Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки



Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки
Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки
Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки
Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки
Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки

Владельцы патента RU 2624312:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) (RU)

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом. Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки содержит одинаковые расположенные параллельно друг другу модули, установленные вдоль откачного тракта термоядерной установки, при этом каждый из модулей включает заключенные в корпус композитную мембрану на основе металлов 5-й группы Периодической системы элементов - ниобия, ванадия, тантала или их сплавов друг с другом, атомизатор, систему охлаждения и выходной объем, причем системы охлаждения модулей соединены друг с другом, выходные объемы модулей объединены в единый выходной объем, а откачной тракт термоядерной установки в местах отсутствия модулей перекрыт диафрагмой для предотвращения прохождения откачиваемой смеси газов, минуя модули. Изобретение обеспечивает эффективную откачку изотопов водорода из вакуумного объема термоядерных установок, снижение габаритов установки для откачки и свободное размещение установки в откачном тракте. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом.

Большинство наиболее распространенных в настоящее время устройств для откачки изотопов водорода используют методы и системы на основе криогенной откачки.

Известно техническое решение (см. [1] патент РФ №2149466. Способ удаления изотопов гелия и водорода из вакуумного объема термоядерной установки и устройство для его осуществления. М.кл. G21B 1/00, F04B 37/08, опубл. 20.05.2000 г.), в котором запатентованы способ и устройство удаления изотопов гелия и водорода из вакуумного объема термоядерной установки, осуществляемые с помощью встроенного криогенного насоса и удаления трудноконденсируемых компонентов с помощью выносного криогенного блока откачки, причем поток гелия и водорода вводят, используя эффект переконденсации в криоконденсационный блок откачки, где изотопы водорода конденсируют при более низкой температуре, чем температура криопанели встроенного крионасоса, а изотопы гелия компремируют и откачивают далее традиционным методом, преимущественно с помощью холодного диффузионного насоса на парах воды, при этом вышеуказанные операции осуществляют путем изменения градиента температуры по ходу движения потока газа, достигаемого за счет понижения давления над жидким гелием и использования энтальпии отходящих паров, а устройство удаления изотопов гелия и водорода включает вакуумный затвор, криоконденсационный блок откачки, холодильную машину и систему сбора газов. При этом криоконденсационный блок откачки собран по меньшей мере из двух криогенных заливных гелиевых насосов, одного холодного диффузионного насоса на парах воды и водокольцевого вакуумного насоса, которые установлены цугом и отделены друг от друга вакуумными затворами, при этом вакуумные объемы заливных гелиевых насосов разделены при помощи мембран на отдельные отсеки, соединенные между собой по газу каналами с малой проводимостью, а их гелиевые ванны гидравлически связаны с компрессором холодильной машины.

Принципиальная схема системы откачки в этом случае представлена на Фиг. 1. Откачиваемая отработанная топливная смесь газов из вакуумной системы термоядерного реактора поступает по откачному тракту в систему криогенной откачки.

Несмотря на высокую степень проработки и совершенство известного технического решения, оно представляется достаточно сложным и энерго- и финансовозатратным, что связано с использованием криогенной откачки и последующим фракционным разделением откачиваемых газов вакуумной системы реактора. Кроме того, в таком устройстве значительное количество трития будет аккумулироваться на криопанелях, что, во-первых, существенно увеличивает общее количество радиоактивного топлива, требуемого для работы реактора, во-вторых, может привести к радиоактивному заражению в случае несанкционированного размораживания криопанелей.

Известно техническое решение, позволяющее усовершенствовать задачу откачки и разделения фракций топливного цикла вакуумной системы термоядерного реактора (см. [2] A.I. Livshits, М.Е. Notkin, А.А. Samartsev, А.О. Busnyuk, A.Yu Doroshin, V.I. Pistunovich "Superpermeability to fast and thermal hydrogen particles: applications to the pumping and recycling of hydrogen isotopes", Journal of Nuclear Materials 196-198 (1992) 159-163). В известном техническом решении откачка дейтерий-тритиевой смеси производится с помощью сверхводородопроницаемых композитных мембран 1 (Фиг. 2) на базе металлов 5-й группы Периодической системы элементов Менделеева (ниобий, ванадий, тантал), расположенных вдоль стенок откачного тракта 2 (Фиг. 2). Мембраны 1 селективно выделяют дейтерий-тритиевую смесь из откачиваемой из реактора газовой смеси. При этом не термализованные частицы дейтерий-тритиевой смеси (атомы, ионы), попадающие на мембрану 1 из плазмы реактора (область 3 на Фиг. 2), непосредственно откачиваются мембраной, а термализованные частицы (молекулы D2, T2) диссоциируют на атомы на специальной установленной в тракте откачки в области 4 накаленной поверхности (атомизаторе 5 на Фиг. 2) и так же откачиваются мембраной-1. Откачанные мембраной D/T частицы выделяются в специальном объеме 6, в котором они накапливаются, компримируются и из которого подаются в специальные устройства пеллет-инжекции для повторного использования.

Недостатком известного технического решения является сложность его реализации. Это связано с тем, что для откачки большей части топливной смеси необходимая площадь поверхности мембраны оказывается сравнимой с площадью поверхности стенок откачного тракта, которые имеют сложную геометрическую конфигурацию, радикально затрудняющую размещение вдоль них откачивающих мембран.

За прототип выбрано техническое решение, описанное в [2].

Техническим результатом заявляемого изобретения является снижение габаритов системы откачки.

Достижение указанного технического результата обеспечивается в устройстве для откачки изотопов водорода из вакуумного объема термоядерной установки с помощью композитной мембраны на основе металлов 5-й группы Периодической системы элементов - ниобия, ванадия, тантала или их сплавов друг с другом, и атомизатора молекул изотопов водорода, установленных внутри откачного тракта термоядерной установки, отличающемся тем, что вдоль откачного тракта термоядерной установки расположены одинаковые параллельные друг другу модули, при этом каждый из упомянутых модулей включает заключенные в корпус композитную мембрану, атомизатор, систему охлаждения и выходной объем, причем системы охлаждения модулей соединены друг с другом, выходные объемы модулей объединены в единый выходной объем, а откачной тракт термоядерной установки в зазорах, образованных между наружными стенками как самих модулей, так и стенками модулей и стенкой тракта, перекрыт диафрагмой для предотвращения прохождения откачиваемой смеси газов, минуя модули.

Достижение указанного технического результата за счет приведенных выше отличий состоит в следующем.

Композитные мембраны, установленные вдоль стенок откачного тракта термоядерной установки [2], должны обеспечить откачку/выделение подавляющей части (более 95%), проходящей по откачному тракту дейтерий-тритиевой смеси, и ее возврат в систему накопления (6) на Фиг. 2 для повторного использования рабочего топлива. Чем большая часть дейтерий-тритиевой смеси будет откачиваться мембраной и не будет поступать на вход криогенной системы откачки, тем меньше будет нагрузка на криогенные насосы, тем меньшее количество радиоактивной дейтерий-тритиевой смеси будет накапливаться на панелях криогенных насосов и тем более эффективной будет система откачки реактора в целом.

Требование обеспечения откачки подавляющей части проходящей по откачному тракту дейтерий-тритиевой смеси выполняется при условии

где Qm - скорость откачки дейтерий-тритиевой смеси мембраной,

Qt - скорость откачки дейтерий-тритиевой смеси откачным трактом.

Скорость откачки откачным трактом задана его конструктивными размерами и в их рамках не может быть каким-либо образом изменена.

Скорость откачки мембраной определяется площадью ее поверхности и в случае ее установки вдоль стенок откачного тракта ограничена площадью поверхности тракта. При планируемых в настоящее время в реакторе потоках откачиваемой дейтерий-тритиевой смеси для обеспечения условия (1) требуемая скорость откачки композитной мембраны (ее суммарная поверхность) такова, что требуется установка мембраны практически вдоль всей поверхности стенки откачного тракта. Следует также принять во внимание сложную конфигурацию конструкции откачного тракта, не позволяющую полностью использовать его поверхность для установки откачивающих композитных мембран. Таким образом, практическая реализация обеспечения откачки большей части отработанной дейтерий-тритиевой смеси в известном техническом решении [2] представляется труднореализуемой, если вообще возможной.

Для решения поставленной задачи и радикального увеличения скорости откачки дейтерий-тритиевой смеси композитной мембраной в предлагаемом изобретении для ее откачки используют не только поверхность откачного тракта, но и его объем. Для этого внутри откачного тракта устанавливают одинаковые расположенные вдоль откачного тракта параллельно друг другу откачные модули. При этом каждый из таких модулей включает заключенные в его корпус композитную мембрану, атомизатор, систему охлаждения и выходной объем.

На Фиг. 3 представлен отрезок откачного тракта 2 (в данном случае цилиндрической формы) и расположенные внутри него откачные модули 7.

На Фиг. 3:

1 - композитная мембрана,

2 - откачной тракт,

5 - атомизатор молекулярной дейтерий-тритиевой смеси,

7 - откачные модули,

8 - выходной объем модуля,

9 - объединенный выходной объем всей мембранной системы,

10 - система охлаждения откачного модуля,

11 - выходной коллектор системы охлаждения,

12 - диафрагма.

Площадь поверхности композитной мембраны S, установленной вдоль стенок откачного тракта, равна

где R - радиус откачного тракта,

L - длина композитной мембраны (длина отрезка откачного тракта, занятого мембраной).

Площадь поверхности мембранной системы, образованной мембранными модулями Sm, равна:

где r - радиус модуля,

l - длина модуля,

n - число модулей.

Из сравнения уравнений (2) и (3) следует, что при одной и той же скорости откачки дейтерий-тритиевой смеси в случае установки композитной мембраны вдоль стенок откачного тракта [2] и в случае модульной конструкции предлагаемого технического решения, то есть при одной и той же площади композитных мембран в обоих случаях, длина откачного модуля будет составлять:

Например, в случае цилиндрической конфигурации откачного тракта одним из оптимальных вариантов размещения мембранных модулей, который обеспечивает возможность максимально плотной их установки внутри откачного тракта, является размещение семи модулей, имеющих радиус r=R/3 - см.

На Фиг. 4 схематически представлено поперечное сечение откачного тракта в месте установки мембранных откачных модулей.

Здесь:

2 - откачной тракт,

12 - диафрагма,

13 - места установки откачных мембранных модулей.

В этом случае длина мембранного модуля оказывается существенно меньше, чем в случае известного технического решения [2]. Действительно, l=RL/nr=L/2.3.

Работа устройства для откачки изотопов водорода из вакуумного объема термоядерной установки осуществляется следующим образом - см. фиг. 1-4.

Откачиваемая из термоядерного реактора отработанная топливная смесь, содержащая, главным образом, дейтерий-тритиевую смесь и гелий, поступает в откачной тракт (фиг. 1, 2), в котором в области 3 установлено устройство для откачки изотопов водорода, представляющее собой (фиг. 3) набор модулей 7, расположенных вдоль откачного тракта параллельно друг другу. Изотопы водорода, сохранившие высокую энергию (атомы и ионы), непосредственно абсорбируются сверхводородопроницаемой композитной мембраной 1, диффундируют сквозь нее и десорбируются в выходном объеме 8, где накапливаются и компримируются для повторного использования.

Термализованные частицы изотопов водорода, потерявшие свою высокую энергию в результате столкновений со стенками откачного тракта и образовавшие вследствие этого процесса молекулярный газ, диссоциируют на атомы на накаленных поверхностях атомизаторов 5, которые установлены в каждом откачном модуле. Атомы изотопов водорода так же, как и нетермализованные водородные частицы, проникают сквозь мембрану 1 и накапливаются в выходном объеме 8 каждого откачного модуля. Выходные объемы модулей соединены в общий выходной (коллектор) 6.

Поддержание требуемого температурного режима устройства откачки изотопов водорода осуществляется с помощью систем охлаждения 10, установленных в каждом откачном модуле. Все системы охлаждения соединены в общий коллектор 11.

Для предотвращения прямого прохождения откачиваемой смеси газов в систему криогенной откачки, минуя модули, откачной тракт термоядерной установки в зазорах, образованных между наружными стенками как самих модулей, так и стенками модулей и стенкой тракта, перекрыт диафрагмой 12 (Фиг. 3) и заштрихованную область (Фиг. 4).

Таким образом, в случае использования предлагаемого технического решения осуществляется радикальное снижение габаритов мембранной системы, что обеспечивает ее сводное размещение в откачном тракте, при сохранении высокой скорости откачки изотопов водорода и, соответственно, эффективное отделение дейтерий-тритиевой части топлива от гелия и его накопление для повторного использования.

1. Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки с помощью композитной мембраны на основе металлов 5-й группы Периодической системы элементов - ниобия, ванадия, тантала или их сплавов друг с другом, и атомизатора молекул изотопов водорода, установленных внутри откачного тракта термоядерной установки, отличающееся тем, что содержит одинаковые расположенные параллельно друг другу модули, установленные вдоль откачного тракта термоядерной установки, при этом каждый из упомянутых модулей включает заключенные в корпус композитную мембрану, атомизатор, систему охлаждения и выходной объем, причем системы охлаждения модулей соединены друг с другом, выходные объемы модулей объединены в единый выходной объем, а откачной тракт термоядерной установки в местах отсутствия модулей перекрыт диафрагмой для предотвращения прохождения откачиваемой смеси газов, минуя модули.

2. Устройство по п. 1, отличающееся тем, что откачной тракт имеет цилиндрическую форму, в которую установлено семь упомянутых модулей.



 

Похожие патенты:

Изобретение относится к области средств получения высоких динамических давлений и температур и может быть использовано для проведения химических реакций, изменения кристаллической структуры твердых тел при высоком давлении и температуре, в частности для получения искусственных алмазов (алмазного порошка), для сжатия DT-льда с целью получения нейтронного источника, для осуществления инерциального термоядерного синтеза.

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга.

Изобретение относится к области термоядерного синтеза. Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору с фланцами, одним из которых опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим фланцем соединена с модулем с помощью резьбовых крепежных элементов.

Изобретение относится к устройству для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора. Заявленное устройство содержит установленные в единый пакет токопроводящие пластины.

Заявленное изобретение относится к способу увеличения эффективности преобразования энергии лазерного термоядерного синтеза. В заявленном способе поглощающий теплоноситель формирует сплошную завесу вокруг источника ионизирующего излучения, что реализуется посредством заявленного устройства.

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии.

Изобретение относится к термоядерному синтезу. Электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору с фланцами, болт и закрепительную гильзу.

Изобретение относится к устройству для контроля нарабатываемого трития в бланкете термоядерного реактора. Заявленное устройство выполнено в виде контейнера (1), по оси которого расположены капсулы (5), содержащие металлические детекторы (7) нейтронного излучения и детекторы (6) наработки трития из тритийвоспроизводящего материала, оба конца которого закрыты пробками (2, 3) из малоактивируемого материала.
Изобретение относится к оптическим системам для фокусировки пучка. Оптическая система содержит корпус (1) с входным отверстием (2) для ввода вдоль оптической оси (3) пучка лазерного излучения (4), который отражается от первого конического зеркала (5), проходит через цилиндрическое окно (6), кольцевое коническое зеркало (7) и, пройдя через кольцевое тороидальное зеркало (8) и главное тороидальное зеркало (9), выводится через выходное отверстие (10), фокусируясь в точке (11).

Заявленная группа изобретений относится к средствам для проведения реакции управляемого ядерного синтеза. Для этого осуществляют инжектирование ускоренных ионов легких элементов в вакуумированный кольцевой канал (1) со стенкой (2), выполненной из материала, способного к электризации, имеющий продольную ось (3) в виде выпуклой гладкой линии.

Изобретение относится к ректификационному устройству для очистки воды от примесей в виде молекул воды, содержащих в своем составе тяжелые изотопы водорода и кислорода.

Изобретение относится к способу получения питьевой воды с пониженным содержанием дейтерия и устройству для его осуществления. Способ включает охлаждение питьевой воды путем добавления гранул твердого диоксида углерода в соотношении воды к диоксиду углерода 1 : 10, перемешивание в течение 15-20 минут при скорости вращения мешалки 45-50 об/мин, обработку воды электромагнитным полем низких частот в интервале 18-48 Гц в процессе перемешивания, фильтрование через металлокерамический обеспложивающий фильтр с получением жидкой и твердой фаз, сбор жидкой фазы, обедненной дейтерием, нагревание и утилизацию твердой фазы.

Изобретение относится к устройству для извлечения трития путем изотопного обмена из таких вещей, как, например, перчатки, бумага и других подобных объектов, называемых «мягкими бытовыми отходами», имеющихся в лабораториях и заводах, обрабатывающих загрязненные тритием материалы.

Изобретение относится к области хранения и выделения изотопов водорода и может быть использовано в составе газовых установок высокого и низкого давления. Способ хранения и выделения изотопов водорода заключается в предварительной сорбции газа гидридообразующим металлом, расположенным в герметичном корпусе, и последующей десорбции газа из полученного гидрида металла.

Изобретение относится к способу получения воды с пониженным содержанием дейтерия путем ее изотопного разделения на обедненную и обогащенную дейтерием фракции. Способ получения обедненной дейтерием воды включает электролиз дистиллята в электролизере с получением электролизных газов, преобразование электролизных газов в воду, ее минерализацию в процессе сбора обедненной дейтерием воды, при этом электролиз дистиллята проводят одновременно в двух электролизерах, катодные пространства которых посредством насоса и обратного клапана замкнуты в контур циркуляции электролита, причем исходная вода с природным содержанием дейтерия подается в анодные пространства обоих электролизеров, при этом водород, обедненный дейтерием, из катодного пространства первого электролизера поступает в анодное пространство второго, где ионизируется с образованием воды, обедненной дейтерием, а водород, обогащенный дейтерием, из катодного пространства второго электролизера поступает в анодное пространство первого, где он ионизируется с образованием воды, обогащенной дейтерием, которую разбавляют и сливают.

Изобретение относится к способу получения биологически активной питьевой воды с пониженным содержанием в ней дейтерия путем ее изотопного разделения на обедненную и обогащенную дейтерием фракции.
Изобретение относится к области гетерогенного катализа. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных металлов, содержащем 0,1 - 20 мас.% углеродсодержащей добавки из ряда, включающего карбиды металлов или неметаллов либо твердые органические вещества, такие как углеводороды, углеводы, карбоновые кислоты, в течение 1-5 ч при температуре 700-750°C.
Наверх