Датчик электростатического поля

Предлагаемое изобретение относится к области измерительной техники, а именно к средствам измерения напряженности электростатических полей, в том числе и в условиях космического пространства. Датчик электростатического поля содержит вибрационный модулятор, состоящий из катушки индуктивности, постоянных магнитов, гибкой подвижной балки в виде изогнутой профилированной полосы с эллиптическим экранирующим отверстием, корпуса и основания. Гибкая подвижная балка изготовлена из ферромагнитного материала и расположена на оси симметрии катушки индуктивности. Постоянные магниты расположены симметрично относительно оси катушки индуктивности, ортогонально плоскости балки так, что поле постоянного магнита ортогонально магнитному полю катушки индуктивности. Технический результат заключается в уменьшении массогабаритных параметров измерительных устройств, увеличении точности измерения, помехоустойчивости (соотношение сигнал/шум) и разрешающей способности. Кроме того, повышается технологичность изделия за счет изготовления групповым методом отдельных элементов конструкции. 9 з.п. ф-лы, 3 ил.

 

Предлагаемое изобретение относится к области измерительной техники, а именно к средствам измерения напряженности электростатических полей.

Известны датчики электростатического поля, действие которых основано на использовании вибрационного модулятора с подвижным чувствительным электродом и необходимого количества средств обработки информации (см. авторское свидетельство SU 881 628, НПО ИТ, опубл. в 1981; патент US 5 212 451, Xerox, опубл. 1993; патент RU 2 414 717, НГУ, опубл. 2011). В качестве прототипа изобретения может быть выбран, датчик электростатического поля, предложенный в авторском свидетельстве SU 881 628, наиболее близкий к предлагаемому по конструкции. В SU 881 628 описан датчик электростатического поля, содержащий корпус с отверстием из электропроводящего материала, внутри которого расположены микроконтроллер, аналого-цифровой преобразователь, генератор сигнала синусоидальной формы, усилитель и плата-основание (ее наличие подразумевается с очевидностью). На плате основании размещен вибрационный модулятор с катушкой индуктивности и чувствительным электродом.

Датчики электростатического поля, описанные в перечисленных выше аналогах – SU 881 628, US 5 212 451, RU 2 414 717, обладают рядом недостатков, которые делают невозможным их применение в ответственных условиях, например, в условиях открытого космоса, на удаленных контролируемых объектах и т.п. Так, конструкция датчика из US 5 212 451 характеризуется сложностью сборки и низкой помехозащищенностью; конструкция датчика, описанная в RU 2 414 717, характеризуется сложной конструкцией при больших массогабаритных характеристиках. Конструкция датчика из SU 881 628, выбранного в качестве ближайшего аналога, имеет низкую помехозащищенность, несмотря на то, что конструкция этого датчика с большой степенью вероятности была предназначена для использования в условиях космического пространства. В свою очередь, предлагаемый датчик электростатического поля представляет собой дальнейшее совершенствование конструкции данного класса устройств и позволит сочетать технологичность изготовления конструкции с помехоустойчивостью датчика, что позволит его использовать на удаленных контролируемых объектах, в первую очередь, в условиях открытого космического пространства для регистрации напряженности электростатического поля.

Таким образом, предложен датчик электростатического поля, который содержит корпус из электропроводящего материала с отверстием. Корпус датчика используется для расположения микроконтроллера, аналого-цифрового преобразователя, генератора сигнала синусоидальной формы, усилителя и платы-основания. На плате-основании размещен вибрационный модулятор, использующий катушку индуктивности, и чувствительный электрод. В отличие от прототипа и аналогов вибрационный модулятор выполнен в виде конструкции, состоящей из катушки индуктивности, постоянных магнитов, гибкой подвижной балки в виде изогнутой профилированной полосы из ферромагнитного материала, корпуса и платы-основания. В предложенной конструкции гибкая подвижная балка расположена на оси симметрии катушки индуктивности и закреплена вместе с ней на плате-основании. Постоянные магниты расположены симметрично относительно оси катушки индуктивности, ортогонально плоскости гибкой подвижной балки таким образом, что поле постоянного магнита ортогонально магнитному полю катушки индуктивности. В предложенном вибрационном модуляторе могут быть использованы два постоянных магнита в форме параллелепипеда. Катушка индуктивности представляет собой намотку двух изолированных проводов на диэлектрический полый каркас.

Гибкая подвижная балка, использующаяся в конструкции предложенного датчика, выполнена из магнитомягкого фольгированного материала. По своей конструкции гибкая подвижная балка может состоять из: П-образной площадки; основания, параллельного оси катушки индуктивности; средней части, изогнутой относительно катушки индуктивности; хвостовой части, параллельной оси катушки индуктивности. В хвостовой части гибкой подвижной балки выполнено экранирующее отверстие, которое предпочтительно имеет эллиптическую форму. При отсутствии колебаний гибкая балка пересекает чувствительный электрод, проходящий через выполненное в ней отверстие. В целом, гибкая подвижная балка может соответствовать форме, приведенной на фиг. 2 (см. перечень чертежей, приведенный ниже).

Предложенное изобретение поясняется чертежами:

фиг. 1 – датчик электростатического поля в поперечном сечении;

фиг. 2 – конструкция гибкой подвижной балки;

фиг. 3 – вид сбоку датчика электростатического поля.

Особенности конструкции предложенного датчика электростатического поля и его использование могут быть проиллюстрированы следующим образом, не исключающим варианты конструкции и использования, обусловленные особенностями эксплуатации и решаемой при применении датчика задачи. Как и было указано выше, для возможности эксплуатации датчика в условиях открытого космоса (или же при применении в аналогичных условиях и ситуациях) конструкция датчика должна обеспечивать его помехозащищенность (помехоустойчивость). Очевидно, что помехозащищенность должна сочетаться с малыми массогабаритными характеристиками и не приводить к излишнему усложнению конструкции.

Датчик электростатического поля включает корпус 1 из электропроводящего материала, в котором выполнено отверстие 2. Корпус 1 служит для размещения микроконтроллера, аналого-цифрового преобразователя, генератора сигнала синусоидальной формы, усилителя (на чертежах не показаны) и платы-основания 3 (фиг. 1, 2). На плате-основании 3 закреплена катушка индуктивности 4 и расположенная на ее оси симметрии гибкая подвижная балка 5 вибрационного модулятора. Расположение гибкой подвижной балки 5 на оси симметрии катушки индуктивности 4 и крепление вместе с ней на плате-основании 3 обеспечат удобство сборки датчика – один из факторов оптимизации его конструкции. Катушка индуктивности 4 представляет собой намотку двух изолированных проводов на диэлектрический полый каркас – вторичную катушку обратной связи.

Вибрационный модулятор, при этом, состоит из корпуса 1 с отверстием 2, платы-основания 3, катушки индуктивности 4, двух постоянных магнитов 61, 62, развернутых противоположными полюсами друг к другу, гибкой подвижной балки 5. Использование постоянных магнитов позволяет отказаться от применения магнитопровода, что позволит уменьшить габариты датчика в целом. Постоянные магниты 6 расположены симметрично относительно оси катушки индуктивности 4, а также ортогонально плоскости гибкой подвижной балки 5 таким образом, что поле постоянного магнита 61, 62 ортогонально магнитному полю катушки индуктивности 4. Поле постоянного магнита 6 ортогональное магнитному полю катушки индуктивности 4 обеспечивает максимальный момент сил, что также позволяет минимизировать конструкцию датчика.

Гибкая подвижная балка 5 выполнена в виде изогнутой профилированной полосы из ферромагнитного материала. Изгиб конструкции подвижной балки 5 позволит уменьшить влияние помех от магнитного поля катушки индуктивности 4 и повысить точность измерений. Предложено изготовление гибкой подвижной балки 5 из магнитомягкого фольгированного материала, например железо-никелевого сплава типа пермаллоев или электротехнических сталей. В реализованном изделии применялся сплав 79НМ. Использование магнитомягкого фольгированного материала позволит уменьшить потерю энергии на перемагничивание.

Гибкая подвижная балка 5 состоит (см. фиг 2) из: П-образной площадки 5п, обеспечивающей пайку на печатную плату; основания 5о, параллельного оси катушки индуктивности 4, благодаря которому при колебании возникает модуляция ЭДС во вторичной катушке; средней части 5с, изогнутой относительно катушки индуктивности 4, что позволит уменьшить помехи на чувствительном электроде (измерительном штыре) и повысить точность измерений; хвостовой части 5х, параллельной оси катушки индуктивности 4, что обеспечивает взаимное удобство при расположении чувствительного электрода и модулятора электростатического поля. То есть использование гибкой подвижной балки 5 заданного профиля позволит сочетать помехозащищенность и оптимальные габариты конструкции датчика. В хвостовой части 5х гибкой подвижной балки 5 выполнено экранирующее отверстие 7 эллиптической или круглой формы. Предпочтительно использование эллиптической формы отверстия 7, эллиптическая форма обеспечивает большую чувствительность датчика: расстояние между чувствительным электродом и балкой 5 должно быть минимальным, при этом чувствительный элемент движется по окружности, перемещаясь по двум осям.

При отсутствии колебаний гибкая балка 5 пересекает чувствительный электрод (на схеме не показан), проходящий через отверстие 7. Таким образом, появляется возможность модулировать заряд на чувствительном электроде не только за счет колебания гибкой подвижной балки 5, но и за счет колебания емкости межэлектродного расстояния, частота которого при таком расположении в два раза выше. В результате будет получено результирующее колебание, которое при выделении более высоких гармоник позволит повысить соотношение сигнал-шум и тем самым повысить чувствительность датчика. Экранирующее отверстие 7 обеспечивает минимальный заряд на чувствительном электроде, если подвижная заземленная балка находится между чувствительным электродом и источником внешнего поля, когда экранирующее отверстие 7 опускается вниз, заряд увеличивается.

Предложенный датчик электростатического поля обеспечивает измерение электростатических и квазиэлектростатических полей, в том числе в условиях космического пространства. Как и было пояснено выше, использование датчика предложенной конструкции позволит уменьшить массогабаритные параметры измерительных устройств за счет использования предложенной конструкции датчика, что требует применения методов микрообработки; увеличить точность измерения, помехоустойчивость (соотношение сигнал/шум) и разрешающую способность за счет использования профилированной гибкой подвижной балки и изменения синусоидальной формы сигнала и его частоты. Кроме того, использование предложенного датчика позволит повысить технологичность изделия за счет изготовления групповым методом отдельных элементов конструкции.

1.  Датчик электростатического поля, содержащий корпус из электропроводящего материала с отверстием, используемый для размещения микроконтроллера, аналого-цифрового преобразователя, генератора сигнала синусоидальной формы, усилителя и платы-основания с размещенным на ней вибрационным модулятором, использующим катушку индуктивности, и чувствительным электродом, отличающийся тем, что

вибрационный модулятор выполнен в виде конструкции, состоящей из катушки индуктивности, постоянных магнитов, гибкой подвижной балки в виде изогнутой профилированной полосы из ферромагнитного материала, корпуса и платы-основания, при этом

гибкая подвижная балка расположена на оси симметрии катушки индуктивности и закреплена вместе с ней на плате-основании, а

постоянные магниты расположены симметрично относительно оси катушки индуктивности, ортогонально плоскости гибкой подвижной балки таким образом, что поле постоянного магнита ортогонально магнитному полю катушки индуктивности.

2.  Датчик электростатического поля по п. 1, отличающийся тем, что катушка индуктивности представляет собой намотку изолированных проводников на диэлектрический полый каркас.

3.  Датчик электростатического поля по п. 1, отличающийся тем, что в вибрационном модуляторе используют два постоянных магнита в форме параллелепипеда.

4.  Датчик электростатического поля по п. 1, отличающийся тем, что гибкая подвижная балка выполнена из магнитомягкого фольгированного материала.

5.  Датчик электростатического поля по п. 1, отличающийся тем, что гибкая подвижная балка состоит из: П-образной площадки; основания, параллельного оси катушки индуктивности; средней части, изогнутой относительно катушки индуктивности; хвостовой части, параллельной оси катушки индуктивности.

6.  Датчик электростатического поля по п. 1, отличающийся тем, что в хвостовой части гибкой подвижной балки выполнено экранирующее отверстие.

7.  Датчик электростатического поля по п. 6, отличающийся тем, что экранирующее отверстие имеет эллиптическую форму.

8.  Датчик электростатического поля по п. 6, отличающийся тем, что гибкая балка при отсутствии колебаний пересекает чувствительный электрод, проходящий через выполненное в ней отверстие.

9.  Датчик электростатического поля по п. 8, отличающийся тем, что экранирующее отверстие имеет эллиптическую форму.

10.  Датчик электростатического поля по любому из пп. 5-9, отличающийся тем, что гибкая подвижная балка соответствует форме, приведенной на фиг. 2.



 

Похожие патенты:

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках.

Изобретение относится к области измерений электростатических параметров и может быть использовано для исследования электростатических свойств различных материалов (поверхностной плотности зарядов, потенциала поверхности, время утечки зарядов) при их контактировании и последующим разделении в зависимости от различных внешних факторов: температуры, влажности, давления.

Устройство для обнаружения аэрозолей содержит летательный аппарат, имеющий диэлектрический элемент, такой как окно (10), размещенный в его корпусе (12), так что поверхность диэлектрического элемента образует часть наружной поверхности летательного аппарата.

Изобретение относится к электрическим измерениям и может быть использовано в качестве рабочего эталона при калибровке и поверке рабочих средств измерений переменного электрического поля.

Изобретение относится к измерительным устройствам на основе волоконно-оптических фазовых поляриметрических датчиков. Оптимизация структуры датчика, обуславливающая возникновение разноименной модуляции показателя преломления при подаче на двухканальный модулятор разности фаз напряжения одной полярности, приводит к возможности использования для модуляции фазы любой частоты управляющего сигнала и к отсутствию необходимости создания линии задержки.

Компенсационный электростатический флюксметр предназначен для измерения вертикальной составляющей электрического поля. Устройство содержит экранирующую и измерительную пластины, изоляторы, корпус-основание, двигатель, усилитель тока, маркированный маховик, источник подсветки, фотодиод, мост, пороговый блок, полосовой фильтр, блок приема-передачи данных и блок стабилизации скорости вращения двигателя, сетку, дополнительные изоляторы, синхронный детектор, интегратор, регулируемый источник напряжения и аналого-цифровой преобразователь.

Изобретение относится к подводным измерительным системам. .

Изобретение относится к измерительной технике и может быть использовано в качестве средства неразрушающего контроля энергетического состояния поверхности деталей и изделий, выполненных из электропроводящих материалов или полупроводников.

Изобретение относится к области измерительной техники, в частности к определению электрофизических свойств диэлектрических материалов, и может быть использовано для определения постоянной времени релаксации объемного заряда диэлектрических жидкостей.

Изобретение относится к области электрических измерений, в частности к способам измерения электрических полей. .

Изобретение относится к устройствам для дистанционного контроля за параметрами тока и напряжения в высоковольтной части электроэнергетических систем. .

Изобретение относится к электроизмерительной технике и может быть использовано при разработке и создании прецизионных делителей переменного напряжения. .

Изобретение относится к измерительной технике и может быть использовано в калибраторах и других прецизионных измерительных приборах для деления переменных напряжений в широком диапазоне частот.

Изобретение относится к электроизмерительной технике. .

Изобретение относится к технике измерений. .

Изобретение относится к области измерительной техники и может быть использовано при аттестации многоразрядных масштабных измерительных преобразователей , в частности при комплектной проверке многодекадных 3S дуктивных делителей напряжения в области высоких частот.

Изобретение относится к измерительной технике. .

Изобретение относится к приборам индикации наличия напряжений в сетях распределительных устройств, а именно к датчикам наличия высокого напряжения в сетях 6-35 кВ. Регулируемый емкостной датчик наличия высокого напряжения включает емкость, в качестве которой используют первый электрод - жилу кабеля; изоляцию кабеля; второй электрод, в качестве которого используют намотанную электропроводную площадку с возможностью изменения шага и длины намотки; и выходные разъемы. При этом в качестве первого электрода используют изолированную жилу существующего кабеля; электропроводная площадка выполнена в виде изоляционной ленты с токопроводящим слоем, намотанной на изолированную жилу существующего кабеля; используется два разъема, выполненные с возможностью контроля целостности электропроводной площадки и индикации наличия высокого напряжения. Техническим результатом является повышение надежности работы датчика, уменьшение его размеров и упрощение конструкции, удобство установки. 2 ил.

Предлагаемое изобретение относится к области измерительной техники, а именно к средствам измерения напряженности электростатических полей, в том числе и в условиях космического пространства. Датчик электростатического поля содержит вибрационный модулятор, состоящий из катушки индуктивности, постоянных магнитов, гибкой подвижной балки в виде изогнутой профилированной полосы с эллиптическим экранирующим отверстием, корпуса и основания. Гибкая подвижная балка изготовлена из ферромагнитного материала и расположена на оси симметрии катушки индуктивности. Постоянные магниты расположены симметрично относительно оси катушки индуктивности, ортогонально плоскости балки так, что поле постоянного магнита ортогонально магнитному полю катушки индуктивности. Технический результат заключается в уменьшении массогабаритных параметров измерительных устройств, увеличении точности измерения, помехоустойчивости и разрешающей способности. Кроме того, повышается технологичность изделия за счет изготовления групповым методом отдельных элементов конструкции. 9 з.п. ф-лы, 3 ил.

Наверх