. С. 16-20]. Такие признаки аналога, как зондирование морской поверхности в СВЧ-диапазоне, регистрация сигнала, рассеянного в обратном направлении, являются сходными с существенными признаками заявленного технического решения. Недостатком аналога является низкая точность определения относительной диэлектрической проницаемости воды, поскольку удельная эффективная площадь рассеяния зависит не только от относительной диэлектрической проницаемости воды, но и от шероховатости морской поверхности. Изменения шероховатости морской поверхности приводят к значительно большим изменениям параметра , чем изменения относительной диэлектрической проницаемости воды, наблюдаемые в Мировом океане.

Наиболее близким к изобретению по совокупности признаков, и поэтому выбранным в качестве прототипа, является способ, в котором на основе радиозондирования морской поверхности по поляризационному отношению вычисляется относительная диэлектрическая проницаемость εr, и по ней рассчитывается соленость [Заявка №2015142497 на выдачу патента Российской Федерации на изобретение «Способ дистанционного определения солености морской воды», авторы Запевалов А.С. и Пустовойтенко В.В., дата поступления заявки в ФИПС 06.10.2015, входящий №065683].

Такие признаки прототипа, как зондирование заданного участка морской поверхности в СВЧ-диапазоне, регистрация на вертикальной и горизонтальной поляризациях сигналов, рассеянных в обратном направлении, расчет отношения сигналов, регистрируемых на разных поляризациях, и определение по этому поляризационному отношению относительной диэлектрической проницаемости среды под границей атмосфера-океан, являются сходными с существенными признаками заявленного технического решения.

Недостатком прототипа является то, что измерения на разных поляризациях осуществляются последовательно во времени. Следствием расхождений во времени сеансов измерений является то, что подверженный сильной пространственно-временной изменчивости спектр различается для разных сеансов [Христофоров Г.Н., Запевалов А.С, Бабий М.В. Измерения параметров шероховатости морской поверхности при переходе от штиля к ветровому волнению // Известия Российской академии наук. Физика атмосферы и океана. 1992. Т. 28, №4. С. 424-431]. Кроме того, при измерении с движущихся носителей последовательно полученные величины соответствуют разным участкам морской поверхности.

В основу изобретения поставлена задача создания способа дистанционного определения относительной диэлектрической проницаемости среды под границей атмосфера-океан, в котором за счет того, что величины удельной эффективной площади рассеяния на разных поляризациях определяются одновременно, достигается технический результат - повышение точности измерений.

Поставленная задача решается тем, что в способе дистанционного определения относительной диэлектрической проницаемости среды под границей атмосфера-океан, который характеризуется вышеуказанными общими с прототипом признаками, новым является то, что морскую поверхность зондируют радиоволнами, которые имеют две составляющие с ортогональной поляризацией (горизонтальную и вертикальную), т.е. зондирование осуществляется на наклонной поляризации, а прием осуществляется на горизонтальной и на вертикальной поляризациях одновременно.

Способ осуществляют следующим образом.

Контролируемый участок морской поверхности облучают СВЧ-адиоволнами, на наклонной поляризации. Регистрируют рассеянный назад сигнал одновременно на вертикальной и горизонтальной поляризациях. Затем вычисляют поляризационное отношение, по которому, согласно выражениям (2)-(4), рассчитывают относительную диэлектрическую проницаемость среды под границей атмосфера-океан.

Способ дистанционного определения относительной диэлектрической проницаемости среды под границей атмосфера-океан, заключающийся в том, что заданный участок морской поверхности облучают радиоволнами СВЧ-диапазона, принимают рассеянный назад сигнал на вертикальной и на горизонтальной поляризациях, вычисляют поляризационное отношение и по нему определяют относительную диэлектрическую проницаемость, отличающийся тем, что этот участок морской поверхности облучают радиоволнами СВЧ-диапазона на наклонной поляризации и рассеянный назад сигнал принимают одновременно на вертикальной и горизонтальной поляризациях.



 

Похожие патенты:

Изобретение относится к бесконтактным переключателям. Технический результат заключается в обеспечении управления чувствительностью бесконтактного переключателя.

Изобретение, в общем, относится к системам контроля и, более конкретно, к способу определения электрической проводимости объекта или материала. Система содержит датчик, способный излучать электромагнитное поле при получении возбуждающего сигнала, причем при помещении в указанное электромагнитное поле объекта оно взаимодействует с этим объектом.

Изобретение предназначено для определения технического состояния фильтрующего элемента гидросистемы в функциональном режиме. Способ диагностирования технического состояния фильтрующего элемента гидросистемы включает определение параметра контроля фильтра и его передачу запоминающему устройству или оператору в процессе работы гидросистемы, причем измеряют диэлектрическую проницаемость фильтрующего элемента, непрерывно сравнивают текущее значение диэлектрической проницаемости фильтрующего элемента с ее максимально допустимым значением и определяют прогнозируемый остаточный ресурс фильтрующего элемента по по предложенной формуле.

Изобретение относится к бесконтактным переключателям. Технический результат заключается в улучшении управления чувствительностью бесконтактных переключателей.

Изобретение относится измерительным информационным системам, в частности к системам для измерения емкости и сопротивления и может быть использовано для измерения неэлектрических величин резистивными и емкостными датчиками в беспроводных системах контроля и управления.

Изобретение относится к сенсорной технике и может найти применение в сенсорных экранах, сенсорных панелях и других устройствах, где необходимо указывать координаты выбранных мест на экране и отслеживать эти координаты или выбранные графические элементы.

Изобретение относится к цифровой измерительной технике, а именно к устройствам преобразования емкости в частоту, и может быть использовано в устройствах первичной обработки информации емкостных преобразователей микромеханических гироскопов и акселерометров.

Изобретение относится к СВЧ-технике и может быть использовано для определения электрофизических параметров и неоднородностей диэлектрических покрытий на поверхности металла.

Изобретение относится к области измерительной техники и может быть использовано в различных областях промышленности, в частности, в приборостроении, с целью измерения постоянной времени саморазряда конденсаторов.

Устройство измерения остаточной емкости химического источника тока относится к области измерительной техники и может использоваться для перманентного контроля аккумуляторной батареи или химического источника тока (ХИТ) которые используются в автомобилях, электромобилях, складских электрокарах и в других бытовых и промышленных приборах, для которых источником энергии служит ХИТ, что позволит предотвратить непредвиденный выход ХИТ из строя. Новым в устройстве измерения остаточной емкости ХИТ является разделение устройства на два блока и упрощение конструкции, таким образом, что в первом блоке содержится конденсатор с ключом заряда который жестко крепиться как можно ближе к клеммам ХИТ для наименьшей длинны подводящих проводов, во втором блоке располагаются остальные компоненты устройства с индикатором, на который будет выводиться информация об остаточной емкости ХИТ. Устройство измерения остаточной емкости ХИТ состоит из конденсатора известной емкости, электронных управляемых ключей заряда и разряда, устройства выборки-хранения, делителя напряжения, микроконтроллера, пульта управления, фильтра нижних частот, индикатора на который выводиться остаточная емкость ХИТ.

Использование: для определения свойств многокомпонентных сложнолегированных жаропрочных расплавов, основанного на изучении крутильных колебаний цилиндрического тигля с расплавом.

Изобретение относится к области электроизмерений и может быть использовано для измерения электропроводности жидких сред. Устройство для измерения электропроводности жидкости содержит генератор синусоидальных сигналов, управляемый делитель частоты, питающий трансформатор с обмоткой возбуждения, измерительный трансформатор с измерительной обмоткой, замкнутый виток из электропроводящей исследуемой жидкости, аналого-цифровой преобразователь (АЦП), виток, охватывающий трансформатор возбуждения, виток, охватывающий измерительный трансформатор, ключ, образцовую проводимость известной величины, схему управления, вычислительное устройство.

Изобретение относится к инструментальным физико-химическим методам исследования спиртосодержащих жидкостей, преимущественно спиртных напитков и предназначено для установления различия между подлинной, фальсифицированной и контрафактной алкогольной продукцией.

Изобретение относится к контрольно-измерительной технике, а именно к приборам и устройствам для исследования электрофизических свойств жидкометаллических растворов.

Изобретение относится к аналитической химии и может быть использовано для анализа вод различного происхождения: питьевые воды, геотермальные источники, смывы хвостов обогащения, а также технологические сливы.

Изобретение предназначено для определения чистоты нейтральных газов, используемых при производстве изделий электронной техники. Способ измерения концентрации примесей в нейтральных газах заключается в том, что анализируемый нейтральный газ подают в камеру, где находится чувствительный элемент, измеряют его электрическое сопротивление, по изменению величины которого судят о концентрации примеси, при этом в качестве чувствительного элемента используют деионизованную воду.

Использование: для определения электрической проводимости жидкостей. Сущность изобретения заключается в том, что устройство содержит кондуктометрический датчик контактного типа, электрод 1 датчика состоит из нескольких сегментов 2, 3 и 4, а электрод 5 выполнен сплошным и является общим для сегментов 2, 3 и 4.

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой.

Изобретение относится к области кондуктометрии и может быть использовано при физико-химических исследованиях растворов. Способ измерения электропроводности раствора электролита, размещенного в жидкостном контуре первого и второго первичных преобразователей с обмотками возбуждения, включенными в цепь генератора частоты, состоит в регистрации выходного сигнала напряжения каналов измерения в зависимости от концентрации раствора при условии, что измерение проводят в стабилизированном температурном поле, при этом согласно изобретению уровень чувствительности первого и второго первичных преобразователей определяется значением напряжения на выходном трансформаторе канала измерения в зависимости от концентрации раствора, размещенного в жидкостном контуре, его температуры, и находится в функциональной зависимости от напряжения и частоты источника питания обмотки возбуждения питающего трансформатора, причем измерение электропроводности раствора проводят с включением генератора на рабочую частоту, определяемую при экспериментальном исследовании растворов как оптимальную для исследуемого диапазона концентрации раствора; а регистрируют значение выходного сигнала напряжения каналов измерения, по значению которого и определяют электропроводность раствора.

Изобретение относится к области диагностики состава органических и неорганических жидкостей электрофизическими методами, в частности к оперативным методам контроля степени очистки растительных масел по стадиям процесса очистки (рафинации).

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1-103 В/см, измерение характеристик среды, их компьютерную обработку. Согласно изобретению измеряемыми характеристиками среды являются частотная зависимость импеданса Z(ω) и угла ϕ(ω) сдвига фаз, на основе которых компьютерной обработкой получают выражение для действительной ε' и мнимой ε'' диэлектрических проницаемостей, сумма которых описывается формулой где E - напряженность электрического поля, di, ni и τi - дипольный момент, концентрация частиц в суспензии и время релаксации частиц i-го типа, а дипольный момент является функцией радиуса частицы di=d(ri), из полученного выражения для диэлектрических проницаемостей компьютерной обработкой производят построение гистограммы распределения коллоидных частиц, ордината которой пропорциональна радиусу ri коллоидной частицы i-го типа, а центр столбца по оси абсцисс расположен в значении средней концентрации частиц i-го типа. Технический результат - повышение точности и надежности определения распределения по размерам коллоидных частиц.
Наверх