Устройство корреляционной обработки сигналов

Изобретение относится к радиолокации и может быть использовано в качестве устройства корреляционной обработки сигналов в составе корреляционно-фазового пеленгатора. Достигаемый технический результат изобретения заключается в повышении отношения сигнал/шум на выходе устройства при обработке широкополосного сигнала в диапазоне относительно больших отношений сигнал/шум на входе устройства. Технический результат достигается за счет использования широкополосных усилителей с системой АРУ, блока АРУ и сумматора, что позволяет обеспечить на выходе устройства более высокое по сравнению с прототипом отношение сигнал/шум путем уточнения оптимальной полосы пропускания. 1 ил.

 

Изобретение относится к радиолокации и может быть использовано в качестве устройства корреляционной обработки сигналов в составе корреляционно-фазового пеленгатора.

Все известные фазовые пеленгаторы, такие как патенты 2474835, 2458355, 2444746, 2175770, 2155352, 2134429, 1155970 используют корреляционную обработку сигналов. Указанные пеленгаторы не обеспечивают адаптацию параметров приемника к спектру принимаемого сигнала. Поэтому в качестве прототипа было взято устройство корреляционной обработки сигналов А.С. №1155970, которое адаптирует полосу пропускания приемника под ширину спектра принимаемого сигнала.

Известно устройство А.С. №1155970, 1985, в котором оптимальное значение отношения сигнал/шум на выходе устройства обеспечивается автоматической установкой полосы пропускания в соответствии с шириной спектра обрабатываемого сигнала. Недостатком прототипа является то, что он не учитывает зависимость величины оптимальной полосы пропускания от величины отношения сигнал/шум на входе устройства.

Признаки настоящего изобретения, совпадающие с признаками прототипа: включение в структуру устройства двух избирательных усилителей, двух корреляторов, масштабирующего усилителя, блока сравнения, согласующего блока.

Патентуемое изобретение - устройство корреляционной обработки сигналов решает задачу повышения отношения сигнал/шум на выходе устройства при обработке широкополосного сигнала в диапазоне относительно больших значений отношения сигнал/шум на входе устройства.

Технический результат - патентуемое изобретение обеспечивает создание приемников корреляционно-фазовых пеленгаторов с повышенным отношением сигнал/шум при работе по широкополосному сигналу. Сущность изобретения поясняется графическим материалом.

На фиг. 1 показана функциональная схема устройства корреляционной обработки сигналов.

Устройство корреляционной обработки сигналов (Фиг. 1) содержит первый и второй широкополосные усилители 1 и 2, входы которых являются первым и вторым входами устройства, последовательно соединенные с ними первый и второй избирательные усилители 3 и 4, первый и второй корреляторы 5 и 6, причем первый и второй входы первого коррелятора 5 соединены с выходами первого и второго избирательных усилителей 3 и 4 соответственно, а первый и второй входы второго коррелятора 6 соединены с первым и вторым входами избирательных усилителей 3 и 4 соответственно, последовательно соединенные масштабирующий усилитель 7 и блок сравнения 8, причем вход масштабирующего усилителя 7 соединен с выходом второго коррелятора 6, а второй вход блока сравнения 8 соединен с выходом первого коррелятора 5, согласующий блок 9, выход которого соединен с управляющими входами первого и второго избирательных усилителей 3 и 4, выход первого коррелятора 5 является выходом устройства, блок автоматической регулировки усиления (АРУ) 11 и сумматор 10, причем первый вход сумматора 10 соединен с выходом блока сравнения 8, а второй вход с выходом блока АРУ 11, выход сумматора 10 соединен со входом согласующего блока 9, вход блока АРУ 11 соединен с выходом первого широкополосного усилителя 1, а выход - с управляющими входами широкополосных усилителей 1 и 2.

Структура предлагаемого устройства отличается от прототипа наличием широкополосных усилителей 1 и 2, охваченных АРУ 11, и сумматора 10.

Устройство работает следующим образом.

На входы широкополосных усилителей с системой АРУ 1 и 2 поступают сигналы U1(t) и U2(t) такие, что U1(t)=U2(t+τ), где τ - временной сдвиг.

Уровень спектральной мощности шумов на входе устройства во времени не меняется.

Полоса пропускания широкополосных усилители с системой АРУ 1 и 2 много больше ширины спектра сигнала.

Для пояснения работы предлагаемого устройства спектр G(f) сигналов U1 и U2 представим в следующем виде:

где G0 - спектральная плотность сигнала;

Δfc - ширина спектра сигнала; f - частота;

- мощность сигнала.

В качестве примера амплитудно-частотных характеристик K(f) избирательных усилителей 3 и 4 возьмем K(f) резонансного контура

где K0 - коэффициент усиления по напряжению;

Δfy - полоса пропускания усилителя 3 и усилителя 4.

Δfy соответствует ожидаемой ширине спектра входного сигнала.

Напряжение U5 на выходе коррелятора 5 определяют по формуле [1]:

Напряжение U7 на выходе масштабирующего усилителя 7 определяют по формуле (1):

где KM - коэффициент усиления масштабирующего усилителя.

Блок сравнения 8 формирует U8 - разность напряжений с выходов первого и второго корреляторов 5 и 6:

При выводе этого выражения предполагалось, что τ=0. Если коэффициент усиления масштабирующего усилителя 7 равен , то выражении (5) приводится к виду:

где x=Δfy/Δfc.

Структура предлагаемого устройства отличается от прототипа наличием широкополосных усилителей 1 и 2, охваченных АРУ. Как видно Фиг. 1, напряжение с выхода блока АРУ 11 используется не только для регулировки усиления широкополосных усилителей, но и для управления полосой пропускания избирательных усилителей 3 и 4. Для этого напряжение АРУ суммируется в блоке сумматора 10 с выходным напряжением блока сравнения 8. Если представить выходное напряжение блока АРУ 11 U11=KAq, где KA - коэффициент передачи цепи АРУ, q - отношение сигнал/шум на входе устройства, и учесть выражение (6), то управляющее напряжение на выходе сумматора блок 10 для регулировки полосы пропускания избирательных усилителей 3 и 4 принимает вид

где S - крутизна дискриминатора полосы сигнала;

Установившемуся режиму системы автоматической регулировки полосы пропускания соответствует выражение U10=0. Решая уравнение (7) относительно полосы пропускания избирательных усилителей 3 и 4 Δfy, получим

Наступление установившегося режима определяет оптимальное значение полос пропускания избирательных усилителей 3 и 4 по отношению к ширине спектра принимаемого сигнала, при котором обеспечивается максимальное выходное отношение сигнал/шум.

Отсюда видно, что при q<<1 полоса пропускания избирательных усилителей подстраивается под полосу обрабатываемого сигнала. При больших значениях q полоса избирательных усилителей максимально расширяется, как следует из выражения (8), т.к. любая фильтрация уменьшает мощность сигнала на выходе устройства.

Таким образом, показано, что включение в структуру патентуемого изобретения двух широкополосных усилителей с системой АРУ, блока АРУ и сумматора обеспечивает решение поставленной технической задачи повышения отношения сигнал/шум на выходе устройства при обработке широкополосного сигнала в диапазоне относительно больших значений отношения сигнал/шум на входе устройства.

Литература.

1. Винокуров В.И., Ваккер Р.А. Вопросы обработки сложных сигналов в корреляционных системах. М.: «Советское радио», 1972.

Устройство корреляционной обработки сигналов, содержащее первый и второй избирательные усилители, первый и второй корреляторы, причем первый и второй входы первого коррелятора соединены с выходами первого и второго избирательных усилителей соответственно, а первый и второй входы второго коррелятора соединены с первым и вторым входами избирательных усилителей соответственно, последовательно соединенные масштабирующий усилитель, блок сравнения и согласующий блок, причем вход масштабирующего усилителя соединен с выходом второго коррелятора, а второй вход блока сравнения соединен с выходом первого коррелятора, выход согласующего блока соединен с управляющими входами первого и второго избирательных усилителей, выход первого коррелятора является выходом устройства, отличающееся тем, что введены первый и второй широкополосные усилители с системой АРУ, блок автоматической регулировки усиления (АРУ) и сумматор, причем первый вход сумматора соединен с выходом блока сравнения, а второй вход - с выходом блока АРУ, а выход сумматора соединен со входом согласующего блока, входы первого и второго широкополосных усилителей являются первым и вторым входами устройства, а их выходы соединены со входами первого и второго избирательных усилителей соответственно, вход блока АРУ соединен с выходом первого широкополосного усилителя, а выход - с управляющими входами широкополосных усилителей.



 

Похожие патенты:

Изобретение относится к области радиотехники и может использоваться в радиомониторинге при поиске источников радиоизлучения на ограниченной территории и в помещениях, например, специальных электронных устройств перехвата информации.

Изобретение относится к радиолокации, радионавигации и может быть использовано в радиотехнических комплексах, определяющих параметры движения контролируемых летательных аппаратов на основе фазового метода измерений.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации.

Изобретение относится к радиотехнике и может быть использовано в разностно-дальномерных системах измерения пространственных координат летательных аппаратов. Достигаемый технический результат - повышение точности измерения координат летательного аппарата (ЛА) с одновременным расширением класса обслуживаемого бортового радиоэлектронного оборудования (БРО) ЛА как с импульсным, так и с непрерывным радиоизлучением.

Изобретение относится к радиотехнике и может быть использовано в системах пеленгования узкополосных сигналов с известными несущей частотой, в том числе в радиолокации, радионавигации, связи.

Изобретение относится к радиотехнике и может быть использовано в комплексах определения местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - повышение точности результатов пеленгования по углу места в круговом азимутальном секторе.

Изобретение относится к пассивной радиолокации и может быть использовано в двух- и многопозиционных измерительных комплексах для определения координат местоположения источников радиоизлучения (ИРИ).

Способ повышения точности определения угла прихода радиоволн относится к области техники электрических измерений и может быть использован при исследовании распространения радиоволн на открытых трассах. Цель изобретения - достижение высокой точности измерений угла прихода радиоволн. Новым в способе повышения точности определения угла прихода радиоволн является первоначальное генерирование высокочастотных колебаний с первой частотой в первом канале интерферометра и колебаний со второй частотой во втором канале интерферометра.

Изобретение относится к области радиотехники и может быть использовано для обеспечения навигации и геодезической привязки надводных стационарных и подвижных объектов.

Изобретение относится к радиолокации и может быть использовано для определения местоположения и движения источников излучения радиосигналов. Достигаемый технический результат изобретения заключается в повышении точности пеленгации узкополосного сигнала на фоне широкополосной помехи. Технический результат достигается за счет использования в каждом измерительном канале трех цифровых приемников, настроенных на разные частоты. 2 ил.

Изобретение относится к радиотехнике, а именно к методам и системам пассивной радиолокации, и предназначено для получения точных оценок местоположения заходящего на посадку летательного аппарата по излучаемому с его борта радиосигналу, и представляет собой комплекс радиоэлектронных средств, который содержит не менее двух узкобазовых подсистем, соединенных высокоскоростными линиями передачи информации с центральным пунктом обработки. Достигаемый технический результат – повышение точности оценки вектора координат, описывающего местоположение источника радиоизлучения. Указанный результат достигается за счет того, что узкобазовая подсистема оснащена активной фазированной многокольцевой антенной решеткой и осуществляет прием радиосигналов, их синхронную демодуляцию многоканальным квадратурным приемником и преобразование в цифровую форму посредством многоканального аналого-цифрового преобразователя, при этом центральный пункт обработки производит оценку местоположения источника излучения на основе совместной обработки всех принятых сигналов с использованием комбинированного одноэтапного алгоритма, состоящего в формировании решающей функции на основе метода максимального правдоподобия и ее последующей оптимизации и исключающего выполнение промежуточных вычислений временных и фазовых задержек и углов пеленга. 3 н.п. ф-лы, 8 ил.

Изобретение относится к радиотехнике, а именно к методам и системам пассивной радиолокации, и может быть использовано для определения местоположения в трехмерном пространстве источника радиоизлучения (ИРИ), размещенного на летательном аппарате (ЛА) (самолет, вертолет и т.п.), за счет приема и последующей обработки электромагнитных волн, порожденных этим ИРИ. Достигаемый технический результат – управление летательным аппаратом (ЛА) на предельно малых высотах в ближней зоне аэродрома и вывод ЛА в точку захода на посадку. Указанный результат достигается тем, что система содержит три узкобазовых подсистемы, каждая из которых содержит N приемных антенн, первый и второй аналого-цифровой преобразователь, центральную электронно-вычислительную машину, малошумящий усилитель, N входов которого соединены с N приемными антеннами, первый и второй многоканальные синхронные квадратурные приемники, входы которых соединены соответственно с первым и вторым выходами малошумящего усилителя, а выходы - с первыми входами первого и второго аналого-цифровых преобразователей, первый и второй каналы обработки информации, первые входы которых соединены с выходами аналого-цифровых преобразователей, а выходы подключены к центральной электронно-вычислительной машине; управляющий контроллер, подключенный по входу к центральной электронно-вычислительной машине, первый выход которого подключен ко второму входу первого многоканального синхронного квадратурного приемника, ко второму входу первого аналого-цифрового преобразователя и ко второму входу первого канала обработки информации, а второй выход - ко второму входу второго многоканального синхронного квадратурного приемника, ко второму входу второго аналого-цифрового преобразователя и ко второму входу второго канала обработки информации; центральный пункт обработки, в состав которого входят три порта ввода информации, каждый вход которого соединен через гибридную оптико-коаксиальную сеть с выходом центральной электронно-вычислительной машины каждой узкобазовой подсистемы, блок клавиатуры, блок индикации, блок вычисления текущей скорости ЛА, блок вычисления текущей высоты полета ЛА, блок вычисления дальности до ЛА, оперативное запоминающее устройство, постоянное запоминающее устройство, первый дополнительный порт вывода, микропроцессор, объединенные между собой шиной адреса и данных; радиомодем декаметрового диапазона радиоволн, вход которого соединен с выходом первого дополнительного порта вывода, а выход является общим выходом системы, обеспечивающим радиосвязь с ЛА. 8 ил.

Изобретение относится к радиотехнике и может быть использовано в системах определения направления на цель, в том числе в радиолокации, радионавигации, связи. Достигаемый технический результат - повышение углового разрешения пеленгатором целей. Способ пеленгации заключается в последовательном зондировании смежных угловых направлений в заданном секторе с шагом изменения угла, обеспечивающим требуемое угловое разрешение целей, и построении пеленгационной характеристики, на основании которой принимают решение о наличии или отсутствии целей. Согласно изобретению сектор построения пеленгационной характеристики последовательно зондируют на разных частотах, диапазон изменения которых выбирают таким, чтобы за счет имеющейся разности дальностей до целей обеспечить изменение разности фаз отраженных от них когерентных сигналов на наибольшей и наименьшей частотах зондирования на величину, кратную 2π, а шаг изменения частоты выбирают таким, чтобы обеспечить получение формы пеленгационной характеристики с детальностью, позволяющей принять решение о количестве целей. 5 ил.

Изобретение относится к радионавигации и может быть использовано для определения пространственных координат (ПК) объектов, стационарных или подвижных, и управления их движением в локальных зонах навигации. Достигаемый технический результат - обеспечение однозначного определения ПК без привлечения дополнительной информации. Указанный результат достигается за счет того, что системой n-х наземных станций передают радиосигналы в виде двух гармонических колебаний с соответственно заданными частотами и . Радиосигналы синхронизированно формируют заданным образом в едином центре в системе отсчета времени, связанной с ним, и передают по линиям связи на каждую станцию. При формировании и передаче радиосигналов обеспечивают выполнение заданных в способе условий. На объекте осуществляют прием совокупности аналоговых радиосигналов и преобразуют ее в соответствующую ей цифровую совокупность, каждый цифровой сигнал которой содержит две цифровые составляющие и . Для каждой из этих составляющих формируют квадратурные им цифровые компоненты и . По парам цифровых компонент и определяют в системе отсчета времени, связанной с объектом, моменты времен приема различных n-х радиосигналов и разности моментов времен приема различных двух n-х радиосигналов. По этим разностям и известным на объекте координатам фазовых центров антенн станций однозначно определяют относительные дальности до объекта от указанных фазовых центров антенн станций и по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.
Наверх