Способ определения параметров трехлучевой схемы замещения трехобмоточных трансформаторов и автотрансформаторов

Изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах. Сущность: в опытах короткого замыкания определяют напряжения короткого замыкания и потери активной мощности короткого замыкания. Затем активные сопротивления лучей схемы замещения формируют по выражениям:

индуктивные сопротивления схемы замещения формируют по выражениям:

где uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е., ΔPкВ-С, ΔPкВ-Н, ΔPкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔPкВ-Н, ΔPкС-Н приведены к его номинальной мощности, Вт, UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В, Sт.ном - номинальная мощность трансформатора, ВА. Коэффициенты трансформации ветвей среднего и низкого напряжения схемы замещения формируют по выражениям:

Технический результат: исключение погрешностей при определении параметров трехлучевой схемы замещения трехобмоточных трансформаторов. 8 табл., 4 ил.

 

Предлагаемое изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах.

При расчетах аварийных и нормальных режимов электрических сетей трехобмоточные трансформаторы и автотрансформаторы обычно и единственно представляют эталонной трехлучевой схемой замещения (фиг. 1) [Электрические системы. Электрические сети: учеб. для электроэнерг. спец. ВУЗов / Под ред. В.А. Веникова, В.А. Строева. - 2-е изд. - М.: Высш. Шк., 1998. - 511 с.]. Активные и индуктивные сопротивления лучей схемы замещения трансформатора, автотрансформатора определяют по паспортным данным трансформатора, автотрансформатора, полученным на заводе-изготовителе в результате опытов короткого замыкания (КЗ).

В опытах КЗ для определения сопротивлений обмоток к одной из обмоток подводится такое напряжение Uкз, чтобы в ней протекал номинальный ток, при этом вторая обмотка замкнута накоротко, третья - разомкнута, т.е. проводят три опыта КЗ. В опытах определяют три напряжения короткого замыкания по парам обмоток, отмеченных в индексах: uкВ-С, uкВ-Н, uкС-Н и три значения потерь активной мощности при КЗ по парам обмоток: ΔРкВ-С, ΔРкВ-Н, ΔРкС-Н. Далее делают предположение [Электрические системы, … под ред. В.А. Веникова, с. 141], что фактическим потерями и напряжению КЗ могут быть поставлены в соответствие фиктивные значения потерь и напряжений КЗ двух соответствующих лучей схемы замещения, а именно:

Откуда, система уравнений (1) позволяет найти выражения потерь, соответствующих каждому из лучей схемы замещения:

Рассчитанные по (3) значения служат для определения приведенных к стороне высокого напряжения трансформатора, автотрансформатора активных сопротивлений лучей схемы замещения по выражениям:

Аналогично из системы уравнений (2) получают выражения напряжений КЗ, соответствующих каждому из лучей схемы замещения:

Рассчитанные по (5) значения служат для определения приведенных к стороне высокого напряжения трансформатора, автотрансформатора индуктивных сопротивлений лучей схемы замещения по выражениям:

В выражениях (3) и (5) не показано влияние номинальных мощностей обмоток сторон, которое может быть учтено приведением ΔPкВ-Н, ΔРкС-Н и uкВ-Н, uкС-Н к номинальной мощности трансформатора, автотрансформатора по общеизвестным выражениям [Электрические системы, … под ред. В.А. Веникова, с. 145-146].

Исследования показали, что напряжения на сторонах трехобмоточного трансформатора и потери мощности в трансформаторе, автотрансформаторе, представленном лучевой схемой замещения при расчете режимов, не соответствуют напряжениям на сторонах трехобмоточного трансформатора, автотрансформатора и потерям мощности в трансформаторе, автотрансформаторе, представленном реальными параметрами в схеме замещения «треугольником» (фиг. 2). При этом схема замещения «треугольник» является естественной и точной схемой, без каких-либо предположений.

Активные сопротивления схемы замещения «треугольник» получены по выражениям:

индуктивные сопротивления схемы замещения получены по выражениям:

коэффициенты трансформации ветвей схемы замещения формируют по выражениям:

где:

rВС, rВН, rСН, xВС, xВН, xСН - активные и индуктивные сопротивления ветвей схемы замещения «треугольник», Ом;

KтВС, KтВН, KтСН - коэффициенты трансформации ветвей схемы замещения «треугольник», о.е.

Покажем на расчетном примере по программе расчета установившегося режима: на сторонах среднего и низкого напряжений двух одинаковых трехобмоточных трансформаторов марки ТДТН-80000/110, 115/38,5/6,6 подключены одинаковые мощности нагрузок, трансформаторы подключены к пункту питания (фиг. 3).

Паспортные данные трансформатора приведены в таблице 1.

Первый трансформатор представлен общепринятой лучевой схемой замещения (ветви 2-4, 4-5, 4-6), т.е. сопротивлениями rВ, rС, rН, xВ, xС, xН и коэффициентами трансформации KтВС=UВном/UСном, KтВН=UВном/UНном, второй трансформатор представлен схемой замещения «треугольник», т.е. сопротивлениями rВС, rВН, rСН, xВС, xВН, xСН (12-15, 12-16, 15-16) и коэффициентами трансформации KтВС=UВном/UСном, KтВН=UВном/UНном, KтСН=UСном/UНном. При этом схема замещения «треугольник» является естественной и точной схемой без каких-либо предположений.

Параметры лучевой схемы замещения рассчитаны по выражениям (4) и (6) (таблица 2).

Параметры схемы замещения «треугольник» рассчитаны по выражениям (7) и (8) (таблица 3).

Коэффициенты трансформации следующие:

Результаты расчета приведены в таблицах 4 и 5.

Как видно из таблицы 4, напряжения в однотипных узлах 5 и 15 расчетной модели отличаются на 2,4% по модулю и на 2 градуса по углу, в узлах 6 и 16 отличаются на 3,7% по модулю и 3,35 градуса по углу.

Как видно из таблицы 5, суммарные потери в ветвях трехлучевой схемы замещения (ΔР=0,16 МВт, ΔQ=6,11 MBАр) существенно отличаются от суммарных потерь в ветвях схемы замещения «треугольник» (ΔР=0,1 МВт, ΔQ=3,2 МВАр).

Т.е. общепринятые трехлучевая схема замещения и параметры трехобмоточных трансформаторов, автотрансформаторов содержат методологические погрешности.

Техническая задача изобретения состоит в формировании уточненных параметров схемы замещения трехобмоточных трансформаторов и автотрансформаторов.

Указанный технический результат достигается тем, что активные сопротивления лучей схемы замещения трехобмоточных трансформаторов и автотрансформаторов формируют по выражениям:

индуктивные сопротивления схемы замещения формируют по выражениям:

при этом коэффициенты трансформации ветвей среднего и низкого напряжения схемы замещения формируют по выражениям:

где: ΔРкВ-С, ΔРкВ-Н, ΔРкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах (для автотрансформатора ΔРкВ-Н, ΔРкС-Н приведены к его номинальной мощности), Вт;

uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах (для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности), о.е.;

r'В, r'C, r'H, x'B, x'C, x'H - активные и индуктивные сопротивления ветвей трехлучевой схемы замещения, сформированные по предлагаемой методике, Ом;

UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В;

KтВС, KтВН - коэффициенты трансформации ветвей схемы замещения, о.е.;

Sт.ном - номинальная мощность трансформатора, ВА.

Отличие от известного (единственного) эталонного способа определения параметров схемы замещения заключается в новой форме формировании параметров этой схемы.

Покажем далее на расчетном примере (фиг. 4) соответствие режима при трехлучевой схеме, в которой параметры сформированы по выражениям (10, 11, 12) со схемой замещения «треугольник», в которой параметры сформированы по выражениям (7, 8, 9). Учитывая, что трехлучевая схема принята на основании предположений (1, 2), а схема «треугольник» вытекает естественным образом из условий опытов КЗ без каких-либо предположений, то имеются основания считать для трехобмоточных трансформаторов более правильной схему замещения «треугольник».

В таблице 6 показаны активные и индуктивные сопротивления лучевой схемы замещения, сформированные по предлагаемой методике, по выражениям (10, 11).

При этом следует учесть, что сопротивления ветви СП следует привести к стороне высокого напряжения, при этом все сопротивления полученной трехлучевой схемы будут приведены к стороне высокого напряжения с учетом применения в ветви среднего напряжения коэффициента трансформации KтВС, в ветви низкого напряжения - KтВН.

В таблицах 7 и 8 показаны результаты расчета по программе расчета установившегося режима для схемы сети, показанной на фиг. 4, с учетом параметров из табл. 6

Как видно из таблицы 7, напряжения в однотипных узлах 15 и 25, 16 и 26 расчетной модели на фиг. 4 совпадают как по модулю, так и по углу.

Как видно из таблицы 8, суммарные потери в ветвях трехлучевой схемы замещения (22-24, 24-25, 24-26) (ΔР=0,1 МВт, ΔQ=3,2 MBАр) совпадают с суммарными потерями в ветвях схемы замещения «треугольник» (12-15, 12-16, 15-16).

Таким образом, параметры трехобмоточных трансформаторов, автотрансформаторов трехлучевой схемы замещения, полученные по предлагаемой методике, не содержат методологических погрешностей.

Способ реализуют следующим образом: формируют схему замещения трехобмоточного трансформатора, автотрансформатора, формируют параметры схемы замещения: активные и индуктивные сопротивления ветвей схемы замещения по выражениям (10) и (11), формируют коэффициенты трансформации по выражениям (12), при этом активные и индуктивные проводимости формируют по общепринятым выражениям [Электрические системы, … под ред. В.А. Веникова, с. 137-141].

Способ определения параметров трехлучевой схемы замещения трехобмоточных трансформаторов и автотрансформаторов, в котором в опытах короткого замыкания определяют значения потерь активной мощности при коротком замыкании и напряжения короткого замыкания по парам обмоток, по которым формируют активные и индуктивные сопротивления ветвей трехлучевой схемы замещения, отличающийся тем, что активные сопротивления лучей схемы замещения формируют по выражениям:

индуктивные сопротивления схемы замещения формируют по выражениям:

при этом коэффициенты трансформации ветвей среднего и низкого напряжения схемы замещения формируют по выражениям:

где: uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е.;

ΔPкВ-С, ΔPкВ-Н, ΔPкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔPкВ-Н, ΔPкС-Н приведены к его номинальной мощности, Вт;

r'В, r'С, r'Н, х'В, x'С, х'Н - активные и индуктивные сопротивления ветвей трехлучевой схемы замещения, Ом;

UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В;

тВС, KтВН - коэффициенты трансформации ветвей схемы замещения, о.е.;

Sт.ном - номинальная мощность трансформатора, ВА.



 

Похожие патенты:

Изобретение относится к электроэнергетике и может быть применено для оперативного получения сведений о грозовой обстановке и интенсивности грозовой деятельности на трассах высоковольтных воздушных линий электропередач (ВЛ).

Изобретение относится к измерительной технике и заключается в получении численных значений модуля z и фазового угла ϕ комплексного сопротивления линейного пассивного двухполюсника.

Изобретение относится к устройствам измерительной техники, в частности к первичным преобразователям, и может быть использовано в калориметрии, тензометрии, датчиках силы и давления.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов.

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения.

Изобретение относится к измерению и контролю составляющих полного сопротивления и может быть использовано для измерения напряжения на контактах полюсов и измерения внутреннего сопротивления гальванических элементов, аккумуляторов различных типов и батарей на их основе.

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением, определитель параметров двухполюсников, эталона, генератор синусоидального напряжения, блок управления по частоте, блок управления режимами, блок коммутации, 4n измерительные клеммы, экранированную кабельную линию связи, блок переключения, блок сравнения, учитывающий блок и ключ.

Изобретение относится к электроизмерительной технике и может быть, в частности, использовано для измерения приращения сопротивлений удаленных тензорезисторов или терморезисторов в многоканальных измерительных системах, работающих в условиях действия интенсивных промышленных помех.

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T1=Т0-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах.

Изобретение относится к электроэнергетике и может быть использовано при мониторинге электрических режимов в электроэнергетических системах. Сущность: в опытах короткого замыкания определяют напряжения короткого замыкания и потери активной мощности короткого замыкания. Формируют схему замещения треугольник. Определяют активные сопротивления ветвей схемы замещения треугольник по выражениям: индуктивные сопротивления ветвей схемы замещения треугольник формируют по выражениям: где uкВ-С, uкВ-Н, uкС-Н - напряжения короткого замыкания по парам обмоток, отмеченных в индексах, для автотрансформатора uкВ-Н, uкС-Н приведены к его номинальной мощности, о.е., ΔРкВ-С, ΔРкВ-Н, ΔРкС-Н - значения потерь активной мощности при коротком замыкании по парам обмоток, отмеченных в индексах, для автотрансформатора ΔРкВ-Н, ΔРкС-Н приведены к его номинальной мощности, Вт, UВном, UСном, UНном - номинальные напряжения высокой, средней и низкой сторон трансформатора, автотрансформатора, В, Sт.ном - номинальная мощность трансформатора, ВА. Коэффициенты трансформации ветвей схемы замещения определяют по выражениям: Технический результат: исключение методологической погрешности. 3 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники. Техническим результатом является повышение надежности и достоверности определения уровня диэлектрического вещества за счет использования дублированного емкостного датчика уровня, исключения влияния паразитной электрической емкости длиной линии связи, защиты от сбойных процессов в устройствах вычислительной техники и отказов электронной компонентной базы в измерительном канале. В способе определения уровня диэлектрического вещества воздействуют синусоидальным напряжением на заданных частотах последовательно сначала на основной, затем на дублирующий емкостный датчик уровня и их эталоны, затем измеряют токи через дублирующий сухой датчик уровня и эталон на каждой из заданных частот, фиксируют результаты измерения, определяют и фиксируют значение электрической емкости дублирующего сухого емкостного датчика уровня, определяют и фиксируют значение приращения электрической емкости дублирующего емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Периодически и последовательно измеряют и фиксируют ток через заполняемый диэлектрическим веществом дублирующий емкостный датчик уровня и эталон на каждой из заданных частот, периодически определяют и фиксируют текущее значения электрической емкости дублирующего емкостного датчика уровня, заполняемого диэлектрическим веществом, определяют уровень, выраженный в виде разности текущего значения электрической емкости заполняемого дублирующего емкостного датчика уровня и электрической емкости дублирующего сухого емкостного датчика уровня, отнесенной к значению приращения электрической емкости полностью погруженного в диэлектрическое вещество дублирующего емкостного датчика уровня. Далее в каждом n-канале определяют значения уровней диэлектрического вещества, измеренные основным и дублирующим емкостным датчиком уровня, причем приоритетным значением уровня принимают значение, определяемое через основной емкостный датчик уровня, при этом значения уровней, измеренные основным и дублирующим емкостным датчиком в каждом канале сравнивают между собой, при превышении полученным результатом сравнения допустимого значения проводят анализ возможных причин, в результате которых возникло превышение, после чего измеренные через основной емкостный датчик уровня значения токов, значение электрической емкости и значение уровня в каждом из n-каналов сравнивают с заданными соответственно диапазонами допустимых значений, в случае выхода измеренных в каком-либо из n-каналов значений токов, электрической емкости или уровня за соответствующие пределы диапазона допустимых значений, измеренные в этом же канале через дублирующий емкостный датчик уровня значения токов, электрической емкости и уровня сравнивают с заданными соответственно диапазонами допустимых значений, определение уровня диэлектрического вещества происходит с учетом значений уровней, измеренных в каждом n-канале. 2 ил.

Изобретение относится к области геофизики и может быть использовано в процессе проведения сейсморазведочных работ. Предлагается устройство сбора данных, содержащее пару входных выводов, выполненных с возможностью соединения с набором, состоящим по меньшей мере из одного аналогового сейсмического датчика, формирующего полезный сейсмический сигнал, и средство обнаружения отключения для обнаружения частичного или полного отключения набора, состоящего по меньшей мере из одного аналогового сейсмического датчика. Средство обнаружения отключения содержит средство введения малого тока в набор, состоящий по меньшей мере из одного аналогового сейсмического датчика, для формирования сигнала смещения, частично зависящего от электрического сопротивления набора, состоящего по меньшей мере из одного аналогового сейсмического датчика, и добавляемого к полезному сейсмическому сигналу, причем сигнал смещения занимает только часть рабочего диапазона устройства сбора данных. Средство обнаружения отключения также содержит аналого-цифровой преобразователь и средство фильтрации для преобразования и фильтрации напряжения, измеренного на паре входных выводов, для получения измеренного значения сигнала смещения, и либо средство анализа изменения во времени измеренного значения сигнала смещения и включения сигнала тревоги при выполнении заданного условия, либо средство передачи измеренного значения сигнала смещения на удаленное устройство, выполненное с возможностью анализа изменения во времени измеренного значения сигнала смещения и включения тревоги при выполнении заданного условия. Технический результат – повышении точности получаемых данных. 2 н. и 7 з.п. ф -лы, 6 ил.

Изобретение относится к измерительной технике и может быть использовано для достоверного определения компонентного состава и концентраций примесей в жидких диэлектриках, применяемых в системе нефтепродуктообеспечения, медицине и научных исследованиях. Способ измерения состава и концентраций примесей в малополярных жидкостях содержит этапы, на которых после заполнения межэлектродного пространства измерительного датчика исследуемой жидкостью на его электроды подают переменное напряжение переменной частоты в диапазоне от 10 Гц до 1 мГц и измеряют его спектральную характеристику. Для этого определяют электрическую емкость измерительного датчика в исследуемой жидкости при шаговом изменении частоты. Шаг изменения частот определяется в зависимости от частотного диапазона. Определяют рабочую частоту, для чего измеряют базовую частоту сигнала преобразователя без его подключения к измерительному датчику и эталонному конденсатору, эталонную частоту сигнала преобразователя с подключенным к нему эталонным конденсатором и частоту сигнала преобразователя с подключенным к нему измерительным датчиком. На основании измеренных частот определяют емкость датчика в исследуемой жидкости. Технический результат – уменьшение времени и повышение точности определения диэлектрических параметров в измеряемой среде, упрощение аппаратурной составляющей. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для достоверного определения компонентного состава и концентраций примесей в жидких диэлектриках, применяемых в системе нефтепродуктообеспечения, медицине и научных исследованиях. Способ измерения состава и концентраций примесей в малополярных жидкостях содержит этапы, на которых после заполнения межэлектродного пространства измерительного датчика исследуемой жидкостью на его электроды подают переменное напряжение переменной частоты в диапазоне от 10 Гц до 1 мГц и измеряют его спектральную характеристику. Для этого определяют электрическую емкость измерительного датчика в исследуемой жидкости при шаговом изменении частоты. Шаг изменения частот определяется в зависимости от частотного диапазона. Определяют рабочую частоту, для чего измеряют базовую частоту сигнала преобразователя без его подключения к измерительному датчику и эталонному конденсатору, эталонную частоту сигнала преобразователя с подключенным к нему эталонным конденсатором и частоту сигнала преобразователя с подключенным к нему измерительным датчиком. На основании измеренных частот определяют емкость датчика в исследуемой жидкости. Технический результат – уменьшение времени и повышение точности определения диэлектрических параметров в измеряемой среде, упрощение аппаратурной составляющей. 1 з.п. ф-лы.

Изобретение относится к измерительной технике. Устройство для увеличения разрешения распознавания сопротивления, содержащее: контроллер (108); источник (104) переменного тока, вырабатывающий переменный ток в ответ на значение тока, устанавливаемое контроллером; переменный резистор; и АЦП (106), который вырабатывает значение напряжения на основе переменного напряжения. При этом контроллер выполнен с возможностью приема значения напряжения, регулирования значения тока посредством ЦАП (110) на основе принятого значения напряжения таким образом, чтобы контроллер обеспечивал увеличение и/или уменьшение значения тока для обеспечения нахождения переменного напряжения в пределах диапазона напряжений по мере изменения переменного сопротивления, который меньше, чем максимальный диапазон (202, 302, 304, 206) напряжений, который может быть преобразован АЦП (106) в упомянутое значение напряжение; и определения переменного сопротивления на основе принятого значения напряжения и отрегулированного значения тока. 3 н. и 13 з.п. ф-лы, 11 ил.
Наверх