Способ ультразвукового контроля твердости полимеров



Способ ультразвукового контроля твердости полимеров
Способ ультразвукового контроля твердости полимеров
Способ ультразвукового контроля твердости полимеров
Способ ультразвукового контроля твердости полимеров
G01N29/07 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2624415:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Использование: для определения твердости по Шору полимера. Сущность изобретения заключается в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, с измерением скорости их распространения и коэффициента затухания, зависящего от расстояния между поверхностями излучателя и приемника, для каждого конкретного испытуемого образца, с дальнейшим их преобразованием в электрический сигнал с амплитудой, зависящей от свойств образца. Одновременно с подачей и приемом ультразвуковых колебаний электронным штангенциркулем измеряют толщину образца, затем определяют константы, индивидуальные для полимера одной марки при заданной частоте измерения и толщине испытуемого образца, после чего определяют твердость полимера по Шору по заданной математической формуле. Технический результат: обеспечение возможности ультразвукового определения твердости полимеров по Шору. 2 ил., 1 табл.

 

Изобретение относится к области диагностики полимеров неразрушающими методами и может быть использовано для определения твердости полимеров по Шору в шинной промышленности и промышленности синтетического каучука.

Твердость по Шору - один из методов измерения твердости материалов и используется для измерения твердости низкомодульных материалов, как правило, полимеров: пластмасс, эластомеров, каучуков и продуктов их вулканизации.

Метод позволяет измерять глубину начального вдавливания, глубину вдавливания после заданных периодов времени или и то и другое вместе. Метод является эмпирическим испытанием, поэтому не существует простой зависимости между твердостью, определяемой с помощью данного метода, и каким-либо фундаментальным свойством испытуемого материала.

Широкое распространение нашел способ определения структуры, упругих свойств или состава материалов по изменению величины затухания ультразвуковых волн либо по изменению скорости их распространения в исследуемом теле [а.с. СССР № 77708].

Этот способ предложен для определения характеристик металлов и неточен при определении свойств и состава полимерных материалов.

Известен способ определения физико-механических характеристик, включающий излучение импульсов ультразвуковых колебаний (УЗК) излучателем, прием импульсов, прошедших в конструкции, приемником, измерение скорости их распространения в плоскости конструкции и затухания УЗК путем измерения сдвига основных составляющих спектра принятых многократно прошедших по толщине импульсов относительно излученных, по которым, используя ранее полученные уравнения регрессии или тарировочные графики, построенные на их основе, определяют искомые характеристики [а.с. СССР № 808930, БИ 8 - 81 г.].

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ ультразвукового контроля предела прочности полимеров при разрыве полимеров [патент РФ №2319957, заявка №2006107831/28 от 15.03.2006, МПК 7 G01N 29/00 - прототип].

Указанный способ ультразвукового контроля предела прочности при разрыве полимеров включает излучение импульсов ультразвуковых колебаний излучателем, прием импульсов, прошедших образец, приемником, измерение скорости их распространения и коэффициента затухания ультразвуковых колебаний, при этом в результате параметрической идентификации модели определяют значения коэффициентов P и m, индивидуальные для каждой марки полимера, и на основе измеренных параметров ультразвуковых колебаний рассчитывают предел прочности при разрыве образца полимера по формуле:

,

где σ - предел прочности при разрыве, кгс/см2; ρ - плотность полимера, кг/см3; h - толщина образца, см; с - скорость ультразвука, см/с; α - коэффициент затухания ультразвука, см-1; ω - частота ультразвуковых колебаний, с-1.

Недостатком данного способа является то, что этот способ не позволяет определять твердость полимера по Шору, Sh, т.е. имеет узкий диапазон применения.

Технической задачей изобретения является устранение указанных недостатков и создание способа ультразвукового определения твердости полимеров по Шору за счет использования измеренных скорости и коэффициента затухания ультразвуковых колебаний (УЗК).

Решение указанной задачи достигается тем, что в предложенном способе ультразвукового контроля твердости полимеров, заключающемся в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, после чего подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, с измерением скорости их распространения и определением коэффициента затухания, зависящего от расстояния между поверхностями излучателя и приемника, для каждого конкретного испытуемого образца, с дальнейшим их преобразованием в электрический сигнал с амплитудой, зависящей от свойств образца, согласно изобретению одновременно с подачей и приемом ультразвуковых колебаний, электронным штангенциркулем измеряют расстояние между поверхностями излучателя и приемника, равное толщине сжатого образца, затем определяют константы, индивидуальные для полимера одной марки при заданной частоте измерения и толщине испытуемого образца, после чего определяют твердость полимера по Шору по формуле:

Sh=B1/α+B2,

где Sh - твердость полимера по Шору, ед. Шора; α - коэффициент затухания, м-1; В1 и В2 - константы, определяемые методом наименьших квадратов экспериментально по измерениям коэффициента затухания α в полимере ультразвуковым способом Shэксп и эталонным методом Shэт (твердомером Шора тип А ТВР-А), в соответствии с критерием:

где i - номер опыта.

Сущность предложенного ультразвукового метода заключается в том, что, по коэффициенту затухания УЗК, зависящему от химического строения, структуры и молекулярной подвижности полимера, определяют твердость полимера.

Известно, что величина добротности (Q) колебательной системы «преобразователь - индентор - материал», по которой судят о твердости полимера, связана с коэффициентом затухания [Голямина И.П. Ультразвук, маленькая энциклопедия [Текст] / И.П. Голямина. - М.: Советская энциклопедия, 1979. - 400 с.]:

где ω - частота измерения; α - коэффициент затухания, м-1.

Поскольку добротность связана с коэффициентом затухания уравнением (2), то для перевода между различными единицами твердости можно использовать некоторые масштабные коэффициенты , В2:

где и В2 - константы, определяемые экспериментально методом наименьших квадратов при заданной частоте измерения и толщине испытуемого образца.

После преобразований связь твердости по Шору A (Sh, ед. Шор А) полимеров с акустическими характеристиками материала при некоторой фиксированной частоте излучения имеет вид:

где В1 и В2 - константы, определяемые экспериментально методом наименьших квадратов при заданной частоте измерения и толщине испытуемого образца.

Коэффициент/степень затухания ультразвука определяется по следующей формуле [Перепечко И.И. Акустические методы исследования полимеров [Текст] / И.И. Перепечко. - М.: Химия, 1973. - 296 с.]:

где Аизл - амплитуда сигнала на источнике излучения, В, Апр - амплитуда сигнала на приемнике, В, h - толщина образца, см.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показана блок-схема, реализующая предлагаемый способ, на фиг. 2 - график твердости с нанесенными экспериментальными и расчетными значениями.

Экспериментальные данные обозначены знаком «х», расчетные данные - «-».

В таблице 1 приведены экспериментальные и расчетные зависимости твердости по Шору от величины коэффициента затухания ультразвука.

На фиг. 1 обозначены: 1 - генератор, 2 - излучающий пьезопреобразователь, 3 - исследуемый образец, 4 - приемник, 5 - цифровой осциллограф, 6 - вычислительное устройство.

Предложенный способ может быть реализован следующим образом.

Исследуемый образец 3 помещают между излучателем 2 и приемником 4. С генератора 1 электрический сигнал определенной частоты и длительности подается на излучатель 2, ультразвуковой импульс с которого, пройдя образец 3, попадает в приемник 4 и преобразуется в электрический сигнал с амплитудой, зависящей от свойств образца. Электрические сигналы с генератора 1 и приемника 4 подаются на цифровой осциллограф 5, а затем данные с осциллографа подаются на вычислительное устройство 6. Электронным штангенциркулем измеряют толщину образца h и вводят в вычислительное устройство 6. После обработки данных осциллографа рассчитывается величина коэффициента затухания ультразвука и величина твердости полимера по Шору.

Пример конкретного применения способа

Для образцов марки полимера СКС-30 толщиной 2 мм, прозвучиваемых на частоте 2,5 МГц при температуре 293 K с амплитудой 28 В, в результате аппроксимации методом наименьших квадратов были получены значения коэффициентов B1=3158 и B2=49,8. Коэффициент корреляции равен 0,878, средняя абсолютная ошибка 1,79 ед. твердости по Шору, средняя относительная ошибка 3,5%, что говорит о тесной корреляционной связи и высокой точности определения твердости по Шору. Экспериментальные и расчетные зависимости твердости по Шору от величины коэффициента затухания ультразвука приведены в таблице 1 и на фиг. 2 соответственно.

В примере параметрическая идентификация осуществлена компьютерной обработкой данных экспериментов, проводившейся минимизацией целевой функции (суммы квадратов отклонений расчетных значений твердости по Шору от экспериментальных) численным методом градиента.

Использование предложенного технического решения позволит определять твердость полимеров по Шору ультразвуковым методом с использованием пары ультразвуковых пьезопреобразователей и данных о зависимости твердости по Шору полимера от коэффициента затухания ультразвука.

Способ ультразвукового контроля твердости полимеров, заключающийся в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, после чего подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, измеряют скорость их распространения и определяют коэффициент затухания, для каждого конкретного испытуемого образца, отличающийся тем, что перед началом испытания электронным штангенциркулем устанавливают расстояние между поверхностями излучателя и приемника, равным толщине сжатого образца, по результатам измерения определяют константы, индивидуальные для испытуемого полимера на заданной частоте измерения и толщине испытуемого образца, и рассчитывают твердость полимера по Шору по формуле:

Sh=B1/α+В2,

где Sh - твердость полимера по Шору, ед. Шора; В1 и В2 - константы, определяемые экспериментально методом наименьших квадратов при заданной частоте измерения и толщине испытуемого образца; α - коэффициент затухания, м-1.



 

Похожие патенты:

Изобретение относится к метрологии, в частности к способам контроля материалов и изделий. Способ уменьшения мертвой зоны при контроле изделий ультразвуковым эхо-импульсным методом заключается в том, что на контролируемое изделие устанавливают преобразователь через линию акустической задержки, вводят в контролируемое изделие ультразвуковой импульс и компенсируют импульс, отраженный от границы раздела изделия и линии акустической задержки, аналогичным по форме и амплитуде импульсом.

Использование: для определения механических напряжений в рельсах. Сущность изобретения заключается в том, что на рельсовые нити устанавливают преобразователи, подключают их к приемному устройству, производят начальные (эталонные) измерения, величину механических напряжений определяют по результатам измерения временных задержек прихода ультразвукового сигнала к приемникам от начальных измерений, при этом измерение начального напряжения осуществляют подключенным к приемному устройству преобразователем, установленным на отрезке рельса, размещенном на перемещающейся по рельсовому пути тележке, дополнительно измеряют временные задержки прихода ультразвукового сигнала к приемному устройству в зависимости от высоты рельса, подключенными к нему преобразователями продольной волны, установленными на отрезке рельса, и поверхности рельсовых нитей и механические напряжения определяют по заданной математической формуле.

Использование: для производства пищевых продуктов. Сущность изобретения заключается в том, что в общем варианте осуществления системы для производства пищевого продукта включают в себя по меньшей мере один теплообменник, по меньшей мере один резервуар для пищевого продукта, по меньшей мере один трубопровод, расположенный ниже по потоку от резервуара для пищевого продукта, для потока пищевого продукта и детектор потока, соединенный с трубопроводом снаружи.

Раскрыты способ и устройство для определения саморасцепа железнодорожного состава, когда один или более железнодорожных вагонов/пассажирских вагонов (401) случайно расцепляются от остальной части железнодорожного состава.

Изобретение относится к геофизическим, а в частности к сейсмоакустическим, методам исследований и может быть использовано для калибровки сейсмоакустических преобразователей, применяющихся при мониторинге различных технических объектов.

Использование: для диагностики изделий сложной геометрии. Сущность изобретения заключается в том, что в изделии возбуждают вынужденные колебания электромагнитным способом, измеряют параметры колебаний и разность фаз между опорным сигналом и колебаниями изделия в нескольких различных точках, возбуждают бигармонические колебания, выделяют сигнал отклик на комбинационных частотах, а по изменению параметров этого сигнала в сравнении с эталонными параметрами изделия без дефекта судят о наличии или отсутствии значимых дефектов в проверяемом изделии.

Способ относится к области измерительной техники и может быть использован для оперативного контроля уровня и плотности жидкости в баках резервуарного парка, что актуально для предприятий нефтедобывающей, нефтеперерабатывающей, авиационной, медицинской, пищевой промышленности.

Использование: для измерения параметров ультразвуковых волн (УЗВ) при исследованиях физико-механических характеристик материалов и дефектоскопии. Сущность изобретения заключается в том, что перед проведением основного измерения получают информацию о помехе, для чего в исследуемой среде располагают излучающий и приемный преобразователи, возбуждают и принимают ультразвуковые импульсы, нормируют амплитуду первого вступления, соответствующего волне помехи, запоминают полученный импульс, после чего проводят основное измерение, нормируют амплитуду первого вступления импульса, совмещают его с первым вступлением импульса, полученного при предварительном измерении, и производят вычитание импульсов.
Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований, и может быть использовано для калибровки характеристик сейсмоакустических преобразователей.

Группа изобретений относится к средствам диагностики целостности корпуса оборудования. Технический результат – повышение точности определения потерь целостности корпуса оборудования.

Изобретение относится к измерительной технике, в частности к способам акустического качества образцов звукопоглощающих конструкций. Способ измерения коэффициента отражения звукопоглощающей конструкции включает прием зондирующего и отраженного сигналов при помощи однонаправленного приемника из двух приемных элементов, изменение направления чувствительности которого осуществляется переключением последовательности приемных элементов, расположенных в гидроакустическом бассейне на оси перпендикулярной поверхности образца звукопоглощающей конструкции, и определение отношения уровней принятых сигналов. Одновременно с однонаправленным приемом сигналов дополнительно осуществляют прием сигналов при помощи дискретной антенны, установленной параллельно звукопоглощающей конструкции, причем центральный приемный элемент антенны является приемным элементом однонаправленного приемника, после чего принятые сигналы детектируют, перемножают и используют для определения коэффициента отражения звукопоглощающей конструкции. Управление параметрами направленного приема осуществляется путем задержки отраженных сигналов. Устройство содержит двухканальный однонаправленный приемник, блок управления, плоскую дискретную антенну, детекторы, перемножитель, вычислительное устройство. Технический результат - повышение помехоустойчивости измерений. 6 ил.

Использование: для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. Сущность изобретения заключается в том, что используют катушки трубных секций с естественными дефектами с действующих трубопроводов и катушки трубных секций с нанесенными на них искусственными дефектами. Технический результат: обеспечение возможности создания способа изготовления фланцевой вставки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. 2 ил., 1 табл.

Изобретение используется для неразрушающего контроля изделий из ферромагнитного материала. Сущность заключается в том, что электромагнитно-акустический преобразователь содержит магнитную систему в виде постоянного магнита и три плоские катушки, электрически изолированные друг от друга и расположенные под магнитом одна под другой, при этом постоянный магнит выполнен в виде сплошного цилиндра при отношении его диаметра к высоте один к трем, а витки одной плоской катушки направлены под углом сто двадцать градусов к виткам двух других катушек, а диаметр окружности, описывающей витки каждой катушки, равен диаметру постоянного магнита. Технический результат - обеспечение возможности возбуждения горизонтально поляризованных ультразвуковых волн с направлением поляризации под углом 120° друг к другу. 1 ил.

Группа изобретений относится к медицине и предназначена для неинвазивного мониторинга свойств биологической ткани. Последовательно проводят следующие этапы: сбора данных импеданса и вспомогательных данных от участка тела пользователя; предварительной обработки полученных данных, причем предварительная обработка заключается в фильтрации полученных данных и удалении артефактов из полученных данных импеданса путем обнаружения не относящихся к пище физиологических факторов на основе вспомогательных данных; восстановления динамики кривой глюкозы путем применения обученного алгоритма машинного обучения, оценивания гликемического индекса из динамики кривой глюкозы, предоставления пользователю результатов оценки и автоматического мониторинга привычек питания на основе упомянутых результатов оценки для определенного периода времени. Группа изобретений позволяет повысить эффективность неинвазивного мониторинга гликемических показателей и скорректировать привычки питания. 2 н. и 40 з.п. ф-лы, 5 ил.

Использование: для неразрушающего контроля деталей и конструкций из полимерных композиционных материалов (ПКМ), а именно клеевых соединений монолитных листов из ПКМ. Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов и регистрацию сигналов, отраженных от дефектов, поверхностей раздела «лист-клеевой слой», «клеевой слой-лист» с помощью ультразвукового дефектоскопа, снабженного прямым совмещенным пьезоэлектрическим широкополосным преобразователем, при этом наличие дефектов в клеевом слое определяется по величине амплитуды ультразвукового сигнала, отраженного от клеевого слоя в месте расположения дефекта, относительно положения строба на экране дефектоскопа, устанавливаемого при настройке дефектоскопа на образце, имеющем искусственные дефекты клеевого слоя, причем положение и длительность строба выбираются таким образом, чтобы сигнал, отраженный от клеевого слоя, попадал в диапазон этого строба, а амплитуду сигнала от клеевого слоя объекта контроля устанавливают равной средней амплитуде сигнала от клеевого слоя образца в бездефектной зоне. Технический результат: повышение достоверности контроля в части определения границ и размеров дефектов клеевого слоя, снижение вероятности пропуска дефектов или перебраковки объекта контроля, а также возможность контроля соединения листов из ПКМ с малой толщиной клеевого слоя (менее 0,7 мм). 1 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматического обнаружения концентрации технологического материала. Предложено устройство и способ для того, чтобы автоматически переключать матрицы в измерителе для определения концентрации продукта неизвестного материала, который может представлять собой очищающий материал или применяемый материал. Настоящее изобретение использует измеряемую линейную плотность и линейную температуру материала наряду с эталонной температурой для того, чтобы вычислять эталонную плотность. Используя эталонную температуру и эталонную плотность, можно определять концентрацию материала в процентных долях. Технический результат – повышение точности и автоматичности определения изменения технологического материала и концентрации каждого материала. 3 н. и 9 з.п.ф-лы, 11 ил.

Использование: для определения толщины слоя бетона, пропитанного жидкостью в бетонных и железобетонных конструкциях сооружений при одностороннем доступе к контролируемой конструкции. Сущность изобретения заключается в том, что устанавливают неподвижно на поверхности бетона излучатель и перемещают последовательно приемник ультразвуковых сигналов с постоянным шагом по линии, проходящей через точку установки излучателя, фиксируют отсчет времени распространения волн при каждой установке приемника, выполняют построение годографа времени распространения волн, определяют перелом линии годографа на границе сухого и пропитанного жидкостью слоев бетона, в качестве информационного параметра используют характер распространения поперечных волн, после чего рассчитывают толщину пропитанного жидкостью слоя бетона по формуле: где h - толщина пропитанного жидкостью слоя бетона, мм, L - расстояние от излучателя до точки перелома годографа, мм, Ct1 и Ct2 - скорости поперечных волн в пропитанном жидкостью и в сухом бетонах, соответственно, м/с. Технический результат: обеспечение возможности определения толщины слоя бетона, пропитанного жидкостью, в бетонных и железобетонных конструкциях сооружений при одностороннем доступе к контролируемой конструкции.

Использование: для дефектоскопии магистральных газопроводов. Сущность изобретения заключается в том, что автоматизированная установка ультразвукового контроля содержит блок перемещения, акустический блок, электронный блок, блок питания и баки контактной жидкости. Блок перемещения включает в себя ведущую и ведомую намагниченные колесные пары, привод передвижения, блок управления приводом передвижения, датчик пути, жестко скрепленный с ведомой колесной парой. Акустический блок включает в себя акустические преобразователи с фазированными решетками, а электронный блок состоит из центрального блока управления, блока генерации импульсов, блока усиления и аналого-цифрового преобразования сигнала, блока регистрации дефектов и блока обработки сигналов. К ведущей колесной паре жестко прикреплен индукционный датчик слежения. Технический результат: повышение точности оценки фактического состояния металла и сварных соединений. 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для калибровки сейсмографов, и в частности для определения их амплитудно-частотных характеристик и увеличения. Заявлен способ калибровки сейсмографов, согласно которому пластинки электрострикционного материала размещают между постаментом и сейсмографом, при этом на постаменте устанавливают герметичный бак, на дне которого размещают пластинки электрострикционного материала, на которые устанавливают герметичную емкость. На дне герметичной емкости устанавливают сейсмограф, а объем, образованный баком и герметичной емкостью, заполняют жидкостью. Технический результат - упрощение процедуры калибровки сейсмографа, а также повышение точности калибровки сейсмографа. 1 ил.
Изобретение относится к области биохимии. Предложено биосенсорное устройство для обнаружения биологических микро- и нанообъектов, таких как бактерии и вирусы. Устройство содержит плоский пьезокерамический первый и второй элемент с плоскими электропроводящими слоями на двух противоположных сторонах каждого элемента. Причём один электропроводящий слой второго элемента присоединен к одному электропроводящему слою первого элемента, а не присоединенные друг к другу электропроводящие слои первого и второго элементов соединены с проводами для подачи или снятия электрического сигнала на устройство. На не присоединенные друг к другу электропроводящие слои первого и второго элемента также нанесен сенсорный слой. Сенсорный слой представляет собой антитела специфичные к искомому биологическому микро- или нанообъекту. Изобретение обеспечивает повышение чувствительности за счёт снижения порога обнаружения биологических микро- или нанообъектов. 2 з.п. ф-лы, 6 пр.

Использование: для определения твердости по Шору полимера. Сущность изобретения заключается в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель ультразвуковых колебаний с последующим приемом импульсов ультразвуковых колебаний, прошедших образец, при помощи приемника, с измерением скорости их распространения и коэффициента затухания, зависящего от расстояния между поверхностями излучателя и приемника, для каждого конкретного испытуемого образца, с дальнейшим их преобразованием в электрический сигнал с амплитудой, зависящей от свойств образца. Одновременно с подачей и приемом ультразвуковых колебаний электронным штангенциркулем измеряют толщину образца, затем определяют константы, индивидуальные для полимера одной марки при заданной частоте измерения и толщине испытуемого образца, после чего определяют твердость полимера по Шору по заданной математической формуле. Технический результат: обеспечение возможности ультразвукового определения твердости полимеров по Шору. 2 ил., 1 табл.

Наверх