Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко закрепленные на внешней поверхности корпуса КО, закрепленную на скафандре космонавта страховочную лебедку со страховочным тросом, свободным концом зафиксированным на внешней поверхности КО. В систему введены кронштейны с плоскими спиралями, каждая из которых выполнена из сопряженных между собой концентрических витков, или с жесткими пластинами, в каждой из которых выполнено центральное отверстие, переходящее в кольцевой участок в виде сквозного паза с прорезью наружного контура пластины. В способе эксплуатации системы страховочный трос по мере разматывания вводят между витками спирали или через прорезь наружного контура пластины с протяжкой троса в направлении движения космонавта. Техническим результатом группы изобретений является повышение безопасности, надежности и быстродействия фиксации космонавта. 4 н.п. ф-лы, 9 ил., 1 табл.

 

Изобретения относятся к космической технике, в частности к средствам обеспечения деятельности и безопасности космонавта в открытом космическом пространстве, в том числе на внешней поверхности космического объекта, например орбитальной станции (ОС), а также могут быть использованы в различных видах монтажных работ в иных средах для прокладки гибких протяженных по длине изделий: кабелей, шлангов и т.п.

Под фиксацией в условиях невесомости понимается искусственное ограничение числа степеней свободы одного объекта по отношению к другому - базовому, путем наложения связей различной жесткости. (О.С. Цыганков. Трудовая деятельность в безопорном пространстве. // Полет. №2. 2002, с. 6).

Надежная связь космонавта с ОС при работах на ее внешней поверхности, исключение возможности несанкционированного отделения космонавта от станции является доминирующей задачей при организации и техническом обеспечении внекорабельной деятельности (ВКД). С этой целью поверхность ОС оснащена поручнями, установленными на стойках, расположенных по трассе исходя из конструктивных соображений.

Известен отечественный скафандр для ВКД "Орлан-Д" (1977-1984 гг.), снабженный страховочным фалом с карабином (И.П. Абрамов и др. Космические скафандры России. // ОАО "Научно-производственное предприятие "Звезда". Москва. 2005. С. 339, рис. 8.1-1). Космонавт передвигается по поручням с помощью рук, перемещая при этом скольжением карабин страховочного фала, зафиксированный за поручень, от стойки до стойки. Обеспечивая связь с ОС, такой способ фиксации требует выполнения большого количества перецепок карабина у стоек, что вызывает чрезмерную утомляемость мышц-сгибателей кистей и пальцев космонавта в наддутых перчатках.

В состав скафандра "Орлан-ДМА" (1988-1997 гг.), с переходом на автономное электропитание и беспроводную связь, был введен второй страховочный фал для параллельного применения (И.П. Абрамов и др. Космические скафандры России. // ОАО "Научно-производственное предприятие "Звезда". Москва. 2005, с. 341). Это повысило надежность фиксации космонавта к ОС, но еще в большей степени увеличило нагрузку на руки космонавта, т.к. требовалось для каждого шага при передвижении перецеплять уже два карабина.

В скафандре "Орлан-М" (для орбитальной станции "Мир" и МКС с 1998 г.), один из 2-х страховочных фалов выполнен переменной длины (И.П. Абрамов и др. Космические скафандры России. // ОАО "Научно-производственное предприятие "Звезда". Москва. 2005, с. 342, рис. 8. 2-1; Патент RU 2528504, опубл. 20.09.2014, МПК: B64G 1/66 (2006.01)). Такое решение снижало количество перецепок в рабочей зоне с радиусом 2,5-3 м, но при передвижении по поручням необходимость в выполнении перецепок 2-х карабинов осталась, что мало способствует снижению энергозатрат космонавта в процессе ВКД.

Известно средство фиксации космонавта на корпусе космического аппарата (патент RU 2053942, опубл. 10.02.1996, МПК: B64G 1/66 (2006.01)), содержащее поручни, жестко закрепленные на внешней поверхности корпуса космического аппарата, и снабженное фалами и упругими элементами, расположенными вдоль трассы поручней, один конец каждого фала жестко закреплен на одном из поручней, а второй конец снабжен кольцом и закреплен с возможностью скольжения на соответствующем упругом элементе, жестко связанном с поручнем. Предлагаемое средство могло бы несколько снизить количество перецепок карабина страховочного фала, однако фал, входящий в состав данного средства, по своей длине может перекрыть не более 2-3 интервалов между стойками. Необходимость перецепок сохраняется, при этом зацепление карабина за кольцо на конце мягкого фала одной рукой невозможно, в то время как вторая рука космонавта должна находиться в захвате за поручень. Кроме того, вся конструкция в целом загромождает пространство вдоль трассы поручней и неоправданно увеличивает общую массу объекта.

В качестве прототипа системы выбран (IAC-02-IAA.10.1.02. Russian-American Cooperation in EVA Area (from Russian Perspective). O.S. Tsygankov // 53rd International Astronautical Congress. The Word Space Congress-2002 10-19 Oct 2002 / Houston, Texas, p. 4). Известная система фиксации космонавта при передвижении по внешней поверхности космического объекта включает поручни, жестко закрепленные на внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку со страховочным тросом, свободный конец которого зафиксирован на неподвижном элементе конструкции, расположенном на внешней поверхности космического объекта. При передвижении космонавта, по мере удаления от точки закрепления карабина, трос вытравливается, при возвращении - наматывается на барабан.

В качестве прототипа способа эксплуатации данной системы выбран (О.С. Цыганков. Начало сотрудничества России и США в области внекорабельной деятельности. // Пилотируемые полеты в космос. Научно-технический журнал №1, 2014, ФГБУ "НИИ ЦПК имени Ю.А. Гагарина", с. 111). Известный способ эксплуатации данной системы фиксации космонавта при передвижении по внешней поверхности космического объекта включает прикрепление на скафандре космонавта страховочной лебедки со страховочным тросом, свободный конец которого фиксируют к неподвижному элементу конструкции на внешней поверхности космического объекта (фиг. 5).

Данная система и способ ее эксплуатации исключает перецепки карабина по трассе поручней. Однако поверхность ОС содержит во множестве выступающие элементы: мишени, датчики, антенны, привода солнечных батарей, дренажные клапаны, кабельные трассы, научную аппаратуру и мн. др. Невозможно исключить заматывание, зацеплении вытравленного троса за выступающие элементы при передвижении космонавта, при изменении направления движения на углы вплоть до 90°, при передвижении по дуге цилиндрических поверхностей, при переходе с одного модуля на другой, пристыкованный перпендикулярно к оси x ОС и т.п. Зацепление троса представляет опасность как для космонавта, так и для внешнего оборудования, особенно при возвращении в шлюзовой отсек. Кроме того, при случайном отделении космонавта от станции, существует опасность его удаления на всю длину вытравленного троса с неизбежным рывком в точке закрепления троса, что категорически неприемлемо.

Задачей предлагаемых изобретений является обеспечение надежности и быстродействия фиксации космонавтов, освобождение от необходимости выполнять перецепки карабинов страховочных фалов при передвижении, исключение несанкционированного отделения космонавта от космического объекта, экономия времени в сеансах ВКД для целевых операций, предотвращение неконтролируемой миграции страховочного троса по поверхности космического объекта.

Техническим результатом изобретений является повышение безопасности, надежности, эргономичности и быстродействия фиксации космонавта при передвижении по внешней поверхности космического объекта, а также предотвращение неконтролируемой миграции страховочного троса по поверхности космического объекта.

Технический результат достигается тем, что в систему фиксации космонавта при передвижении по внешней поверхности космического объекта (вариант 1), включающую поручни, жестко закрепленные на внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку со страховочным тросом, свободный конец которого зафиксирован на неподвижном элементе конструкции, расположенном на внешней поверхности космического объекта, введены кронштейны с плоскими спиралями, каждая из которых выполнена из сопряженных между собой концентрических витков по схеме: 0,75 внутреннего витка +0,75 внешнего витка и жестко закреплена на поручнях через кронштейн (фиг. 2, 3, 4), при этом учитывают выполнение следующих условий:

L - расстояние между витками спирали, мм;

D - внутренний диаметр спирали, мм;

d - диаметр страховочного троса, мм,

причем спирали установлены в начале и конце прямолинейных участков, на поворотах и изломах трассы поручней с шагом, сопоставимым с функциональной досягаемостью вытянутой руки космонавта (фиг. 6).

Технический результат достигается также и тем, что в способе эксплуатации системы фиксации космонавта при передвижении по внешней поверхности космического объекта (вариант 1), включающем прикрепление на скафандре космонавта страховочной лебедки со страховочным тросом, свободный конец которого фиксируют к неподвижному элементу конструкции на внешней поверхности космического объекта, по мере разматывания страховочного троса вводят его между витками спирали, заправляют его внутрь спирали и производят протяжку страховочного троса в направлении передвижения космонавта.

Технический результат достигается тем, что в систему фиксации космонавта при передвижении по внешней поверхности космического объекта (вариант 2), включающую поручни, жестко закрепленные на внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку со страховочным тросом, свободный конец которого зафиксирован на неподвижном элементе конструкции, расположенном на внешней поверхности космического объекта, введены кронштейны с жесткими пластинами, в каждой из которых выполнено центральное отверстие, переходящее в кольцевой участок в виде сквозного паза протяженностью 270° по окружности и имеющий прорезь наружного контура жесткой пластины шириной, равной ширине сквозного паза, выполненного концентрически с центральным отверстием (фиг. 7, 8, 9), при этом учитывают выполнение следующих условий:

L - ширина сквозного паза или прорези наружного контура жесткой пластины, мм;

D - диаметр центрального отверстия, мм;

d - диаметр страховочного троса, мм,

причем пластины жестко закреплены на поручнях через кронштейны и установлены в начале и конце прямолинейных участков, на поворотах и изломах трассы поручней, с шагом, сопоставимым с функциональной досягаемостью вытянутой руки космонавта (фиг. 6).

Технический результат достигается также и тем, что в способе эксплуатации системы фиксации космонавта при передвижении по внешней поверхности космического объекта (вариант 2), включающем прикрепление на скафандре космонавта страховочной лебедки со страховочным тросом, свободный конец которого фиксируют к неподвижному элементу конструкции на внешней поверхности космического объекта, по мере разматывания страховочного троса вводят его через прорезь наружного контура пластины в сквозной паз, затем проводят страховочный трос по сквозному пазу, заправляют его в центральное отверстие и производят протяжку страховочного троса в направлении передвижения космонавта.

Формулы (1)-(4) обоснованы следующим образом.

Зависимости (1,2÷1,4)d и (1,4÷1,6)d определяют зазоры, обеспечивающие свободное введение троса между витками или в сквозные пазы и проводку троса внутри спирали или паза, что подтверждено экспериментально в условиях моделирования невесомости при полетах на самолете.

С позиций эргономики внекорабельной деятельности, расстояние между витками спирали и ширина паза L должны находиться в пределах разрешающей способности космонавта в скафандре работать с мелкими объектами, то есть не менее 12 мм.

Внутренний диаметр спирали и центральное отверстие в жесткой пластине D должны соответствовать "Отраслевому стандарту ОСТ 134-1004-95. Средства фиксации для внекорабельной деятельности. Общие технические требования", п. 4.1.6.9: «Отверстия (круглые или другой формы) должны иметь поперечный размер не менее 30 мм». Это требование предъявляется во избежание защемления в отверстии пальца, диаметр которого в наддутой перчатке равен 30 мм, а также для обеспечения возможности выполнения космонавтом ручных манипуляций в наддутых перчатках.

Было проведено определение L (мм) и D (мм) по предложенным формулам (1), (2) или (3), (4) для некоторых точек в диапазоне d=3÷50 мм (таблица).

Из таблицы следует, что в отдельных ситуациях, при малых диаметрах троса, например, в диапазоне d=3÷8 мм, расстояние L, определенное по формуле (1), не является достаточным для работы космонавта в скафандре, поэтому выполняют L=12 мм.

Аналогично, при диаметре троса в диапазоне d=3÷18 мм, диаметр D, полученный по формуле (2), является эргономически неприемлемым, поэтому выполняют D=30 мм.

При диаметре троса d>8 мм для определения L и d>10 мм для определения D предложенные формулы справедливы с учетом правых частей неравенств, указывающих на минимально допустимые размеры L и D.

Сущность изобретения поясняется графическими материалами: таблицей и фиг. 1-9.

В таблице приведены результаты определения L и D по предложенным формулам (1), (2) или (3), (4) для некоторых точек в диапазоне d=3÷50 мм.

На фиг. 1 представлена схема системы фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты).

На фиг. 2 - пример крепления кронштейна с плоской спиралью к поручню (вид спереди).

На фиг. 3 - пример крепления кронштейна с плоской спиралью к поручню (вид сбоку).

На фиг. 4 - плоская спираль.

На фиг. 5 - крепление страховочной лебедки на скафандре и свободного конца страховочного троса на неподвижном элементе конструкции на внешней поверхности космического объекта.

На фиг. 6 - пример возможной схемы размещения кронштейнов с плоскими спиралями или жесткими пластинами с пазами на внешней поверхности космического объекта.

На фиг. 7 - пример крепления кронштейна и жесткой пластины с пазом к поручню (вид спереди).

На фиг. 8 - пример крепления кронштейна и жесткой пластины с пазом к поручню (вид сбоку).

На фиг. 9 - жесткая пластина с пазом.

На фигурах введены следующие обозначения:

1 - страховочная лебедка;

2 - страховочный трос;

3 - неподвижный элемент конструкции на внешней поверхности космического объекта;

4 - кронштейн;

5 - плоская спираль;

6 - элемент крепления (замок) кронштейна к поручню;

7 - поручень;

8 - стойка;

9 - внутренний виток;

10 - внешний виток;

11 - сквозной паз;

12 - жесткая пластина.

Предусматривается два варианта системы фиксации: с плоскими спиралями из пруткового материала (вариант 1); с жесткими пластинами со сквозными пазами и центральными отверстиями (вариант 2).

Система фиксации космонавта при передвижении по внешней поверхности космического объекта по первому варианту (фиг. 1) включает поручни 7, жестко закрепленные на стойках 8 внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку 1 со страховочным тросом 2, свободный конец которого зафиксирован на неподвижном элементе конструкции 3, расположенном на внешней поверхности космического объекта, в нее введены кронштейны 4 с плоскими спиралями 5, каждая из которых выполнена из сопряженных между собой концентрических витков по схеме: 0,75 внутреннего витка 9+0,75 внешнего витка 10 и жестко закреплена на поручнях 7 через кронштейн 4, например, замком 6, при этом учитывают выполнение следующих условий:

L - расстояние между витками спирали, мм;

D - внутренний диаметр спирали, мм;

d - диаметр страховочного троса, мм,

причем спирали установлены в начале и конце прямолинейных участков, на поворотах и изломах трассы поручней, с шагом, сопоставимым с функциональной досягаемостью вытянутой руки космонавта (фиг. 7).

Способ эксплуатации системы фиксации космонавта при передвижении по внешней поверхности космического объекта по первому варианту включает прикрепление на скафандре космонавта страховочной лебедки 1 со страховочным тросом 2, свободный конец которого фиксируют к неподвижному элементу конструкции 3 на внешней поверхности космического объекта (фиг. 6), по мере разматывания страховочного троса 2 вводят его между витками 9 и 10 спирали 5, заправляют его внутрь спирали 5 и производят протяжку страховочного троса 2 в направлении передвижения космонавта.

По второму варианту система фиксации космонавта при передвижении по внешней поверхности космического объекта (фиг. 1), включающая поручни 7, жестко закрепленные на стойках 8 внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку 1 со страховочным тросом 2, свободный конец которого зафиксирован на неподвижном элементе конструкции 3, расположенном на внешней поверхности космического объекта, в нее введены кронштейны 4 с жесткими пластинами 12, в каждой из которых выполнено центральное отверстие, переходящее в кольцевой участок в виде сквозного паза 11 протяженностью 270° по окружности и имеющего прорезь наружного контура жесткой пластины 12 шириной, равной ширине сквозного паза 11, выполненного концентрически с центральным отверстием, при этом учитывают выполнение следующих условий:

L - ширина сквозного паза и прорези наружного контура жесткой пластины, мм;

D - диаметр центрального отверстия, мм;

d - диаметр страховочного троса, мм,

причем пластины 12 жестко закреплены на поручнях 7 через кронштейны 4, например, замком 6, и установлены в начале и конце прямолинейных участков, на поворотах и изломах трассы поручней 7, с шагом, сопоставимым с функциональной досягаемостью вытянутой руки космонавта (фиг. 7).

Способ эксплуатации системы фиксации космонавта при передвижении по внешней поверхности космического объекта по второму варианту включает прикрепление на скафандре космонавта страховочной лебедки 1 со страховочным тросом 2, свободный конец которого фиксируют к неподвижному элементу конструкции 3 на внешней поверхности космического объекта (фиг. 5), по мере разматывания страховочного троса 2 вводят его через прорезь наружного контура пластины 12 в сквозной паз 11, затем проводят страховочный трос 2 по сквозному пазу 11, заправляют его в центральное отверстие и производят протяжку страховочного троса 2 в направлении передвижения космонавта.

Изобретение может быть использовано для прокладки различных гибких, протяженных по длине изделий разного диаметра: тросов, кабелей, шлангов и др.

Обеспечивается выбор материалов и технологий изготовления: по первому варианту - навивка из прутковых и трубчатых заготовок; по второму варианту - механическая обработка, штамповка, литье.

1. Система фиксации космонавта при передвижении по внешней поверхности космического объекта, включающая поручни, жестко закрепленные на внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку со страховочным тросом, свободный конец которого зафиксирован на неподвижном элементе конструкции, расположенном на внешней поверхности космического объекта, отличающаяся тем, что в нее введены кронштейны с плоскими спиралями, каждая из которых выполнена из сопряженных между собой концентрических витков по схеме: 0,75 внутреннего витка + 0,75 внешнего витка и жестко закреплена на поручнях через кронштейн, при этом учитывают выполнение следующих условий:

L=[(1,2÷1,4)d]≥(12±2) мм;

D=[(1,4÷1,6)d]≥(30±2) мм, где

L - расстояние между витками спирали, мм;

D - внутренний диаметр спирали, мм;

d - диаметр страховочного троса, мм,

причем плоские спирали установлены в начале и конце прямолинейных участков, на поворотах и изломах трассы поручней, с шагом, сопоставимым с функциональной досягаемостью вытянутой руки космонавта.

2. Способ эксплуатации системы фиксации космонавта при передвижении по внешней поверхности космического объекта, включающий прикрепление на скафандре космонавта страховочной лебедки со страховочным тросом, свободный конец которого фиксируют к неподвижному элементу конструкции на внешней поверхности космического объекта, отличающийся тем, что по мере разматывания страховочного троса вводят его между витками спирали, заправляют его внутрь спирали и производят протяжку страховочного троса в направлении передвижения космонавта.

3. Система фиксации космонавта при передвижении по внешней поверхности космического объекта, включающая поручни, жестко закрепленные на внешней поверхности корпуса космического объекта, закрепленную на скафандре космонавта страховочную лебедку со страховочным тросом, свободный конец которого зафиксирован на неподвижном элементе конструкции, расположенном на внешней поверхности космического объекта, отличающаяся тем, что в нее введены кронштейны с жесткими пластинами, в каждой из которых выполнено центральное отверстие, переходящее в кольцевой участок в виде сквозного паза протяженностью 270° по окружности и имеющий прорезь наружного контура жесткой пластины шириной, равной ширине сквозного паза, выполненного концентрически с центральным отверстием, при этом учитывают выполнение следующих условий:

L=[(1,2÷1,4)d]≥(12±2) мм;

D=[(1,4÷1,6)d]≥(30±2) мм, где

L - ширина сквозного паза или прорези наружного контура жесткой платины, мм;

D - диаметр центрального отверстия, мм;

d - диаметр страховочного троса, мм,

причем пластины жестко закреплены на поручнях через кронштейны и установлены в начале и конце прямолинейных участков, на поворотах и изломах трассы поручней, с шагом, сопоставимым с функциональной досягаемостью вытянутой руки космонавта.

4. Способ эксплуатации системы фиксации космонавта при передвижении по внешней поверхности космического объекта, включающий прикрепление на скафандре космонавта страховочной лебедки со страховочным тросом, свободный конец которого фиксируют к неподвижному элементу конструкции на внешней поверхности космического объекта, отличающийся тем, что по мере разматывания страховочного троса вводят его через прорезь наружного контура пластины в сквозной паз, затем проводят страховочный трос по сквозному пазу, заправляют его в центральное отверстие и производят протяжку страховочного троса в направлении передвижения космонавта.



 

Похожие патенты:

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре космонавта лебедку со страховочным тросом.

Изобретение относится к измерительной технике и предназначено для измерения уровня диэлектрических жидкостей, находящихся в баках ракет-носителей (РН). Устройство для измерения уровня топлива в баках РН включает в себя емкостный датчик в виде электродов и элементы его крепления.

Группа изобретений относится к активным исследованиям астрономического объекта (АО), например астероида или кометы. Способ включает воздействие на поверхность АО направленным электронным лучом с борта космического аппарата, зависшего над поверхностью этого АО.

Изобретение относится к космической технике, а именно к системам подачи топлива в космических аппаратах (КА). Устройство отбора топлива из баков КА в условиях невесомости для жидкостной реактивной двигательной установки содержит баки компонентов топлива и расположенную на оси в каждом баке возле одной из его стенок локальную систему отбора жидких компонентов топлива с капиллярным заборным устройством емкостного типа.

Изобретение относится к космической технике и может быть использовано для передачи телеметрической информации со спускаемого космического аппарата (СКА). Устройство передачи телеинформации со СКА содержит камеру телезонда с теплозащитной оболочкой, телезонд, крышку камеры, два вышибных заряда.

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА.

Изобретение относится к космической области, а именно к радиоэлектронным устройствам космического модуля. Технический результат - расширение функциональных возможностей радиоэлектронного блока за счет крепления устройств жизнеобеспечения и полезной нагрузки космического модуля непосредственно на его корпусе, что уменьшает объем и массу модуля.

Изобретение относится к методам снижения угрозы для Земли от опасных космических объектов (ОКО): астероидов, комет и т.п. Способ включает посылку к ОКО космического аппарата с оборудованием для разрушения ОКО и посадку на ОКО.

Изобретение относится к космической технике и может быть использовано для маскировки космических объектов путем формирования ложных целей. Надувная ложная цель содержит надувную трансформируемую оболочку с остаточным газом, газогенератором с электрозапалом, источником тока с выключателем, гибкие упругие связи.

В виброзащитной платформе крепление и расфиксация подвижной части (2) с основанием (1) осуществляется автоматически с помощью системы, содержащей фиксаторы с реверсивными электромоторами-редукторами (6) и концевыми выключателями (15), срабатывающими в крайних положениях подвижной части виброзащитной платформы и отключающими электромоторы-редукторы.

Изобретение относится к области космической техники и может быть использовано для исключения падения на Землю трудно сгораемых фрагментов космических аппаратов, отработавших свой ресурс, а именно деталей, изготовленных из тугоплавкого конструкционного материала. Для разрушения деталей отработавших космических аппаратов путем перфорации тугоплавкого конструкционного материала деталей космического аппарата при его падении в плотных слоях атмосферы на поверхности деталей космического аппарата располагают пиротехнический состав термитного типа на основе алюминия и оксида металла, способный к самовоспламенению при температуре 900-1000°С и обладающий экзотермическим эффектом не менее 4200 кДж/кг. Пиротехническим составом термитного типа заполняют цилиндрический стакан из титанового сплава, который закрепляют на поверхности деталей космических аппаратов. Для обеспечения поджатия пиротехнического состава к поверхности материала внутри цилиндрического стакана установлен упругий теплоизолирующий вкладыш. Способ и устройство обеспечивают высокую безопасность, стабильность и надежность и позволяют перфорировать тугоплавкие детали отработавших космических аппаратов на стадии их неконтролируемого спуска в плотных слоях атмосферы. 2 н. и 4 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области испытаний полимерных материалов, входящих в состав конструкций космических аппаратов (КА). В предлагаемом способе образцы материалов экспонируют в течение заданного срока на поверхности КА, затем помещают в контейнер, который, в свою очередь, укладывают в транспортный контейнер (герметизируемый в условиях космоса) и возвращают их на Землю. В вакуумной камере с контролируемой инертной средой вскрывают контейнеры и извлекают из них образцы, каждый из которых размещают в отдельном герметичном пенале. Затем в лабораторных условиях определяют изменения свойств материалов образцов. Давление инертной среды в вакуумной камере поддерживают выше давления окружающей среды. Технический результат изобретения направлен на повышение достоверности результатов испытаний путём практического исключения влияния на них атмосферы Земли. 1 ил.
Наверх