Способ приготовления полимерных пленок для солнечных батарей (варианты)



Способ приготовления полимерных пленок для солнечных батарей (варианты)
H01L51/42 - Приборы на твердом теле, предназначенные для выпрямления, усиления, генерирования или переключения или конденсаторы или резисторы по меньшей мере с одним потенциальным барьером или поверхностным барьером; с использованием органических материалов в качестве активной части или с использованием комбинации органических материалов с другими материалами в качестве активной части; способы или устройства специально предназначенные для производства или обработки таких приборов или их частей (способы или устройства для обработки неорганических полупроводниковых тел, включающей в себя образование или обработку органических слоев на них H01L 21/00,H01L 21/312,H01L 21/47)

Владельцы патента RU 2623717:

Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук (ИХКГ СО РАН) (RU)

Изобретение относится к способу изготовления полимерных пленок для солнечных батарей с использованием органических фотовольтаических ячеек. Способ представляет собой приготовление мезопористого донорного полимерного слоя темплатным методом с применением неорганических микро/наночастиц в качестве темплатов, которые удаляют из композитной пленки путем обработки кислотами или щелочами, с последующим заполнением пористого пространства полимера акцепторным органическим материалом. В процессе вымывания неорганического темплата в полимерном слое образуются поры размером 10-100 нм. Вымывание неорганических оксидов или цеолитов осуществляют любыми кислотами или щелочами, в том числе соляной, серной, азотной, фосфорной кислотами и гидроксидами натрия и калия, с последующим промыванием пленки деионизованной водой для удаления ионов щелочных металлов. Затем на полученный мезопористый полимерный слой наносят акцепторный материал из соответствующего растворителя, который не растворяет полимер. Процедура удаления неорганического темплата может быть опущена в случае, если материал темплата имеет свойства акцептора электронов и также может использоваться в фотовольтаике в качестве полупроводника. Технический результат - получение полимерных пленок с размером пор 10-100 нм. 2 н. и 15 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу приготовления мезопористых полимерных пленок для солнечных батарей с использованием органических фотовольтаических ячеек.

Органическая фотовольтаика - перспективное быстроразвивающееся направление солнечной энергетики. В органических фотовольтаических ячейках активная среда является композитом органических веществ (донора и акцептора электронов). Благодаря практически полному поглощению солнечного света видимого диапазона при толщине активного слоя несколько сотен нанометров, высокому квантовому выходу разделения зарядов на границе фаз органического донора и акцептора, а также относительно высокой подвижности зарядов в них, такие фотовольтаические ячейки могут быть гибкими и компактными. Часто в качестве активной среды применяют композиты проводящих донорных полимеров и акцепторов: производные фуллеренов, либо так называемые малые молекулы - гетероциклические соединения, содержащие наиболее перспективные для органической электроники структурные фрагменты (тиофеновые, диазиновые, карбазольные).

Наибольшее распространение получили ячейки с объемным гетеропереходом. В таких структурах активная среда является композитом, состоящим из донорного и акцепторного органических материалов, образующих каналы для движения электронов и дырок к соответствующим электродам. При поглощении кванта света в одной из фаз (донор или акцептор) образуется возбужденное состояние (экситон). Достигнув границы раздела фаз экситон диссоциирует на свободные заряды: катион-радикал в донорной фазе и анион-радикал - в акцепторной. Длина диффузии экситона составляет ~30 нм, поэтому, контролируя условия приготовления активного слоя, можно добиться разделения системы на фазы с размерами порядка длины диффузии экситона. Очевидно, что в такой системе экситон диссоциирует более эффективно, однако транспорт разделенных зарядов до электродов в таких структурах затруднен, а также значителен вклад объемной рекомбинации зарядов.

Таким образом, эффективность солнечной ячейки определяется несколькими факторами, зачастую действующими в противоположных направлениях: большая толщина донорной/акцепторной фазы подразумевает большую степень поглощения излучения и, соответственно, большую генерацию экситонов, но в то же время снижает вероятность достижения экситоном границы раздела фаз и его диссоциацию на свободные заряды. Разделенные заряды, в свою очередь, могут испытывать затруднения при транспорте из фаз донорного/акцепторного материала к соответствующим электродам, потому необходимо стремиться к созданию максимально протяженной, неразрывной, но при этом пористой структуры и избегать формирования изолированных доменов. Исходя из типичных значений длин диффузий генерируемых частиц в обсуждаемых материалах, характерные размеры пористых структур (размер пор, толщина стенок) должны лежать в диапазоне 10-50 нм для оптимального вклада процессов генерации/транспорта экситонов и разделенных зарядов.

Для решения поставленной задачи было предложено множество подходов к созданию пленок с развитой морфологией.

Наиболее простой структурой является бислой донорного и акцепторного слоев с плоской границей (Christopher W. Rochester, Scott A. Mauger, and Adam J. Moule, Investigation the Morphology of Polymer/Fullerene Layers Coated Using Orthogonal Solvents. J. Phys. Chem. С 2012, 116, 7287-7292), преимуществом такой структуры является облегченный транспорт и меньшая объемная рекомбинация зарядов. Однако из-за небольшой длины диффузии экситона эффективная толщина активного слоя, в котором происходит разделение зарядов, составляет 30 нм, что недостаточно для полного усвоения солнечного спектра, поскольку необходимая толщина полимерного слоя для полного усвоения солнечного света составляет ~100 нм.

Другой подход, позволяющий существенно увеличить площадь границы раздела фаз донора и акцептора, заключается в литографической печати (imprinting) пленок требуемой морфологии ( Mihi, Fiona J. Beck, Tania Lasanta, Arup K. Rath, and Gerasimos Konstantatos, Imprinted Electrodes for Enhanced Light Trapping in Solution Processed Solar Cells. Adv. Mater. 2014, 26, 443-448; Solar cell with enhanced efficiency, US №20100326499 A1, H01L 31/00, 30.12.2010; Solar cell with enhanced efficiency, ЕР №2254172 A2, H01L 51/42, 24.11.2010). Также для создания развитой морфологии поверхности используется ion beam treatment (Kondyurin, Alexey, and Marcela Bilek. Ion beam treatment of polymers: application aspects from medicine to space. Newnes, 2014). Таким способом можно получать пленки со стопками шестигранников, конусов, цилиндров, пирамид и других элементов заданного размера на поверхности, тем самым существенно повышая межфазную поверхность и степень диссоциации экситонов. Среди недостатков таких подходов можно перечислить высокие капитальные затраты на используемое оборудование, а также трудности формирования наноструктур с характерными размерами порядка 10 нм.

Темплатный способ создания пористых структур является принципиально отличной от предыдущих подходов методикой, которая дает возможность получать пористые, в том числе упорядоченные структуры без использования дорогостоящего высоковакуумного оборудования (V.V. Guliants, М.А. Carreon, Y.S. Lin, Ordered mesoporous and macroporous inorganic films and membranes. Journal of Membrane Science 235 (2004) 53-72). Краткая схема методики состоит в следующем: предварительно синтезированные и осажденные микро- или наночастицы темплата, который может представлять собой неорганический оксид, алюмосиликат или органический полимер, пропитывают раствором или коллоидом, содержащим искомое соединение или его предшественник. При этом формируется композит [темплат + искомое соединение], после чего темплат удаляют любым подходящим способом, не нарушающим целостность искомого каркаса (отжиг, экстракция).

Темплатный подход с использованием полимерных микросфер был успешно применен для создания полимерных солнечных элементов с пористой морфологией пленок (Vohra V. (2012) Organic solar cells based on nanoporous P3HT obtained from self-assembled P3HT:PS templates. Journal of material chemistry, 22, 20017). В качестве темплата, как правило, используют микрочастицы полистирола или метилметакрилата диаметра 100-400 нм, а в качестве донорной фазы, которая формирует протяженный каркас - популярные в органической фотовольтаике поли(3-гексилтиофен-2,5-диил) (Р3НТ), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',l',3'-benzothiadiazole)], poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2[(2ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Нанесение пленок темплата и донора/акцептора проводят различными техниками, самыми распространенными из которых считаются метод нанесения на вращающуюся подложку и погружения подложки в раствор. Удаление темплата проводят с помощью подходящего растворителя, например ТГФ, хлористого метилена или хинолина. Стоит заметить, что Р3НТ и его производные также могут подвергаться частичному растворению во время процедуры экстракции темплата, что может послужить причиной снижения эффективности солнечной батареи.

Наиболее близким аналогом описываемого изобретения является способ создания пористой полимерной пленки темплатным методом с применением полистирольных сфер (Semiconductor thin films, WO 2010131011 A1, H01L 51/42, 18.11.2010). В указанном патенте описано создание пористой полимерной структуры по описанной выше методике: на подложку из полупроводника (FTO, ITO) наносят коллоидный кристалл - пространственно упорядоченный массив из полистирольных микросфер, затем пропитывают полученную пленку раствором органического прекурсора полупроводника, после чего полистирольные частицы удаляются горячей экстракцией подходящим растворителем. Характерный размер пор составил 50-100 нм, в зависимости от размера используемых полистирольных сфер. Далее пористую пленку из органического полупроводника пропитывают раствором полупроводника-акцептора и, таким образом, получают конечный продукт - фотовольтаическую ячейку. Недостатком данной методики является частичное растворение и разрушение/отслаивание полупроводниковой органической пленки при удалении темплата, что приводит к снижению эффективности солнечной батареи. Также размеры полистирольных темплатов, как правило, лежат в диапазоне >100 нм, что несколько превышает необходимые характерные размеры фаз для эффективного разделения зарядов.

Предлагаемое изобретение решает задачу создания оптимальной морфологии активного слоя в фотовольтаической ячейке.

Задача решается путем создания пористой полимерной пленки с использованием в качестве темплатов неорганических частиц. Поскольку удаление неорганического темплата подразумевает обработку кислотами либо щелочами, полимерная фаза не будет претерпевать значительной трансформации или разрушения, как это может быть в случае обработки органическими растворителями. Также использование неорганических темплатов открывает более широкий спектр варьирования размеров и морфологии пор, вплоть до 10 нм в размере.

При необходимости, процедура удаления неорганического темплата может быть опущена, если материал темплата представляет собой полупроводник, например, ZnO или TiO2.

Задача решается способом приготовления полимерных пленок для солнечных батарей (1 вариант), в котором полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц и полимера, с последующим удалением неорганического темплата путем обработки кислотами или щелочами, что приводит к формированию пор размером 10-100 нм, после кислотной или щелочной обработки, полученные пористые пленки промывают деионизированной водой до полного удаления ионов, затем на полученный мезопористый полимерный слой наносят акцепторный материал.

Мезопористые полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц, с последующим заполнением промежутков между частицами полимером или методом совместного нанесения смеси неорганического темплата и полимера.

Для нанесения темплата, полимера и акцепторного материала могут быть использованы методы spin-coating, вертикального осаждения, химического осаждения из газовой фазы, электрохимического осаждения, вакуумного напыления и любые другие методы нанесения пленок.

В качестве акцепторного материала можно использовать производные фуллеренов С60, либо С70 из подходящего растворителя, в котором не растворяется полимер, для того, чтобы не разрушить мезопористую структуру полимера или в качестве акцептора могут выступать перилен диимид PDI и его производные, а также дикетопирролопиррол DPP.

В качестве полимера могут быть использованы Р3НТ (Poly(3-hexylthiophene-2,5-diyl)), РТВ7 (Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl})), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) и др.

В качестве подложки могут быть использованы ITO (оксид индия-олова), FTO (допированный фтором оксид олова

В качестве неорганических темплатов для приготовления мезопористого полимерного слоя могут быть использованы частицы размером 10-300 нм, а именно, оксид кремния, алюмосиликаты, алюмофосфаты, цеолиты, оксиды титана, циркония, железа, кобальта, никеля, и другие оксиды, а также любые их комбинации.

В качестве неорганических темплатов могут быть использованы монодисперсные наночастицы оксидов.

Для удаления неорганического темплата могут применяться методы обработки композитных пленок любыми кислотами или щелочами, в том числе соляной, серной, азотной, фосфорной кислотами и гидроксидами натрия и калия, с последующим промыванием пленки деионизованной водой.

Задача решается также способом приготовления полимерных пленок для солнечных батарей (2 вариант), характеризующийся тем, что полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц и полимера, затем на полученный мезопористый полимерный слой наносят акцепторный материал.

Мезопористые полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц, и с последующим заполнением промежутков между частицами полимером или методом совместного нанесения смеси неорганического темплата и полимера.

Для нанесения темплата, полимера и акцепторного материала могут быть использованы методы spin-coating, вертикального осаждения, химического осаждения из газовой фазы, электрохимического осаждения, вакуумного напыления и любые другие методы нанесения пленок.

В качестве акцепторного материала можно использовать производные фуллеренов С60, либо С70 из подходящего растворителя, в котором не растворяется полимер, для того, чтобы не разрушить мезопористую структуру полимера или в качестве акцептора могут выступать перилен диимид PDI и его производные, а также дикетопирролопиррол DPP.

В качестве полимера могут быть использованы Р3НТ, РТВ7, PCDTBT и др.

В качестве подложки могут быть использованы ITO (оксид индия-олова), FTO (дотированный фтором оксид олова).

В качестве неорганических темплатов для приготовления мезопористого полимерного слоя могут быть использованы частицы размером 10-300 нм, а именно, оксиды цинка, титана, циркония, железа, кобальта, никеля, и другие оксиды переходных металлов, а также любые их комбинации.

В качестве неорганических темплатов могут быть использованы монодисперсные наночастицы оксидов.

Технический результат - получение полимерных пленок с размером пор 10-100 нм.

Поставленная задача решается путем последовательного нанесения слоя неорганических наночастиц и полимерного слоя с последующим удалением неорганического темплата путем обработки кислотами или щелочами, что приводит к формированию пор размером 10-100 нм. После кислотной или щелочной обработки пористые пленки промывают деионизированной водой до полного удаления ионов. Затем на полученный мезопористый полимерный слой наносятся производные фуллеренов С60, либо С70 из подходящего растворителя, в котором не растворяется полимер, для того чтобы не разрушить мезопористую структуру полимера. Вместо производных фуллеренов в качестве акцептора могут выступать перилен диимид PDI и его производные, а также дикетопирролопиррол DPP.

Преимуществом данной структуры является большая граница раздела фаз по сравнению с бислойной фотовольтаической ячейкой, и упорядоченность по сравнению со структурой с объемным гетеропереходом, за счет чего улучшается транспорт зарядов до электродов.

Сущность изобретения иллюстрируется следующими примерами и иллюстрациями.

Описание рисунков.

Фиг. 1 (а, б). Пленка из наноцеолитов FeZSM-5 (а) и пористая пленка поли(3-гексилтиофен) (б) после удаления цеолитных темплатов.

Фиг. 2 (а, б). Пленка из наноцеолитов β (а) и пористая пленка поли(3-гексилтиофен) (б) после удаления цеолитных темплатов

1 вариант.

Пример 1.

Наноцеолиты FeZSM-5 (суспензия в этаноле, 0,06 г/л), приготовленные по разработанной авторами методике (Sashkina K.А. (2013) Hierarchical zeolite FeZSM-5 as a heterogeneous Fenton-type catalyst. Journal of Catalysis, 299, 44-52), наносят методом spin coating (суспензию цеолитов капали на вращающуюся подложку) при скорости вращения 2500 об/мин. Затем на полученную пленку цеолитных темплатов (Фиг. 1а) наносят поли(3-гексилтиофен), растворенный в хлорбензоле, при скорости вращения подложки 1000 rpm. Для удаления цеолитов из композита поли(3-гексилтиофен)/цеолит образец помещают в 4 М раствор гидроксида натрия и выдерживают при 50°C в течение 60 мин. Затем образец промывают деионизированной водой и сушат при комнатной температуре в атмосфере Ar. Затем на полученную пористую полимерную пленку (Фиг. 1b) наносят акцептор - производное фуллерена РСВМ из хлористого метилена - и сушат в бескислородной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается полимерная пленка с размером пор 30-100 нм.

Пример 2.

Наноцеолиты бета (водная суспензия 0,2 г/л) наносят методом spin coating на подложку при скорости вращения 2500 об/мин. Затем на полученную пленку цеолитов (Фиг. 2а) наносят поли(3-гексилтиофен), растворенный в хлорбензоле при скорости вращения подложки 1000 rpm. Выбор концентрации полимера зависит от толщины требуемого полимерного слоя. Для вымывания цеолитов полученный образец помещают в 4 М раствор гидроксида натрия при 50°C в течение 60 мин. Затем образец промывают деионизированной водой и сушат при температуре 50°C в атмосфере Ar. Затем на полученную пористую полимерную пленку (Фиг. 26) наносят акцептор - производное фуллерена РСВМ и сушат в нейтральной атмосфере при 120°C в течение 19 мин.

В качестве конечного продукта получается полимерная пленка с размером пор 20-100 нм.

Пример 3.

Монодисперсные наносферы SiO2 (водная суспензия 0,25 г/л) размером 30 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку SiO2 методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Для вымывания SiO2 полученный образец помещают в 4 М раствор гидроксида натрия при 50°C в течение 60 мин. Затем образец промывают деионизированной водой. После из хлористого метилена наносят акцептор - производное фуллерена РСВМ. Затем полученный образец сушат в нейтральной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается полимерная пленка с размером пор 20-100 нм.

Пример 4.

Наночастицы алюмосиликата (водная суспензия, 0,3 г/л) размером 20 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку алюмосиликата методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Для вымывания алюмосиликатов полученный образец помещают в 4 М раствор гидроксида натрия при 50°C в течение 60 мин. Затем образец промывают деионизированной водой. После из хлористого метилена наносят акцептор - производное фуллерена РСВМ. Затем полученный образец сушат в нейтральной атмосфере при 150°C в течение 10 мин.

В качестве конечного продукта получается полимерная пленка с размером пор 20-100 нм.

Пример 5.

Наночастицы оксида железа (водная суспензия, 0,2 г/л) размером 30 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку оксида железа методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Для вымывания оксида железа полученный образец помещают в 1 М раствор соляной кислоты при 40°C в течение 60 мин. Затем образец промывают деионизированной водой. После из хлористого метилена наносили акцептор - производное фуллерена РСВМ. Затем полученный образец сушат в нейтральной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается полимерная пленка с размером пор 20-100 нм.

Пример 6.

Наночастицы оксида кобальта (водная суспензия, 0,25 г/л) размером 20 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку оксида кобальта методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Для вымывания оксида кобальта полученный образец помещают в 1 М раствор соляной кислоты при 40°C в течение 60 мин. Затем образец промывают деионизированной водой. После из хлористого метилена наносят акцептор - производное фуллерена РСВМ. Затем полученный образец сушат в нейтральной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается полимерная пленка с размером пор 20-100 нм.

2 вариант

Пример 7.

Наночастицы диоксида титана (водная суспензия, 0,25 г/л) размером 10-100 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку диоксида титана методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Затем полученный образец сушат в нейтральной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается композитная пленка, содержащая высокодисперсные фазы акцептора (диоксида титана) и донора (поли(3-гексилтиофена)) с характерным размером 10-100 нм.

Пример 8.

Наночастицы оксида цинка (водная суспензия, 0,25 г/л) размером 10-100 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку оксида цинка методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Затем полученный образец сушат в нейтральной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается композитная пленка, содержащая высоко дисперсные фазы акцептора (оксида цинка) и донора (поли(3-гексилтиофена)) с характерным размером 10-100 нм.

Пример 9.

Наночастицы смешанного оксида цинка-титана (водная суспензия, 0,25 г/л) размером 10-100 нм наносят на подложку методом вертикального осаждения. Затем на полученную пленку смешанного оксида методом spin-coating (1000 rpm) наносят поли(3-гексилтиофен), растворенный в хлорбензоле. Затем полученный образец сушат в нейтральной атмосфере при 120°C в течение 10 мин.

В качестве конечного продукта получается композитная пленка, содержащая высокодисперсные фазы акцептора (смешанного оксида цинка-титана) и донора (поли(3-гексилтиофена)) с характерным размером 10-100 нм.

1. Способ приготовления полимерных пленок для солнечных батарей, характеризующийся тем, что полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц и полимера, с последующим удалением неорганического темплата путем обработки кислотами или щелочами, что приводит к формированию пор размером 10-100 нм, после кислотной или щелочной обработки полученные пористые пленки промывают деионизированной водой до полного удаления ионов, затем на полученный мезопористый полимерный слой наносят акцепторный материал.

2. Способ по п. 1, отличающийся тем, что мезопористые полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц, с последующим заполнением промежутков между частицами полимером или методом совместного нанесения смеси неорганического темплата и полимера.

3. Способ по п. 1, отличающийся тем, что для нанесения темплата, полимера и акцепторного материала могут быть использованы методы spin-coating, вертикального осаждения, химического осаждения из газовой фазы, электрохимического осаждения, вакуумного напыления и любые другие методы нанесения пленок.

4. Способ по п. 1, отличающийся тем, что в качестве акцепторного материала можно использовать производные фуллеренов С60, либо С70 из подходящего растворителя, в котором не растворяется полимер, для того, чтобы не разрушить мезопористую структуру полимера или в качестве акцептора могут выступать перилен диимид PDI и его производные, а также дикетопирролопиррол DPP.

5. Способ по п. 1, отличающийся тем, что в качестве полимера могут быть использованы Р3НТ (Poly(3-hexylthiophene-2,5-diyl)), РТВ7 (Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[l,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl})), PCDTBT (Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) и др.

6. Способ по п. 1, отличающийся тем, что в качестве подложки могут быть использованы ITO (оксид индия-олова), FTO (допированный фтором оксид олова).

7. Способ по п. 1, отличающийся тем, что в качестве неорганических темплатов для приготовления мезопористого полимерного слоя могут быть использованы частицы размером 10-300 нм, а именно, оксид кремния, алюмосиликаты, алюмофосфаты, цеолиты, оксиды титана, циркония, железа, кобальта, никеля, и другие оксиды, а также любые их комбинации.

8. Способ по п. 7, отличающийся тем, что в качестве неорганических темплатов могут быть использованы монодисперсные наночастицы оксидов.

9. Способ по п. 1, характеризующийся тем, что для удаления неорганического темплата могут применяться методы обработки композитных пленок любыми кислотами или щелочами, в том числе соляной, серной, азотной, фосфорной кислотами и гидроксидами натрия и калия, с последующим промыванием пленки деионизованной водой.

10. Способ приготовления полимерных пленок для солнечных батарей, характеризующийся тем, что полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц и полимера, затем на полученный мезопористый полимерный слой наносят акцепторный материал.

11. Способ по п. 10, отличающийся тем, что мезопористые полимерные пленки готовят путем нанесения на подложку слоя темплата, состоящего из неорганических частиц, и с последующим заполнением промежутков между частицами полимером или методом совместного нанесения смеси неорганического темплата и полимера.

12. Способ по п. 10, отличающийся тем, что для нанесения темплата, полимера и акцепторного материала могут быть использованы методы spin-coating, вертикального осаждения, химического осаждения из газовой фазы, электрохимического осаждения, вакуумного напыления и любые другие методы нанесения пленок.

13. Способ по п. 10, отличающийся тем, что в качестве акцепторного материала можно использовать производные фуллеренов С60, либо С70 из подходящего растворителя, в котором не растворяется полимер, для того, чтобы не разрушить мезопористую структуру полимера или в качестве акцептора могут выступать перилен диимид PDI и его производные, а также дикетопирролопиррол DPP.

14. Способ по п. 10, отличающийся тем, что в качестве полимера могут быть использованы Р3НТ, РТВ7, PCDTBT и др.

15. Способ по п. 10, отличающийся тем, что в качестве подложки могут быть использованы ITO (оксид индия-олова), FTO (допированный фтором оксид олова).

16. Способ по п. 10, отличающийся тем, что в качестве неорганических темплатов для приготовления мезопористого полимерного слоя могут быть использованы частицы размером 10-300 нм, а именно, оксиды цинка, титана, циркония, железа, кобальта, никеля, и другие оксиды переходных металлов, а также любые их комбинации.

17. Способ по п. 10, отличающийся тем, что в качестве неорганических темплатов могут быть использованы монодисперсные наночастицы оксидов.



 

Похожие патенты:

Использование: для изготовления пластины маски и подложки матрицы. Сущность изобретения заключается в том, что пластина маски включает рисунок веерных проводников, имеющий некоторое число линий веерного тиснения, при этом эффективная длина каждой линии веерного тиснения равна, и каждая линия веерного тиснения имеет заданную ширину линии, и каждая из нескольких линий веерного тиснения имеет по меньшей мере одну кривую часть, при этом у одной линии веерного тиснения, имеющей две или больше кривых частей, эти несколько кривых частей имеют S-образную форму и расположены непрерывно, и у одной линии веерного тиснения ширина линии по меньшей мере в одной кривой части меньше, чем заданная ширина линии веерного тиснения.

Изобретение относится к барьерным полимерным пленкам и касается инкапсулирующей барьерной многослойной структуры, способной инкапсулировать изделие, чувствительное к влаге и/или кислороду.

Изобретение относится к области полупроводниковой, органической и гибридной оптоэлектроники и может быть использовано в системах обработки оптической информации.

Изобретение относится к преобразующему длину волны элементу для светоизлучающих устройств. Преобразующий длину волны элемент включает полимерный материал, содержащий преобразующую длину волны составляющую, способную преобразовывать свет первой длины волны в свет второй длины волны.

Изобретение относится к многослойному пакету на подложке для использования в качестве капсулы. Многослойный пакет содержит: один или более неорганических барьерных слоев для снижения переноса через них молекул газа или пара; неорганический химически активный слой, содержащий неорганический связующий материал и расположенный смежно с одним или более неорганическими барьерными слоями, и химически активный слой обладает способностью вступать в реакцию с молекулами газа или пара.

Изобретение описывает устройство ОСИД (1), содержащее органический слой (3), который испускает свет (L1) при работе и который расположен между, по существу, прозрачным анодным слоем (5) и по существу непрозрачным катодным слоем (7).

Изобретение относится к новым соединениям в ряду хелатных комплексов иридия, а именно к бис(2-фенилпиридинато-N,С2′){2-[2′-(4-алкилбензолсульфонамидо)фенил]бензоксазолато-N,N′}иридия(III) формулы I где R = алкил (С1-С6).

Изобретение относится к микродисплею на основе органического светоизлучающего светодиода и способу его получения. Светоизлучающая матрица, использующая в качестве элементов матрицы пиксели на основе светоизлучающих органических диодов белого цвета свечения для применения в составе микродисплея, содержит кремниевую подложку с активно-матричной схемой управления и слоем анода из нитрида титана, р+-легированный дырочно-инжекционный слой, дырочно-инжекционный слой, дырочно-транспортный слой, инжекционный слой голубого цвета свечения, разделительный слой, красно-зеленый инжекционный слой, дырочно-блокирующий слой, электронно-транспортный слой, электронно-инжекционный слой, слой катода из серебряно-магниевого сплава, слой тонкопленочной герметизации AlxOy, нанесенный методом магнетронного напыления, слой тонкопленочной герметизации AlxOy, нанесенный методом атомно-слоевого осаждения, герметизирующий слой (филлер), стеклянную крышку.

Настоящее изобретение относится к использованию производных фуллеренов в оптоэлектронных устройствах, таких как фотовольтаические ячейки, формулы (I): , где F - [60]фуллерен или [70]фуллерен, М представляет собой COOH, r представляет собой целое число от 2 до 8, Z представляет собой группу -(СН2)n-, Ar, или -S-, n представляет собой число от 1 до 12, Y представляет собой алифатическую С1-С12 углеродную цепь, Ar представляет собой фенил, бифенил или нафтил и X представляет собой Н, Cl или независимую от Y С1-С12 углеродную цепь.

Изобретение относится к способу герметизации микродисплеев на основе органических электролюминесцентных материалов и может быть использовано при изготовлении микродисплеев OLED на кремниевой подложке.

Изобретение относится к устройству освещения, размещенному в фюзеляже самолета, и касается органических электролюминесцентных (ЭЛ) устройств освещения. Устройство содержит органическую ЭЛ панель и схему возбуждения панели. Причем органическая ЭЛ панель включает в себя множество светоизлучающих блоков, слой генерации заряда, пару электродов, прозрачную подложку, уплотнительную подложку, уплотнительный элемент, светонакопительный слой, теплоизлучающую пластину. При этом между уплотнительной подложкой и отрицательным электродом обеспечен зазор, который заполнен заполнителем (влагопоглотитель, инертный газ или силиконовое масло). Парой электродов являются оба прозрачных электрода. Светонакопительный слой размещен между отрицательным электродом и теплоизлучающей пластиной. Достигается уменьшение размеров и веса конструкции. 2 н. и 8 з.п. ф-лы, 30 ил.

Изобретение относится к новым донорно-акцепторным сопряженным молекулам общей формулы (I), .Технический результат: новые соединения, отличаются растворимостью в органических растворителях, высокой термической стабильностью и эффективным поглощением света в длинноволновой области спектра, кроме того, способ их получения технологичен. 12 з.п. ф-лы, 8 ил., 1 табл., 23 пр.

Изобретение относится к электролюминесцентным источникам света. Электролюминесцентный протяженный гибкий источник света (ЭПГИС) состоит из последовательно расположенных: центрального электрода, выполненного из медной проволоки; слоя титаната бария; электролюминофора в полимерных связующих; прозрачного проводящего слоя; по меньшей мере двух токопроводящих электродов; полимерного слоя и внешнего полимерного слоя. При этом на центральный электрод нанесен слой технического углерода, в который введены сильные акцепторы электронов в виде фторида сурьмы (SbF5) и/или фторида мышьяка (SbF5). Диаметр центрального электрода лежит в диапазоне 0,4-0,7 мм. Технический результат - повышение яркости прочности, электропроводимости и срока работы ЭПГИС. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение описывает производные карбазола формулы (1), где Υ представляет собой в каждом случае, одинаково или различно, CR; X является выбранным из C(R1)2; которые характеризуются тем, что присутствует, по крайней мере, одна группа R, которая означает, одинаково или различно в каждом случае, группу следующей формулы (2), и/или тем, что присутствует, по крайней мере, одна группа R1, которая означает следующую группу формулы (3), в частности, для применения в качестве триплетных материалов матрицы в органических электролюминесцентных устройствах. Также изобретение относится к процессу для получения соединений в соответствии с изобретением и к электронным устройствам, которые их включают. 6 н. и 4 з.п. ф-лы, 3 табл., 1 пр.

Использование: для изготовления OLED устройства. Сущность заключается в том, что способ содержит этапы предоставления электропроводящей несущей подложки с первой несущей поверхностью и второй несущей поверхностью, компоновки по меньшей мере первой несущей поверхности со структурированным слоем изоляционного материала в интегральной области, причем слой изоляционного материала сформирован в виде структуры с множеством отверстий так, что электрический доступ к первой несущей поверхности возможен от верхней поверхности слоя изоляционного материала, противоположной первой несущей поверхности, компоновки структурированного проводящего покрытия на изоляционном материале на его верхней поверхности так, что проводящее покрытие входит в отверстия и покрывает изоляционный материал в интегральной области, причем проводящее покрытие структурируют так, что в проводящем покрытии образуется ряд отдельных первых электродных областей, нанесения органического светоизлучающего слоя поверх по меньшей мере одной первой электродной области, нанесения второго электродного слоя поверх органического светоизлучающего слоя. Технический результат: обеспечение возможности простого и эффективного предоставления OLED устройства с проводящей несущей подложкой. 3 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к области полупроводниковых светоизлучающих приборов, а именно - к электролюминесцентным устройствам на основе органических светоизлучающих диодов. Высоковольтное органическое люминесцентное устройство с пакетом слоев для излучения света содержит материал-основу с верхней и нижней сторонами в качестве подложки и электропроводящий слой на верхней стороне материала-основы, причем последний содержит первую область, которая выполнена с возможностью обеспечения прямого электрического контакта с верхним электродом, и вторую область в качестве нижнего электрода, которая электрически изолирована от первой области, пакет органических слоев, нанесенный на вторую область и предназначенный для излучения света, верхний электрод на верхней части пакета органических слоев и защитный элемент, закрывающий, по меньшей мере, верхний электрод и пакет органических слоев, причем первая область контактирует с отрицательным электродом, который является отрицательной клеммой устройства. Электропроводящий слой на верхней стороне материала-основы содержит, по меньшей мере, дополнительную третью область в качестве нижнего электрода, которая электрически изолирована от первой и второй областей. Дополнительно введены, по меньшей мере, второй пакет органических слоев, нанесенный на третью область и предназначенный для излучения света, по меньшей мере, второй верхний электрод на верхней части второго пакета органических слоев, причем вторая область электропроводящего слоя выполнена с возможностью обеспечения прямого электрического контакта со вторым верхним электродом. Дополнительно введены, по меньшей мере, два стабилитрона, электрически включенных последовательно согласно, анод первого из них подключен к первой области электропроводящего слоя на верхней стороне материала-основы, катод первого и анод, по меньшей мере, второго стабилитрона вместе соединены со второй областью, а катод, по меньшей мере, второго стабилитрона соединен с дополнительной, по меньшей мере, третьей областью. По меньшей мере, третья область контактирует с положительным электродом, который является положительной клеммой устройства, а электропроводящий слой на верхней стороне материала-основы и материал-основа являются, по меньшей мере, частично прозрачными для длин волн излучаемого света. Изобретение обеспечивает повышение надежности органического электролюминесцентного устройства с использованием источника питания постоянного тока при высоких потенциалах напряжения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области приборов на твердом теле с использованием органических материалов в качестве активной части, в частности к микродисплеям, изготовленным по OLED-технологии, и может быть использовано при создании дисплеев нового поколения, включая дисплеи объемного изображения, а также в оптических приемо-передающих устройствах. Органический светодиодный микродисплей включает несущую основу, выполненную в виде прозрачной подложки, внутри которой герметично установлены прозрачный анод, светоотражающий катод и размещенный между ними набор слоев органических веществ, состоящий, по меньшей мере, из прозрачного слоя транспортировки дырок, эмиссионного слоя, содержащего органические вещества для излучения красного (R), зеленого (G) и синего (В) цветов, слоя транспортировки электронов, при этом анод, катод и слои органических веществ выполнены в виде полых кубов, соосно вставленных друг в друга, причем органические слои и слой анода разделены на светоизлучающие RGB-сегменты по горизонтали и вертикали, образуя экран, состоящий из четырех боковых поверхностей куба, содержащих m строк и n столбцов. Изобретение обеспечивает расширение информационных и функциональных возможностей органического светодиодного микродисплея, а также повышение его эффективности. 5 з.п. ф-лы, 8 ил.
Изобретение относится к способу изготовления прозрачной рассеивающей подложки органического светоизлучающего диода (ОСИД), содержащему следующие последовательные этапы: (a) шлифование одной поверхности или обеих поверхностей плоской светопропускающей стеклянной подложки толщиной 0,1-5 мм абразивной суспензией для получения плоской стеклянной подложки по меньшей мере с одной шероховатой поверхностью, имеющей профиль шероховатости со среднеарифметическим отклонением Ra 0,1-2,0 мкм, предпочтительно 0,15-1,5 мкм, (b) покрытие шероховатой поверхности или одной из шероховатых поверхностей стеклоприпоем с высоким показателем преломления, обладающим показателем преломления предпочтительно 1,7-2,2, (c) нагрев покрытой подложки до температуры выше температуры плавления стеклоприпоя с высоким показателем преломления и ниже температуры размягчения нижележащей подложки для образования эмали с высоким показателем преломления на одной из шероховатых поверхностей. Количество стеклоприпоя является достаточным для полного покрытия профиля шероховатости шероховатой поверхности после расплавления упомянутого припоя. Технический результат изобретения – обеспечение более пологого профиля шероховатости поверхности подложки с возможностью изготовления подложки в ходе одного этапа как с внутренним, так и с внешним светоизвлечением, упрощение обработки светорассеивающих подложек. 3 н. и 12 з.п. ф-лы, 1 пр., 1 табл.

Изобретение относится к осветительному устройству, включающему источник света для генерирования излучения источника света и конвертер света. Конвертер включает матрицу из первого полимера. Матрица включает дискретные зоны, содержащие второй полимер с люминесцентной функциональностью, представляющий ароматический сложный полиэфир, содержащий люминесцирующие фрагменты. Причем первый полимер химически отличается от ароматического сложного полиэфира. Дискретные зоны занимают объем в диапазоне 0,5-50% от объема конвертера. Описываются также конвертер для преобразования света в люминесценцию и способ получения указанного конвертера. Изобретение обеспечивает повышение стабильности люминофора и увеличение срока службы конвертера. 3 н. и 9 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к полимерному соединению, к вариантам композиций, предназначенных для изготовления полимерных фотовольтаических, светоизлучающих устройств и органических транзисторов, а также к способу получения полимерного соединения и его применению. Полимерное соединение имеет общую формулу (I), где n - целое число от 2 до 2000 и представляет собой количество повторяющихся мономерных звеньев в полимерной цепи, которые могут быть идентичными или различными, R1, R2, R3, R4 - одинаковы или отличны друг от друга и представляют собой атом водорода, галогена, алкильную группу, алкоксильную группу, тиоалкильную группу, арильную группу, арилоксигруппу, тиоарильную группу, арилалкильную группу, арилалкоксигруппу, арилалкилтиогруппу, арилалкенильную группу, арилалкинильную группу, одновалентную гетероциклическую группу, гетероциклическую тиогруппу, аминогруппу, замещенную аминогруппу, силильную группу, замещенную силильную группу, ацильную группу, ацилоксигруппу, иминный остаток, амидную группу, кислотно-имидную группу, карбоксильную группу, замещенную карбоксильную группу, цианогруппу или нитрогруппу, R5, R6 - одинаковы или отличны друг от друга и представляют собой алкильную группу С1-С20; X представляет собой группу где Y=N-R7, или CR8R9, или SiR8R9, где R7, R8, R9 одинаковы или отличны друг от друга и представляют собой алкильную группу С1-С20 или принимают те же значения, что и R1, R2, R3, R4, R5 или R6, EG-1 и EG-2 - концевые группы полимерного соединения, не зависящие друг от друга и представляющие собой атом водорода, галогена, триалкилстаннил (-Sn(Alkyl)3), остаток борной кислоты (-В(ОН)2), эфир борной кислоты (-B(OAlkyl)2), арильный или гетероарильный фрагмент. Композиция содержит хотя бы одно полимерное соединение общей формулы (I) и по крайней мере один материал, выбранный из группы, включающей дырочно-транспортный материал, электрон-акцепторный материал, электрон-транспортный материал и светопоглощающий материал. По второму варианту композиция содержит хотя бы одно полимерное соединение общей формулы (I) и хотя бы одно фуллереновое соединение. Способ получения полимеров общей формулы (I) заключается в том, что проводят реакцию поликонденсации Стилле или Сузуки для связывания исходных мономеров вместе, с образованием сопряженного полимера. Полимеры формулы (I) применяют для изготовления фотовольтаических преобразующих устройств, предпочтительно солнечных ячеек, солнечных батарей, солнечных модулей и оптических сенсоров. Изобретение позволяет повысить электронные свойства полимеров и улучшить фотовольтаические свойства преобразующих устройств. 5 н. и 10 з.п. ф-лы, 8 ил., 1 табл., 4 пр.
Наверх