Способ рафинации жидких растительных масел

Изобретение относится к масложировой промышленности. Способ предусматривает выведение свободных жирных кислот, фосфолипидов, красящих соединений, восков и воскоподобных веществ, продуктов окисления, нежирных примесей и влаги, вкусовых и одорирующих веществ на стадии гелевой сорбции с последующими контрольными стадиями отбелки и вымораживания и стадией дезодорации. Гелевую сорбцию проводят при температуре 16-20°C путем смешения нерафинированного масла с гелевым раствором и коагулянтом, в результате чего в масле образуется нерастворимая взвесь, которая коагулирует, осаждается и при отстаивании система разделяется на две фазы: гелевый осадок и слой прозрачного масла, которые разделяют в гравитационном поле. Гелевый раствор создают путем растворения в воде 9-водного метасиликата натрия до получения плотности раствора 1,10-1,41 г/см3 и дополнительного введения в него расчетного количества диоксида кремния и повышения гидромодуля раствора до 1,5; количество гелевого раствора рассчитывают до получения результатов при гелевой сорбции, соответствующих требованиям стандартов для каждого вида масла. После ввода гелевого раствора в масло дополнительно вводят коагулянт в количестве до 100 г на 1 тонну масла в виде 20%-ного раствора, перемешивают в течение 15-30 минут и отстаивают 8-9 часов. После гелевой сорбции масло направляют на контрольную отбелку, которую проводят в течение 30 минут при температуре 18-20°C с вводом адсорбента с рН 2-5 в количестве 0,35-0,55%, при этом при отбелке соевого и кукурузного масел дополнительно вводят 0,2-0,25% активированного угля, а при отбелке рапсового - 0,5-1,0%. После отбелки масло направляют на контрольное вымораживание при 6°C в течение 4-х часов с вводом 0,2-0,3% сорбента, а фильтрацию масла проводят при 12°C, и далее масло направляют на дезодорацию при остаточном давлении до 5 мм рт. ст. при температуре 190-225°C. Изобретение позволяет повысить производительность линии рафинации масла на 25-30%, повысить качество растительных масел за счет проведения рафинации при низких температурах, повысить выход масел, сократить отходы, потери и расход вспомогательных материалов. 2 з.п. ф-лы, 2 табл., 5 пр.

 

Изобретение относится к масложировой промышленности и может быть использовано для рафинации жидких растительных масел.

Из уровня техники известен способ получения рафинированного недезодорированного подсолнечного масла (см. RU N 2545665, МПК С11В 3/04, опубл. 10.04.2015), включающий стадию сорбционной рафинации, на которой обработку нерафинированного масла ведут раствором метасиликата натрия девятиводного с отстаиванием и отделением осадка, контрольные стадии отбелки и вымораживания масла, при этом сорбционную рафинацию масла ведут водным раствором метасиликата концентрацией 50-60 мас.% при температуре масла 20-50°C.

Основным недостатком этого способа является неоправданно высокое для подсолнечного масла повышение температуры при сорбционной рафинации с 20 до 50°C, которое приводит к снижению сорбционной активности силикатного геля к свободным жирным кислотам, фосфолипидам, влаге и особенно к продуктам окисления и сорбционной активности к красящим веществам, воскам и воскоподобным веществам, средне- и низкоплавкая фракция которых расплавлены при этих температурах, становятся инертными к силикатному гелю и не выводятся из масла при сорбционной рафинации. Поэтому последующие стадии отбелки и вымораживания из контрольных становятся равнозначными остальным стадиям технологической схемы и требуют увеличенного расхода отбельной земли для отбелки и сорбента для вымораживания, что приводит к повышенному образованию твердых зажиренных отходов, к высоким потерям масла в производстве и к неоправданным затратам при охлаждении масла с 50°C до 18-20°C для проведения контрольной отбелки. Этот способ становится экономически невыгодным, и поэтому не используется на практике.

Наиболее близким по технической сущности к заявленному изобретению является способ рафинации подсолнечного масла (см. RU №2377280, МПК С11В 3/00, опубл. 27.12.2009), включающий выведение свободных жирных кислот, фосфолипидов, красящих соединений при гелевой сорбции с последующими контрольными стадиями отбелки и вымораживания, при этом гелевую сорбцию проводят при температуре 16-20°C, а гель создают путем равномерного распределения лимонной кислоты в количестве 0,06-0,12% от массы масла в виде 40-60%-ного водного раствора и последующего ввода раствора метасиликата натрия, полученного растворением порошка 9-водного метасиликата натрия в воде в соотношении 1:(1,2-1,3), в количестве, обеспечивающем выведение свободных жирных кислот, с избытком до 30%, перемешивают масло и введенные реагенты в течение 40-60 минут, отстаивают в течение 6-9 часов, отделяют масло от гелевого осадка, дополнительно выделяют масло из гелевого осадка при 18-30°C, затем масло после стадии гелевой сорбции и выделенное из гелевого осадка направляют на контрольную отбелку, которую проводят в течение 30 минут при температуре 18-20°C с вводом адсорбента с рН 2-5 в количестве 0,35-0,55% от массы масла и далее на контрольное вымораживание с вводом в масло 0,25-0,3% сорбента.

Недостатком известного способа рафинации подсолнечного масла является повышенная продолжительность отстаивания при формировании и осаждении гелевого осадка (до 12 часов) при переработке масел с низкими кислотными числами (до 1,25 мг КОН) и низким содержанием фосфолипидов (до 0,5%), что приводит к общему снижению производительности линии рафинации на 25-30% и к вызванным этим экономическим издержкам.

Сведения о рафинировании соевого, кукурузного и рапсового масел методом гелевой сорбции из уровня техники не выявлены.

Задача, положенная в основу настоящего изобретения, заключается в создании экономически эффективного и высокотехнологичного способа рафинации жидких растительных масел, который позволяет получить продукт повышенного качества. Техническим результатом изобретения является ускорение формирования и осаждения гелевого осадка и достижение высокой производительности линии при рафинации различных видов жидких растительных масел, независимо от их состава и качества, при достижении высоких показателей качества рафинированных масел.

Задача, положенная в основу настоящего изобретения, с достижением заявленного технического результата, решается тем, что в способе рафинации жидких растительных масел, включающем выведение свободных жирных кислот, фосфолипидов, красящих соединений, восков и воскоподобных веществ, продуктов окисления, нежировых примесей и влаги, вкусовых и одорирующих веществ на стадии гелевой сорбции, контрольных стадиях отбелки и вымораживания и стадии дезодорации, гелевую сорбцию проводят при 16-20°С путем смешения масла с гелевым раствором, который готовят путем растворения в воде метасиликата натрия до получения плотности раствора 1,10-1,41 г/см3, повышают гидромодуль раствора до 1,5 путем растворения в нем диоксида кремния и вводят в масло в количестве, достаточном для достижения при гелевой сорбции показателей, регламентируемых для каждого вида масла, затем дополнительно вводят в масло коагулянт в количестве до 100 г на 1 тонну масла, перемешивают в течение 15-30 минут, проводят в течение 8-9 часов сорбцию примесей, формирование и осаждение гелевого осадка, отделяют масло от гелевого осадка и направляют его на контрольную отбелку, которую проводят в течение 30 минут при температуре 18-20°С и атмосферном давлении с вводом адсорбента с рН 2-5 в количестве 0,35-0,55% от массы масла, а при отбелке соевого, кукурузного и рапсового масла в адсорбент дополнительно добавляют активированный уголь в количестве 0,15-0,25% для соевого и кукурузного масел и 0,5-1,0% для рапсового масла, далее после фильтрации отбеленное масло направляют на контрольное вымораживание, которое проводят при 6-8°С в течение 4-х часов с вводом сорбента, предпочтительно ацетатного, и после фильтрации при температуре 12°С вымороженное масло направляют на дезодорацию при температуре 190-225°С под остаточным давлением 5 мм рт. ст.

Кроме того, гелевый раствор готовят путем растворения в воде 9-водного метасиликата натрия.

Кроме того, в качестве коагулянта в масло дополнительно вводят поликатионит в виде 20-процентного раствора.

Перечисленные признаки являются существенными и взаимосвязанными между собой с образованием устойчивой совокупности существенных признаков, достаточной для получения указанного технического результата.

Технический результат достигается путем изменения состава гелевого раствора, технологических режимов, условий формирования и осаждения гелевого осадка за счет изменения плотности, гидромодуля и избытка гелевого раствора и дополнительного использования коагулянта, ускоряющего формирование и осаждение гелевого осадка.

Эксперименты проводились с четырьмя основными представителями жидких растительных масел: подсолнечным с кислотным числом 0,65-2,5 мг КОН и содержанием фосфолипидов 0,5-0,8%; соевым - представителем масел из бобовых культур - с кислотным числом 1,1-5,2 мг КОН, содержанием фосфолипидов с 1,3-2,8%; кукурузным - представителя масел из зародышей зерновых культур - с кислотным числом 1,12-4,8 мг КОН, содержанием фосфолипидов 0,6-1,0%, цветностью до 60 ед. йода и рапсовым - представителя темноокрашенных масел - с кислотным числом 1,78-4,4 мг КОН, содержанием фосфолипидов 1,3-3,8% и цветностью до 80 ед. йода.

Кроме того, масла различались по содержанию восков и воскоподобных веществ, а в кукурузном и соевом маслах кроме фосфолипидов присутствуют липопротеиды, вызывающие помутнение масел при охлаждении и хранении.

В опытах с этими маслами установлены общие закономерности влияния на сорбционную способность кремниевой кислоты, входящей в состав гелевого раствора, на выведение примесей, содержащихся в маслах, при изменении плотности и гидромодуля гелевого раствора. Установлено, что сорбционная способность возрастает при увеличении плотности и гидромодуля раствора, вплоть до образования при температуре 20°C пересыщенного раствора, из которого выделяется плотная дисперсная фаза, и он становится непригодным для гелевой сорбции; предельным значениями при 20°C является плотность гелевого раствора 1,41 г/см3 и гидромодуль 1,5. Кроме того, в опытах было установлено, что при гелевой сорбции растительных масел с кислотным числом до 1,25 мг КОН и содержащих до 0,5% фосфолипидов, вследствие малого образования дискретной фазы в масле, плотность гелевого раствора нужно увеличивать до 1,41 г/см3, гидромодуль - до 1,5, а при расчете количества гелевого раствора для гелевой сорбции коэффициент избытка раствора нужно повышать с 1,2-1,3 до 1,5-3,0.

При гелевой сорбции подсолнечных масел с кислотным числом более 1,25 мг КОН и содержанием фосфолипидов более 0,5% следует при гидромодуле 1,5 понизить плотность гелевого раствора до 1,1-1,3 г/см3 и коэффициент избытка до 1,3; превышение этих величин приведет к избыточному вводу в масло водной фазы, недостаточному связыванию влаги гелевым раствором и повышению влажности масла после гелевой сорбции выше, 0,05%, что недопустимо для последующей контрольной отбелки масла. Для соевого, кукурузного и рапсового масел из-за повышенного содержания в них фосфолипидов и липопротеидов плотность, гидромодуль и коэффициент избытка гелевого раствора снижать не следует.

Производственные и лабораторные эксперименты показывают, что использование коагулянта в количестве до 100 г на 1 т масла в сочетании с изменением состава гелевого раствора ускоряют на 25-30% формирование и осаждение гелевого осадка и сокращают продолжительность отстаивания масла при гелевой сорбции.

В зависимости от вида и качества нерафинированного жидкого растительного масла необходимо с учетом предварительных исследований и экспериментов провести взаимозависимый выбор оптимальных технологических параметров в заявляемых пределах изменения каждого из них.

Способ рафинации жидких растительных масел реализуется следующим образом.

Пример 1. В условиях производства было взято 17776 кг нерафинированого подсолнечного масла с кислотным числом 0,72 мг КОН, содержащего 0,5% фосфолипидов, 0,17% влаги, 0,1% нерастворимых примесей, с перекисным числом 2,87 ½ O2 ммоль/кг, анизидиновым числом 1,8 у.е., с цветностью 20 ед. йода; масло было мутным над осадком.

В масло, охлажденное до температуры 18°C, при перемешивании был введен гелевый раствор плотностью 1,41 г/см3 с гидромодулем 1,5 в расчетном количестве с избытком 1,6. Затем в масло был введен коагулянт в количестве 60 г на 1 т. Масло и после перемешивания в течение 15 мин было поставлено на отстаивание на 9 часов. После отделения масла от гелевого осадка оно было направлено на контрольное отбеливание при температуре 18°C и атмосферном давлении с вводом адсорбента с рН 4 в количестве 0,5% от массы масла. После фильтрации отбеленное масло было направлено на контрольное вымораживание при 6°C в течение 4-х часов с вводом 0,25% сорбента. После фильтрации при 12°C вымороженное масло было направлено на дезодорацию при 195°C под остаточным давлением 5 мм. рт. ст.

Пример 2. Отличается от примера 1 показателями нерафинированного подсолнечного масла и соответственно этому условиями эксперимента. Последовательность выполнения технологических операций в примерах 1 и 2 одинаковы.

Результаты экспериментов с подсолнечными маслами для примеров 1 и 2 приведены в таблице 1.

Примеры 3, 4, 5. В таблице 2 приведены условия и результаты экспериментов для соевого, кукурузного и рапсового масел. Последовательность выполнения опытов в примерах 3, 4, 5 аналогична примеру 1 с той разницей, что при отбелке этих масел в состав адсорбента введен активированный уголь для соевого и кукурузного масел в количестве 0,25%, для рапсового масла 1,0% от массы масла.

Из результатов производственных экспериментов следует, что путем повышения сорбционной способности гелевого раствора за счет повышения плотности, гидромодуля, увеличения избытка гелевого раствора и ввода коагулянта ускорено формирование и осаждение гелевого осадка, на 25-30% реальная производительность линии при рафинации различных видов жидких растительных масел независимо от их вида и качества, достигнуты высокие показатели качества масел, соответствующие требованиям отраслевых стандартов, при сокращении отходов и потерь, расхода вспомогательных материалов, пара, воды и электроэнергии. Масло после гелевой сорбции по содержанию свободных жирных кислот, фосфолипидов, восков и воскоподобных веществ, влаги, нежировых примесей и по прозрачности соответствует рафинированному маслу, при этом цветность масла снижена на 45-50%, содержание продуктов окисления снижено на 20%, водная вытяжка из масла - нейтральная, а после контрольной отбелки цветность масла дополнительно снижена на 40-45%. Выход продукта к теоретически возможному составляет после: гелевой сорбции - 99,6%; гелевой сорбции и контрольной отбелки - 99,3%; гелевой сорбции, контрольной отбелки и контрольного вымораживания - 99,1%; гелевой сорбции, контрольной отбелки, контрольного вымораживания и дезодорации - 98,8%.

Предлагаемый способ рафинации жидких растительных масел может быть осуществлен на любом предприятии масложировой промышленности, так как для этого не требуется разработка нового оборудования и переоснащение существующих производств, а используемые средства широко применяются отечественной промышленностью.

1. Способ рафинации жидких растительных масел, включающий выведение свободных жирных кислот, фосфолипидов, красящих соединений, восков и воскоподобных веществ, продуктов окисления, нежировых примесей и влаги, вкусовых и одорирующих веществ на стадии гелевой сорбции, контрольных стадиях отбелки и вымораживания и стадии дезодорации, отличающийся тем, что гелевую сорбцию проводят при 16-20°С путем смешения масла с гелевым раствором, который готовят путем растворения в воде метасиликата натрия до получения плотности раствора 1,10-1,41 г/см3, повышают гидромодуль раствора до 1,5 путем растворения в нем диоксида кремния и вводят в масло в количестве, достаточном для достижения при гелевой сорбции показателей, регламентируемых для каждого вида масла, затем дополнительно вводят в масло коагулянт в количестве до 100 г на 1 тонну масла, перемешивают в течение 15-30 минут, проводят в течение 8-9 часов сорбцию примесей, формирование и осаждение гелевого осадка, отделяют масло от гелевого осадка и направляют его на контрольную отбелку, которую проводят в течение 30 минут при температуре 18-20°С и атмосферном давлении с вводом адсорбента с рН 2-5 в количестве 0,35-0,55% от массы масла, а при отбелке соевого, кукурузного и рапсового масла в адсорбент дополнительно добавляют активированный уголь в количестве 0,15-0,25% для соевого и кукурузного масел и 0,5-1,0% для рапсового масла, далее после фильтрации отбеленное масло направляют на контрольное вымораживание, которое проводят при 6-8°С в течение 4-х часов с вводом сорбента, предпочтительно ацетатного, и после фильтрации при температуре 12°С вымороженное масло направляют на дезодорацию при температуре 190-225°С под остаточным давлением 5 мм рт. ст.

2. Способ по п. 1, отличающийся тем, что гелевый раствор готовят путем растворения в воде 9-водного метасиликата натрия.

3. Способ по п. 1, отличающийся тем, что в качестве коагулянта в масло дополнительно вводят поликатионит в виде 20-процентного раствора.



 

Похожие патенты:

Изобретение относится к масложировой промышленности. Рафинацию растительного масла проводят путем обработки фосфорной кислотой при интенсивном перемешивании без вывода продуктов реакции, после этого в масло одновременно добавляют раствор полиакриламида с концентрацией до 1% в количестве до 4% и раствор каустической соды, смесь перемешивают, отстаивают и разделяют на масло и соапсток.

Изобретение относится к масложировой промышленности. Способ получения рафинированного ароматного подсолнечного масла предусматривает выведение свободных жирных кислот, фосфолипидов, восков и воскоподобных веществ, красящих соединений, продуктов окисления и влаги на стадии гелевой сорбции с последующей стадией контрольного вымораживания.
Изобретение относится к масложировой промышленности. Способ обработки растительных масел и/или животных жиров включает: нагревание масла и/или жира до температуры 20-90 оС, предварительную обработку масла и/или жира кислотой в течение 1 минуты, регулирование рН щелочным соединением в интервале 4-8 при температуре по меньшей мере 20 оС, и получение водной смеси, добавление ферментов в водной смеси, уменьшение температуры водной смеси до температуры кристаллизации тугоплавких глицеридов, разделение водной смеси на водную фазу и содержащую обработанные растительные масла и/или обработанные животные жиры фазу.
Изобретение относится к масложировой промышленности. Способ производства рафинированного масла со сниженным содержанием глицидилового эфира, предусматривает этап отбеливания, этап дезодорирования, этап окончательного отбеливания и этап окончательного дезодорирования.

Изобретение относится к масложировой промышленности и может быть использовано для адсорбционной очистки растительных масел от свободных жирных кислот, перекисных соединений, а также катионов тяжелых металлов.

Изобретение относится к пищевой промышленности. Способ уменьшения эмульгируемости растительного масла в водных фазах, вклчающий приведение в контакт неочищенного растительного масла или слизи растительного масла с составом, включающим в себя первый ферментный компонент, включающий в себя по меньшей мер, один расщепляющий фосфолипид фермент, а также второй ферментный компонент, включающий в себя по меньшей мере один не расщепляющий фосфолипид фермент, причем вторым ферментным компонентом является альфа-амилаза.

Изобретение относится к способу очистки и обработки натуральных масляных глицеридов, который включает обеспечение (а) исходного сырья, включающего натуральные масляные глицериды, и (b) низкомолекулярных олефинов; перекрестный метатезис натуральных масляных глицеридов с низкомолекулярными олефинами в реакторе реакции метатезиса в присутствии катализатора метатезиса для формирования полученного реакцией метатезиса продукта, включающего олефины и сложные эфиры; отделение олефинов в полученном реакцией метатезиса продукте от сложных эфиров в полученном реакцией метатезиса продукте с получением отделенного потока олефинов; и рециркуляцию отделенного потока олефинов в реактор реакции метатезиса.

Изобретение относится к масложировой промышленности. Способ комплексной очистки растительных масел предусматривает холодную гидратацию масла с последующей вакуумной мембранной фильтрацией с использованием половолоконных мембран из полимерного материала, имеющего диаметр пор в диапазоне от 0,01 до 5 мкм, волокно мембраны имеет внутренний диаметр в диапазоне от 0,1 до 10 мм, внутреннее пространство полых волокон мембраны соединено с вакуумной системой для создания градиента давлений с разных сторон мембранной полупроницаемой перегородкой и формирования внутри волокон разряжения величиной от 0,1 до 0,9 кгс/см2 с возможностью обеспечения направленного движения очищаемого масла по всей площади мембраны, при этом полимерный материал выбран из группы, включающей поливинилиденфторид, поливинилхлорид, полипропилен, полиэтилен, полиэфирсульфон, полиакриламид, ацетатцеллюлозу или их комбинации, или их сополимеры.

Изобретение относится к масложировой промышленности. Аппарат для очистки растительных масел и жиров, состоящий из вертикального цилиндрического корпуса с коническим днищем, заключенных в паровую рубашку, вертикального вала с прямоугольными вертикальными лопастями, привода, патрубков для подвода и отвода масла, греющего пара и конденсата, а также газовой фазы, прямоугольные вертикальные лопасти выполнены перфорированными, при этом с их тыльной стороны соответственно для каждого отверстия установлены наклонные п-образные направляющие.

Изобретение относится к области пищевой промышленности, а именно направлено на решение задач упрощения и повышения эффективности процессов микрокапсулирования при производстве дезодорированных и капсулированных жирорастворимых пищевых продуктов, в частности улучшение органолептических показателей рыбных жиров, используемых для обогащения продуктов питания.

Изобретение относится к масложировой промышленности. На первом этапе проводят анализ исходного прессового подсолнечного масла на содержание в нем фосфолипидов. В качестве гидратирующего агента применяют конденсат водяного пара 3-5% от массы масла в виде водного раствора хлорида натрия с концентрацией не более 1 г/л, подвергнутый электрохимической активации в диафрагменном электролизере с получением кислого анолита с pH 4 и щелочного католита с pH 9-10. Гидратацию проводят в 2 ступени последовательно сначала кислым анолитом с pH 4 в количестве 1,5-2,5 масс. % к массе масла, в который добавляют в качестве активатора лимонную кислоту в количестве 0,1±0,01 масс. % к массе масла, затем - щелочным католитом pH 9-10 в количестве 1,5-2,5 масс. % к массе масла. Затем проводят отстой не менее 8 ч, выводят гидрофуз и сушат масло. Далее гидратированное высушенное масло охлаждают сначала быстро со скоростью 9±0,5°C/ч до 40±2°C, затем медленно со скоростью 3±0,5°C/ч до +5±1°C. При перекачивании в кристаллизатор используют плоский маслопровод толщиной проходного отверстия 0,6 см и шириной 16,0 см из немагнитного материала, на который намотаны последовательно с интервалом не более 0,4-0,5 м пять одинаковых катушек медным проводом диаметром 5 мм с числом витков 10 и устанавливают в направлении магнитного поля Земли, а выводы катушек подключают к постоянному току с напряжением 220 B так, чтобы направления векторов напряженности, создаваемых магнитными полями катушек, совпадали с направлением вектора напряженности магнитного поля Земли. Затем, выдерживая при +5±1°C не менее 2 ч, масло медленно со скоростью 2-3°C/ч нагревают до 18-20°C, фильтрование подготовленного масла проводят через хлопчатобумажную ткань на фильтр-прессе при давлении 1,0-2,0 атм, после чего масло фасуют в бутылки с защитой азотом. Изобретение позволяет улучшить качество подсолнечного масла, уменьшив содержание фосфолипидов – вплоть до их отсутствия. 2 табл., 4 пр.

Изобретение относится к масложировой промышленности и может быть использовано в переработке растительных масел. На первом этапе проводят анализ исходного прессового подсолнечного масла на содержание в нем фосфолипидов. В качестве гидратирующего агента вместо технической водопроводной воды применяют конденсат водяного пара 3÷5% от массы масла в виде водного раствора минеральной соли хлорида натрия концентрацией не более 1 г/л, подвергнутый электрохимической активации в диафрагменном электролизере с получением кислого анолита с рН 4 и щелочного католита с рН 9-10. Гидратацию проводят в 2 ступени последовательно сначала кислым анолитом с рН 4 в количестве 1,5÷2,5 мас.% к массе масла, в который добавляют в качестве активатора лимонную кислоту в количестве 0,1±0,01 мас.% к массе масла, затем щелочным католитом с рН 9-10 в количестве 1,5÷2,5 мас.% к массе масла. Перед отделением фосфолипидной эмульсии проводят отстой не менее 8 часов, выделяют гидрофуз, гидратированное масло сушат. Далее в гидратированное высушенное масло с температурой 80°С добавляют в предварительно расплавленном состоянии 2% воска от массы масла; масло размешивают и охлаждают быстро со скоростью 9±0,5°С/час до +40±2°С, затем медленно со скоростью 3±0,5°С/час до температуры +10±1°С, выдерживая при этой температуре не менее 4 часов, далее масло медленно со скоростью 2÷3°С/час нагревают до 18÷20°С, фильтрование подготовленного масла для выведения воска проводят через хлопчатобумажную ткань на фильтр-прессе при давлении 1,0÷2,0 атм и масло фасуют в бутылки с защитой азотом. Изобретение позволяет повысить качество масла, более эффективно выделить из него фосфолипиды, в том числе негидратируемые, снизить проокислительную способность и вывести воск. 2 табл., 4 пр.

Изобретение относится к масложировой промышленности и может быть использовано в переработке растительных масел. На первом этапе проводят анализ исходного прессового подсолнечного масла. В качестве гидратирующего агента вместо технической водопроводной воды применяют деминерализованный конденсат водяного пара 3-5% от массы масла в виде водного раствора минеральной соли хлорида натрия, подвергнутый электрохимической активации в диафрагменном электролизере с получением кислого анолита с pH 4 и щелочного католита с pH 9-10. Активатором гидратации служит лимонная кислота в виде 0,1% концентрации водного раствора, гидратацию проводят в 2 ступени последовательно сначала кислотным анолитом с pH 4 с добавлением лимонной кислоты, затем щелочным католитом с pH 9-10, перед отделением фосфолипидной эмульсии проводят отстой не менее 8 ч, отделение гидрофуза, сушка масла при необходимости. После этого масло нагревают до 60°C и в него добавляют в предварительно расплавленном состоянии 2% воска от массы масла. Масло размешивают и охлаждают до +10°C. В масле начинает происходить процесс кристаллизации воска. Общее время кристаллизации должно быть не менее 10 ч, причем после 3-4-ч масло медленно нагревают до 18-20°C. Завершающим этапом данного способа является фильтрование подготовленного масла через х/б ткань на фильтр-прессе при давлении 1,0-2,0 атм в зависимости от состояния масла и фильтрованной ткани. После фильтрации масло фасуют в бутылки с защитой азотом. Изобретение позволяет повысить качество масла, более эффективное выделить из него фосфолипиды, в том числе негидратируемые, и снизить проокислительную способность. 2 табл., 4 пр.

Изобретение относится к масложировой промышленности. Способ нейтрализации кислотности жиров и масел c получением микронутриентов, продукта жирных кислот и с извлечением рафинированных масел, включает: подачу предварительно обработанного потока масла в вакуумно-паровую секцию отгонки, отгоняющую летучие фазы; подачу отогнанных летучих фаз на стадию высокотемпературной конденсации или на комбинацию высокотемпературной и среднетемпературной стадии конденсации с получением конденсированной фазы (A) и паровой фазы (E); отправку конденсированной фазы (A) на процесс вакуумной дистилляции и отправку паровой фазы (E) на стадию низкотемпературной конденсации; воздействие на конденсированную фазу (A) процесса вакуумной дистилляции и получение высокотемпературного дистиллята и потока летучих веществ; подачу паровой фазы (E) из стадии высокотемпературной конденсации вместе с потоком летучих веществ (C) из процесса вакуумной дистилляции на стадию низкотемпературной конденсации с получением потока неконденсируемых газов и низкотемпературного дистиллята, предоставление потоку неконденсируемых газов возможности удерживаться в вакуумной системе и извлечение из вакуумно-паровой секции отгонки потока рафинированного масла. Изобретение позволяет повысить содержание токоферолов при осуществлении нейтрализации масел до 21,4-30,6%. 13 з.п. ф-лы, 12 ил., 5 табл., 3 пр.

Изобретение относится к способу получения компонентов для (i) получения добавки, подобной дизельному топливу, или для (ii) получения топлива, подобного дизельному, из сырого таллового масла, включающему следующие этапы: обеспечение сырого таллового масла; экстракцию липофильных компонентов, присутствующих в указанном сыром талловом масле, органическим растворителем с получением органического экстракта, содержащего указанные липофильные компоненты; промывку полученного органического экстракта серной кислотой с концентрацией по меньшей мере 90% масс. с получением промытого кислотой органического экстракта; и промывку промытого кислотой органического экстракта водой с получением компонентов для получения добавки, подобной дизельному топливу, или для получения топлива, подобного дизельному. Изобретение также относится к способу получения топлива, подобного дизельному. Получено топливо, сравнимое в плане максимальной эффективности двигателя и даже заметно улучшенное в сравнении с товарным дизельным топливом. 5 н. и 20 з.п. ф-лы, 6 табл., 2 пр.

Изобретение относится к масложировой промышленности. Способ включает экстракцию гомогенизированных яичных желтков смесью изопропилового спирта и хлористого метилена в объемном отношении к желтковой массе (2-5):1, причем объемное соотношение изопропилового спирта к хлористому метилену 1:(2-3). Время экстракции составляет от 1 до 2-х часов, температура экстрагирования 20-40°C. Экстракт выдерживают при температуре 4-6°C в течение 2-4 часов и выпавший белый аморфный осадок отфильтровывают. Изобретение позволяет получить простой и эффективный способ получения яичного масла со степенью извлечения не менее 94% с максимальным сохранением биологической ценности, устойчивого к окислительным процессам в течение не менее шести месяцев без добавления консервантов при температуре хранения не выше 4°C. 2 з.п. ф-лы, 2 табл., 7 пр.

Изобретение относится к масложировой промышленности. Способ ферментативного дегуммирования триглицеридов или снижения содержания масла в камеди растительного масла, которая собирается при дегуммировании масла, который содержит следующие этапы: а) приведение триглицеридов или камеди растительного масла, которая собирается при дегуммировании масла, в контакт с композицией, которая содержит по меньшей мере один расщепляющий гликозиды фермент, выбранный из амилаз, амилоглюкозидаз, изоамилаз, глюкоамилаз, глюкозидаз, галактозидаз, глюканаз, пуллуланаз, арабиназ, ламинараназ, пектолиаз, маннаназ, декстраназ, пектиназ, целлюлаз, целлобиаз и ксиланаз, причем по меньшей мере один расщепляющий гликозиды фермент не демонстрирует никакой фосфолипазной и никакой ацилтрансферазной активности и композиция не содержит ни фосфолипазы, ни ацилтрансферазы; и b1) в случае триглицеридов в качестве исходного материала: отделение камедей от триглицеридов; или b2) в случае камеди растительного масла в качестве исходного материала: разделение на водную, содержащую лецитин, фазу и фазу, содержащую масло. Изобретение позволяет увеличить выход масла, обеспечить извлечение лецитина с высоким выходом и без химического изменения лецитина. 8 з.п. ф-лы, 7 табл., 3 пр.

Изобретение относится к способу получения сложных эфиров глицерина (триглицеридов) среднецепочечных монокарбоновых жирных кислот, который состоит из реакции предшественника свободной жирной кислоты и глицерина в присутствии катализатора под частичным вакуумом. Способ получения триглицерида среднецепочечных жирных кислот включает стадии: a) смешивание глицерина с тремя молярными эквивалентами или с избытком указанных среднецепочечных жирных кислот, причем каждая из среднецепочечных жирных кислот содержит цепь из 6-12 углеродных атомов; b) взаимодействие смеси стадии (а) с катализатором двухвалентного или трехвалентного металла и c) нагревание при температуре от около 160 до около 180°С, под частичным вакуумом от 1 до 20 мм рт.ст., в течение периода времени, достаточного для образования триглицерида. Способ обеспечивает возможность получения конечных триглицеридов с высоким выходом и высокой чистотой (>99,5%). Способ обеспечивает возможность образования триглицеридов без растворителя. 22 з.п. ф-лы, 5 пр., 1 табл.
Наверх