Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения сжатым воздухом

Изобретение относится к области энергомашиностроения. Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения сжатым воздухом состоит в следующем: при действии энергомодуля в момент времени, когда в камеру сгорания энергомодуля поступит масса сжимаемого в компрессорных полостях поршней энергомодуля воздуха, система управления энергомодуля открывает клапан подачи воздуха на турбину из компрессорных полостей поршней энергомодуля, воздух поступает на турбину и приводит турбину во вращение. Турбина соединена валами с вентилятором и насосом, насос прокачивает охлаждающую жидкость по каналам поршневых групп энергомодуля для прокачки охлаждающей жидкости и по каналам цилиндров с каналами для прокачки охлаждающей жидкости энергомодуля, через радиатор и снова к насосу. Охлаждающая жидкость переносит тепло от поршневых групп и цилиндров энергомодуля в радиатор, вентилятор обдувает радиатор, который отдает тепло окружающей среде. Система управления датчиком температуры воздуха контролирует температуру охлаждающей жидкости, и, если температура охлаждающей жидкости меньше оптимальной величины, система управления закрывает клапан подачи воздуха на турбину. Изобретение обеспечивает управление температурой поршневых групп и цилиндров свободнопоршневого энергомодуля с внешней камерой сгорания с приводом насоса системы охлаждения сжатым воздухом. 2 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области энергомашиностроения.

УРОВЕНЬ ТЕХНИКИ

Ближайший аналог заявленного изобретения патент РФ 2427718 «Способ охлаждения поршней двухцилиндрового однотактного свободнопоршневого энергомодуля с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей».

ЦЕЛЬ ИЗОБРЕТЕНИЯ

Цель изобретения - обеспечить управление температурой поршневых групп и цилиндров свободнопоршневого энергомодуля с внешней камерой сгорания с приводом насоса системы охлаждения сжатым воздухом.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Сущность изобретения поясняется описанием принципа действия двухцилиндрового свободнопоршневого с общей внешней камерой сгорания и линейным электрогенератором энергомодуля, далее - энергомодуль.

Продукты сгорания (фигура 1) из внешней камеры сгорания 1 (далее - камера сгорания 1) по трубопроводу 2 через газораспределительный клапан 3 поступают в правую (по рисунку) торцевую полость поршня 4 левой расширительной машины 5, а по трубопроводу 6 и через газораспределительный клапан 7 - в левую полость поршня 8 правой расширительной машины 9. Под действием расширяющихся продуктов сгорания поршни расширительных машин 4 и 8 и соединенные с ними якоря линейных электрогенераторов 10 и 11 начинают расходиться. Якоря 10 и 11 могут представлять собой постоянные магниты, либо электромагниты, намагничиваемые катушкой подмагничивания 12 при протекании по ее виткам тока подмагничивания. В обоих случаях магнитный поток замыкается по контуру - якорь 11, статорный магнит 13, якорь 10, магнитный замыкатель 14, изготовленный из магнитомягкого материала, и снова якорь 11. При оппозитном движении якорей 10 и 11 (в данном случае - движении расхождения) пересекаются магнитные линии их магнитных полей, в результате чего в статорном магните 13 и якорях 10 и 11 изменяется магнитный поток и, как следствие, в катушке генератора 15 генерируется импульс электроэнергии. При достижении поршнями и якорями точек крайнего расхождения система управления переводит клапаны 3, 7, 16, 17 в противоположные положения. Теперь продукты сгорания из камеры сгорания 1 по трубопроводу 2 и через газораспределительный клапан 16 поступают в левую полость поршня 18 левой расширительной машины 5, а по трубопроводу 6 и через газораспределительный клапан 17 - в правую полость поршня 19 правой расширительной машины 9. Поршни расширительных машин и соединенные с ними якоря начинают сходиться. В статорной катушке 15 генерируется импульс противоположного знака. Отработавшие продукты сгорания при расхождении поршней 18, 19 выбрасываются в атмосферу через газораспределительные клапаны 16 и 17, а при схождении - через газораспределительные клапаны 3 и 7. Одновременно при рабочих тактах расширительных машин 5, 9 через обратные клапаны 20, 21, 22, 23 из соответствующих полостей поршней расширительных машин 5, 9 по трубопроводам 24, 25 для обеспечения процесса горения топлива в камеру сгорания 1 подается воздух, а через обратные клапаны 26, 27, 28, 29 из атмосферы засасывается воздух.

Управление температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения сжатым воздухом осуществляется следующим образом. На фигуре 2 показана поршневая группа правой расширительной машины энергомодуля - см. фигуру 1. При действии энергомодуля в момент времени, когда в камеру сгорания 1 поступит масса сжимаемого в компрессорных полостях энергомодуля воздуха, система управления энергомодуля открывает клапан подачи воздуха на турбину 30. При расхождении поршневых групп энергомодуля (фигура 1) из компрессорных полостей поршней 4 и 19 и при схождении из компрессорных полостей поршней 8 и 18 воздух (фигура 2) поступает на турбину 31 и приводит ее во вращение, и по каналу 32 выбрасывает воздух в окружающую среду. Турбина 31 соединена валом с вентилятором 33 и насосом 34. Насос 34 прокачивает охлаждающую жидкость по каналу 35, каналу поршневой группы 36, каналу 37, радиатору 38 и снова к насосу 34. Охлаждающая жидкость отбирает тепло от поршневой группы 39 и переносит его в радиатор 38. Вентилятор 33 по каналу 40 забирает атмосферный воздух и обдувает радиатор 38, который отдает тепло окружающей среде. Система управления датчиком температуры воздуха 41 контролирует температуру охлаждающей жидкости. Если температура охлаждающей жидкости меньше оптимальной величины, система управления закрывает клапан подачи воздуха на турбину 30, и температура охлаждающей жидкости и поршневой группы повышается. Для охлаждения поверхности цилиндра поршневой группы энергомодуля насос 34 прокачивает охлаждающую жидкость от насоса 34 по каналу 42 цилиндра энергомодуля 43, радиатор 38 и снова к насосу 34. Охлаждающая жидкость отбирает тепло от стенок цилиндра энергомодуля 43 и переносит его в радиатор 38. Термостаты 44 и 45 настроены таким образом, что при превышении температуры охлаждающей жидкости сверх оптимальной перекрывают поток охлаждающей жидкости. При повышении охлаждающей жидкости и поршневых групп и цилиндра энергомодуля выше оптимальной величины система управления энергомодуля снова открывает клапан подачи воздуха на турбину 30.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения сжатым воздухом, включающего клапан подачи воздуха на турбину, турбину, вентилятор, насос, радиатор, поршневые группы энергомодуля с каналами для прокачки охлаждающей жидкости, цилиндр энергомодуля с каналом для прокачки охлаждающей жидкости и датчик температуры охлаждающей жидкости, отличающийся тем, что при действии энергомодуля в момент времени, когда в камеру сгорания поступит масса сжимаемого в компрессорных полостях поршней энергомодуля воздуха, система управления энергомодуля открывает клапан подачи воздуха на турбину из компрессорных полостей поршней энергомодуля, воздух поступает на турбину и приводит турбину во вращение, турбина соединена валами с вентилятором и насосом, насос прокачивает охлаждающую жидкость по каналам поршневых групп энергомодуля для прокачки охлаждающей жидкости и по каналам цилиндров для прокачки охлаждающей жидкости энергомодуля, через радиатор и снова к насосу, охлаждающая жидкость переносит тепло от поршневых групп и цилиндров энергомодуля в радиатор, вентилятор обдувает радиатор, который отдает тепло окружающей среде, система управления датчиком температуры воздуха контролирует температуру охлаждающей жидкости, и, если температура охлаждающей жидкости меньше оптимальной величины, система управления закрывает клапан подачи воздуха на турбину.

ТЕХНИЧЕСКАЯ ПРИМЕНИМОСТЬ ИЗОБРЕТЕНИЯ

Требования к материалам и технологиям заявленного изобретения не выходят за рамки современных возможностей.

ГРАФИЧЕСКИЙ МАТЕРИАЛ

Фигура 1. Принципиальная схема спаренного двухцилиндрового свободнопоршневого с внешней камерой сгорания энергомодуля.

1 - камера сгорания; 2, 6, 24, 25 - трубопровод; 3, 7, 16, 17 - газораспределительный клапан; 4, 8, 18, 19 - поршень расширительной машины; 5, 9 - расширительная машина; 10, 11 - якорь; 12 - катушка подмагничивания; 13 - статорный магнит; 15 - катушка генератора; 20, 21, 22, 25, 26, 27, 28, 29 - обратный клапан.

Фигура 2. Принципиальная схема системы охлаждения поршневых групп и цилиндров энергомодуля с приводом насоса системы охлаждения сжатым воздухом.

30 - клапан подачи воздуха на турбину; 31 - турбина; 32, 35, 37, 40 - канал; 33 - вентилятор; 34 - насос; 36 - канал поршневой группы; 38 - радиатор; 39 - поршневая группа; 41 - датчик температуры охлаждающей жидкости, 42 - канал цилиндра энергомодуля, 43 - цилиндр энергомодуля, 44, 45 - термостат.

Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения сжатым воздухом, включающего клапан подачи воздуха на турбину, турбину, вентилятор, насос, радиатор, поршневые группы энергомодуля с каналами для прокачки охлаждающей жидкости, цилиндр энергомодуля с каналом для прокачки охлаждающей жидкости и датчик температуры охлаждающей жидкости, отличающийся тем, что при действии энергомодуля в момент времени, когда в камеру сгорания поступит масса сжимаемого в компрессорных полостях поршней энергомодуля воздуха, система управления энергомодуля открывает клапан подачи воздуха на турбину из компрессорных полостей поршней энергомодуля, воздух поступает на турбину и приводит турбину во вращение, турбина соединена валами с вентилятором и насосом, насос прокачивает охлаждающую жидкость по каналам поршневых групп энергомодуля для прокачки охлаждающей жидкости и по каналам цилиндров для прокачки охлаждающей жидкости энергомодуля, через радиатор и снова к насосу, охлаждающая жидкость переносит тепло от поршневых групп и цилиндров энергомодуля в радиатор, вентилятор обдувает радиатор, который отдает тепло окружающей среде, система управления датчиком температуры воздуха контролирует температуру охлаждающей жидкости, и, если температура охлаждающей жидкости меньше оптимальной величины, система управления закрывает клапан подачи воздуха на турбину.



 

Похожие патенты:

Изобретение относится к электротехнике, а именно к системам двигатель-генератор. Электрический генератор содержит верхний 2 и нижний 3 неподвижные поршни.

Изобретение относится к двигателям внутреннего сгорания с гидравлическим приводом и может быть использовано для выработки электроэнергии и тепла. Гидродвигатель содержит два рабочих цилиндра 1, 2, состоящих из соосно расположенных внутреннего 3 и внешнего 4 цилиндров.

Изобретение относится к энергомашиностроению. Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения выхлопными газами, включающего клапан подачи воздуха на турбину, вентилятор, насос, радиатор, поршневые группы энергомодуля с каналами для прокачки охлаждающей жидкости, цилиндр энергомодуля с каналом для прокачки охлаждающей жидкости и датчик температуры охлаждающей жидкости, при этом коллектор выхлопных газов энергомодуля с приводом насоса системы охлаждения выхлопными газами соединен с выхлопными каналами газораспределительных клапанов энергомодуля для пуска системы охлаждения поршневых групп и цилиндров, система управления энергомодулем открывает клапан подачи выхлопных газов на турбину и приводит ее во вращение, турбина соединена валами с вентилятором и насосом, насос прокачивает охлаждающую жидкость по каналам поршневых групп энергомодуля для прокачки охлаждающей жидкости и по каналам цилиндров для прокачки охлаждающей жидкости энергомодуля, через радиатор и снова к насосу, охлаждающая жидкость переносит тепло от поршневых групп и цилиндров энергомодуля в радиатор, вентилятор обдувает радиатор, который отдает тепло окружающей среде, система управления датчиком температуры воздуха контролирует температуру охлаждающей жидкости, и если температура охлаждающей жидкости меньше оптимальной величины, система управления закрывает клапан подачи выхлопных газов на турбину.

Способ уменьшения сопротивления магнитного потока воздушного зазора между якорями линейного электрогенератора свободнопоршневого энергомодуля с внешней камерой сгорания достигается следующим образом.

Изобретение относится к области энергомашиностроения. Способ управления температурой поршней и штоков свободнопоршневого с внешней камерой сгорания энергомодуля шунтированием радиатора осуществляется следующим образом.

Изобретение относится к энергомашиностроению. Способ управления температурой поршневых групп свободнопоршневого с внешней камерой сгорания энергомодуля электропомпой, содержащего систему управления энергомодуля, электропомпу, поршневые группы энергомодуля с каналами прокачки охлаждающей жидкости, радиатор и датчик температуры охлаждающей жидкости, при этом электропомпа прокачивает охлаждающую жидкость через каналы поршневых групп энергомодуля, охлаждающая жидкость отбирает тепло от поршневых групп энергомодуля и через радиатор возвращается к электропомпе, система управления энергомодулем по сигналу датчика температуры охлаждающей жидкости контролирует температуру охлаждающей жидкости, при понижении температуры охлаждающей жидкости ниже оптимальной величины датчик температуры охлаждающей жидкости подает сигнал системе управления на прекращение подачи напряжения на электропомпу, в результате чего температура охлаждающей жидкости и поршневых групп повышается, а при понижении температуры поршневых групп система управления подает напряжение на электропомпу.

Изобретение относится к свободнопоршневым энергомодулям. Способ управления температурой поршневых групп свободнопоршневого с внешней камерой сгорания энергомодуля состоит в следующем.

Изобретение относится к электротехнике, а именно к системам двигатель-генератор, и может быть использовано при проектировании и производстве источников переменного электрического тока.

Изобретение относится к области энергомашиностроения. Способ охлаждения внешней камеры сгорания двухцилиндрового однотактного свободнопоршневого энергомодуля, включающего общую внешнюю камеру сгорания энергомодуля с рубашкой охлаждения, две расширительные машины с поршнями и штоками энергомодуля, систему охлаждения поршней и штоков энергомодуля, состоит в том, что рубашка охлаждения внешней камеры сгорания энергомодуля соединяется трубопроводами с системой охлаждения поршней и штоков расширительных машин энергомодуля, при этом охлаждающая жидкость, прокачиваемая системой охлаждения поршней и штоков расширительных машин энергомодуля и охлаждаемая в радиаторе, последовательно охлаждает сначала поршни и штоки расширительных машин энергомодуля, а затем общую внешнюю камеру сгорания энергомодуля, или рубашка охлаждения внешней камеры сгорания энергомодуля соединяется трубопроводами с системой охлаждения поршней и штоков расширительных машин энергомодуля так, что охлаждающая жидкость, прокачиваемая системой охлаждения поршней и штоков расширительных машин энергомодуля и охлаждаемая в радиаторе, сначала охлаждает общую внешнюю камеру сгорания энергомодуля, а затем поршни и штоки расширительных машин энергомодуля.

Изобретение относится к области тепловых двигателей, а именно к свободнопоршневым двигателям внутреннего сгорания. Свободнопоршневой двигатель содержит размещенный в цилиндре поршень, одним торцом взаимодействующий с камерой сгорания, а другим - с демпферной камерой, систему клапанов и устройство подачи топлива в камеру сгорания.

Изобретение относится к двигателестроению, в частности к мотокомпрессорам со свободно движущимися поршнями. Свободнопоршневой мотокомпрессор состоит из 2-12 блоков цилиндров, закрепленных на общей раме (1). Блоки содержат по одному цилиндру двухтактного двигателя внутреннего сгорания (2) и поршневого компрессора (3). Осевые линии блоков цилиндров параллельны между собой и перпендикулярны к плоскости общей рамы. Поршни всех блоков связаны между собой механизмом синхронизации (4). Механизм синхронизации содержит крейцкопфы (22), размещенные в направляющих общей рамы (25) соосно с цилиндрами двигателя и компрессора, с жестко присоединенными к ним штоками двигателя (23) и компрессора (24), а на боковой поверхности крейцкопфов со стороны рядом расположенных блоков цилиндров нарезаны зубчатые рейки (26), которые входят в зацепление с зубчатыми венцами коромысел (27), расположенных между крейцкопфами. Количество коромысел на одно меньше, чем количество блоков цилиндров. Изобретение обеспечивает повышение надежности устройства. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области энергомашиностроения. Способ пневматического привода двухклапанного газораспределителя свободнопоршневого энергомодуля с общей внешней камерой сгорания состоит в следующем. Сжатый воздух для привода пневматического двухклапанного газораспределителя энергомодуля отбирается из магистрали подачи сжатого воздуха во внешнюю камеру сгорания, поступает в пневмоаккумулятор и заряжает его. Для открытия газораспределительного клапана система управления устанавливает золотник управления положением газораспределительного клапана в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода газораспределительного клапана, при поступлении сжатого воздуха в которую газораспределительный клапан открывается, и продукты сгорания из внешней камеры сгорания поступают в полость поршня расширительной машины энергомодуля. Для закрытия газораспределительного клапана система управления переводит золотник управления положением газораспределительного клапана в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода газораспределительного клапана, при поступлении сжатого воздуха в которую газораспределительный клапан закрывается. После такта выпуска отработавших продуктов сгорания клапан впуска продуктов сгорания переводится в закрытое, а клапан выпуска отработавших продуктов сгорания в открытое положение. Для этого система управления переводит золотник управления потоком воздуха клапана впуска-выпуска в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода клапана впуска-выпуска, при поступлении сжатого воздуха в которую клапан впуска продуктов сгорания закрывается, а клапан выпуска отработавших продуктов сгорания открывается. Отработавшие продукты сгорания из полости поршня расширительной машины энергомодуля выбрасываются в выхлопной коллектор. Для возвращения клапана впуска продуктов сгорания в открытое, а клапан выпуска отработавших продуктов сгорания в закрытое положение система управления переводит золотник управления потоком воздуха клапана впуска-выпуска в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода клапана впуска-выпуска, при поступлении сжатого воздуха в которую клапан впуска продуктов сгорания открывается, а клапан выпуска отработавших продуктов сгорания закрывается. Изобретение обеспечивает повышение интенсивности процессов газообмена в цилиндрах свободнопоршневого энергомодуля с внешней камерой сгорания во всем диапазоне нагрузок на энергомодуль. 2 ил.

Изобретение относится к области энергомашиностроения. Способ пневматического привода двухклапанного газораспределителя свободнопоршневого энергомодуля с общей внешней камерой сгорания состоит в следующем. Сжатый воздух для привода пневматического двухклапанного газораспределителя энергомодуля отбирается из магистрали подачи сжатого воздуха во внешнюю камеру сгорания, поступает в пневмоаккумулятор и заряжает его. Для открытия газораспределительного клапана система управления устанавливает золотник управления положением газораспределительного клапана в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода газораспределительного клапана, при поступлении сжатого воздуха в которую газораспределительный клапан открывается, и продукты сгорания из внешней камеры сгорания поступают в полость поршня расширительной машины энергомодуля. Для закрытия газораспределительного клапана система управления переводит золотник управления положением газораспределительного клапана в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода газораспределительного клапана, при поступлении сжатого воздуха в которую газораспределительный клапан закрывается. После такта выпуска отработавших продуктов сгорания клапан впуска продуктов сгорания переводится в закрытое, а клапан выпуска отработавших продуктов сгорания в открытое положение. Для этого система управления переводит золотник управления потоком воздуха клапана впуска-выпуска в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода клапана впуска-выпуска, при поступлении сжатого воздуха в которую клапан впуска продуктов сгорания закрывается, а клапан выпуска отработавших продуктов сгорания открывается. Отработавшие продукты сгорания из полости поршня расширительной машины энергомодуля выбрасываются в выхлопной коллектор. Для возвращения клапана впуска продуктов сгорания в открытое, а клапан выпуска отработавших продуктов сгорания в закрытое положение система управления переводит золотник управления потоком воздуха клапана впуска-выпуска в положение, при котором воздух из пневмоаккумулятора поступает в ту полость поршня привода клапана впуска-выпуска, при поступлении сжатого воздуха в которую клапан впуска продуктов сгорания открывается, а клапан выпуска отработавших продуктов сгорания закрывается. Изобретение обеспечивает повышение интенсивности процессов газообмена в цилиндрах свободнопоршневого энергомодуля с внешней камерой сгорания во всем диапазоне нагрузок на энергомодуль. 2 ил.

Изобретение относится к области теплоэлектроэнергетики и предназначено для обеспечения потребностей в тепле и электроэнергии в производственных и жилых помещениях при отсутствии электропитания от сети. Техническим результатом является повышение надежности и эффективности установки путем улучшения динамической устойчивости системы при переходных режимах, возникающих при скачках электрической или тепловой нагрузок, а также повышение КПД. Сущность изобретения заключается в том, что устройство включает модуль электрогенерирующего устройства (18), в состав которого входит двигатель Стирлинга (1), основная газовая горелка (2) для подвода тепловой энергии к головке двигателя (1), синхронный линейный генератор с постоянными магнитами (3), интегрированный в корпус двигателя (1), настроечная резонансная емкость (11) на выходе линейного генератора (3) и система охлаждения (10) двигателя (1); модуль преобразовательной силовой электроники (19), в состав которого входит инвертор (5), выпрямитель (7), накопитель электрической энергии (4) и общая шина переменного тока (6), к которой подключена настроечная емкость (11) модуля электрогенерирующего устройства (18); модуль теплогенерирующего устройства (20), в состав которого входит теплогенератор (12), дополнительная газовая горелка (13) и аварийный охладитель (14); модуль регулируемой балластной нагрузки (9), подключенный к общей шине переменного тока (6) модуля преобразовательной силовой электроники (19); систему автоматического управления (17), сигналы которой обеспечивают управление вышеуказанными модулями (18), (19), (20), (9), выполненную с возможностью контроля тока и напряжения линейного генератора (3), температуры тепловой головки двигателя Стирлинга (1) и управления включением линейного генератора (3) в функции температурного режима тепловой головки двигателя Стирлинга (1). 3 з.п. ф-лы, 1 ил.

Изобретение относится к двигателям внутреннего сгорания с электрическим генератором и может использоваться для выработки электроэнергии и перекачки жидкости. Двигатель содержит цилиндр 1 с поршнями 2 объемного насоса, соединенными между собой штоком 3. На концах цилиндра 1 расположены уплотнительные поршни 4 и камеры сгорания 5. Объемный насос разделен перегородкой 7 на камеры 8, 9 со всасывающими 10 и нагнетательными клапанами 11. Камеры 8, 9 заполнены рабочей жидкостью, в качестве которой используется ферромагнитная жидкость на водяной основе. Всасывающий 12 и нагнетательный 13 патрубки объемного насоса соединены энергосберегающей магистралью 14, вокруг которой установлена обмотка 15 линейного электрического генератора, концентрично которой размещен кольцевой постоянный магнит 16. При воспламенении смеси в камерах сгорания 5 происходит возвратно-поступательное движение поршней 2, перекачивающих жидкость по энергосберегающей магистрали 14. Кольцевой магнит 16 создает магнитное поле, перемещение столба ферромагнитной жидкости генерирует ЭДС в обмотке 15 линейного электрического генератора. Изобретение обеспечивает расширение функциональных возможностей двигателя, а также генерацию электрической энергии. 1 ил.

Изобретение относится к двигателям внутреннего сгорания с электрическим генератором и может использоваться для выработки электроэнергии и перекачки жидкости. Двигатель содержит цилиндр 1 с поршнями 2 объемного насоса, соединенными между собой штоком 3. На концах цилиндра 1 расположены уплотнительные поршни 4 и камеры сгорания 5. Объемный насос разделен перегородкой 7 на камеры 8, 9 со всасывающими 10 и нагнетательными клапанами 11. Камеры 8, 9 заполнены рабочей жидкостью, в качестве которой используется ферромагнитная жидкость на водяной основе. Всасывающий 12 и нагнетательный 13 патрубки объемного насоса соединены энергосберегающей магистралью 14, вокруг которой установлена обмотка 15 линейного электрического генератора, концентрично которой размещен кольцевой постоянный магнит 16. При воспламенении смеси в камерах сгорания 5 происходит возвратно-поступательное движение поршней 2, перекачивающих жидкость по энергосберегающей магистрали 14. Кольцевой магнит 16 создает магнитное поле, перемещение столба ферромагнитной жидкости генерирует ЭДС в обмотке 15 линейного электрического генератора. Изобретение обеспечивает расширение функциональных возможностей двигателя, а также генерацию электрической энергии. 1 ил.
Наверх