Способ парного пуска противосамолётных ракет

Изобретение относится к области ракетной техники. Способ парного пуска противосамолетных ракет включает запуск первой противорадиолокационной ракеты, нацеленной на радиолокатор самолета противника или на его сигнатуру от постороннего радиолокатора, летящей по упреждающей пересекающейся траектории, а затем с перерывом вслед ей запуск второй ракеты с инфракрасной головкой самонаведения, нацеленной на сопло противорадиолокационной ракеты. Скорость противорадиолокационной ракеты равна или больше, чем у ракеты с инфракрасным самонаведением. Противорадиолокационная ракета снабжена автопилотом, автоматически включающимся при потере цели. В топливо противорадиолокационной ракеты добавлен порошок лития или меди, и/или соединение лития или меди, например нитрат лития, боргидрид лития. Противорадиолокационная ракета имеет приемник радиоизлучения с измерителем уровня принимаемого сигнала, причем данные об этом уровне перед пуском выводятся на пусковое устройство оператора или на автоматическое пусковое устройство. Ракета с инфракрасным самонаведением имеет гироскоп для сохранения горизонтали, а головка самонаведения этой ракеты размещена с наклоном вниз. Изобретение позволяет увеличить вероятность поражения цели. 5 з.п. ф-лы.

 

Изобретение относится к противосамолетным ракетам, преимущественно к переносным зенитно-ракетным комплексам (ПЗРК).

Известен способ парного пуска ракет с пассивным радиолокационным наведением, применявшийся на истребителе МИГ-25 для повышения вероятности поражения цели. Но в этом случае ракеты действовали самостоятельно, то есть пуск одной, двух или трех ракет был таким, что работа ракет не была связана между собой.

Задача и технический результат этого варианта изобретения - увеличение дальности действия и вероятности поражения самолетов.

Для этого оружие содержит две ракеты - противорадиолокационную (с пассивным наведением на источник радиоизлучения) и с инфракрасным наведением (с инфракрасной головкой самонаведения или с тепловизором).

Способ использования этого оружия состоит в том, что первой запускается противорадиолокационная ракета, а затем с некоторым перерывом вслед ей запускается ракета с инфракрасным самонаведением, нацеленная на сопло противорадиолокационной ракеты.

Разумеется, при этом скорость противорадиолокационной ракеты должна быть равной или незначительно больше, чем у ракеты с инфракрасным самонаведением. Это условие при идентичности корпусов и двигателей ракет выполняется «автоматически» - обтекатель противорадиолокационной ракеты имеет лучшую аэродинамическую форму, чем обтекатель ракеты с инфракрасным самонаведением.

Желательно, чтобы чувствительность противорадиолокационной ракеты позволяла обнаруживать радиоизлучение, отраженное от цели при облучении ее, например, самолетом дальнего радиолокационного обнаружения. Это позволило бы перехватывать крылатые ракеты и самолеты с неработающим радиолокатором. Разумеется, было бы лучше, если бы ракета могла наводиться на цель в активном радиолокационном режиме, но тогда размер ракеты получится слишком большим.

Смыл такого парного пуска в том, что дальность обнаружения цели у противорадиолокационной ракеты больше, чем у инфракрасной, особенно в плохих метеоусловиях: туман, облачность, дождь, снег, дым. Противорадиолокационная ракета в данном случае летит на работающий радиолокатор вражеского самолета, а если позволяет чувствительность - на отраженный от цели сигнал некоего радиолокатора, причем обязательно по пересекающейся траектории (это лучше всего организовать по Патенту №2400590). То есть противорадиолокационная ракета как бы подводит ракету с инфракрасным самонаведением на такое расстояние, на котором она способна захватить цель, как источник инфракрасного излучения соответствующего спектра.

Но вражеский истребитель, обнаружив приближение ракет, может выключить радиолокатор (по крайней мере его активный режим). Чтобы при этом противорадиолокационная ракета не ушла в сторону, она снабжена автопилотом, автоматически включающимся при потере цели.

Если противорадиолокационная ракета потеряет цель, то ракета с инфракрасным самонаведением не должна воспринимать ее сопло как основную цель, чтобы иметь возможность при появлении инфракрасной цели с нужным диапазоном спектра (то есть вражеского самолета) автоматически перенацелиться. Для этого соплу противорадиолокационной ракеты специально придается спектр излучения, не свойственный настоящему самолету, например приданием факелу двигателя синего или зеленого оттенка. Для этого в топливо противорадиолокационной ракеты добавлен порошок лития или меди, или иного вещества с сине-зеленым спектром термического излучения. Или же соединение лития, меди и т.п., например нитрат лития, боргидрид лития и т.п.

Для самостоятельного определения примерной дальности до цели противорадиолокационная ракета имеет приемник радиоизлучения с измерителем уровня принимаемого сигнала, причем данные об этом уровне перед пуском выводятся на пусковое устройство оператора или на автоматическое пусковое устройство. Этот приемник не является дополнительным устройством противорадиолокационной ракеты, а является ее штатным приемником. Дополнительным является лишь устройство вывода принимаемого сигнала на пусковое устройство.

Работает оружие так: допустим в условиях практического отсутствия визуальной видимости (туман и т.п.) оператор ПЗРК обнаружил источник радиоизлучения в нужном диапазоне частот с нужной модуляцией. Определив уровень принимаемого сигнала, оператор может приблизительно определить дальность до излучателя (в случае отраженного сигнала это затруднительно, так как не известна сигнатура цели). То есть оператор может определить, находится ли цель в зоне поражения или же она за ее пределами. Еще надежнее, если оператор получит разведданные об этом на свой пусковой информационный планшет.

Затем оператор пускает по цели противорадиолокационную ракету (например, на основе ПЗРК «Верба»). Через 1-4 секунды вслед за ней второй оператор пускает ракету «Верба» или аналогичную. Ракета «Верба» летит на факел противорадиолокационной ракеты, так как нет другого источника инфракрасного излучения.

Допустим пилот вражеского самолета заподозрил угрозу и отключил радиолокатор. Тогда если нет отраженного сигнала, противорадиолокационная ракета продолжит полет по пересекающейся траектории на автопилоте. Если пилот резко не изменит курс и высоту полета (а в случае перехвата крылатой ракеты этого не случится), то через некоторое время обе ракеты, а значит, и ракета «Верба» окажется вблизи цели и сможет захватить источник инфракрасного излучения, чей спектр будет более отвечать спектру самолета, то есть вражеский самолет. И попадет в него.

Учитывая возросшую возможную дальность обнаружения цели, целесообразно увеличить дальность полета ракет. Для этого можно к этим ракетам прибавить первую ступень. В качестве нее может выступать штатный двигатель этой же ракеты «Верба». При этом можно оба двигателя сделать однорежимными (однорежимный двигатель обладает большим удельным импульсом), но разного режима. В топливо первой ступени можно добавить ускоритель горения, например, нитроглицерин. А топливо второй ступени можно оставить базовым или можно добавить в него замедлитель горения, например часть топлива заменить гексаметилентетрамином (практика показала, что он горит достаточно медленно).

Но в связи с двухступенчатостью возникает проблема - не попадет ли вторая ракета в отделившуюся ступень первой? Чтобы этого не произошло, ракету с инфракрасным самонаведением следует оснастить гироскопом для сохранения горизонтали, а головку самонаведения этой ракеты разместить с наклоном вниз примерно на 0.5-2 градуса. Тогда траектория второй ракеты будет пролегать несколько выше траектории первой ракеты и соударения второй ракеты с отделившейся ступенью исключено.

1. Способ парного пуска противосамолетных ракет, отличающийся тем, что первой запускается противорадиолокационная ракета, нацеленная на радиолокатор самолета противника или на его сигнатуру от постороннего радиолокатора, летящая по упреждающей пересекающейся траектории, а затем с некоторым перерывом вслед ей запускается ракета с инфракрасной головкой самонаведения, нацеленная на сопло противорадиолокационной ракеты.

2. Способ по п. 1, отличающийся тем, что скорость противорадиолокационной ракеты равна или больше, чем у ракеты с инфракрасным самонаведением.

3. Способ по п. 1, отличающийся тем, что противорадиолокационная ракета снабжена автопилотом, автоматически включающимся при потере цели.

4. Способ по п. 1, отличающийся тем, что в топливо противорадиолокационной ракеты добавлен порошок лития или меди, и/или соединение лития или меди, например нитрат лития, боргидрид лития.

5. Способ по п. 1, отличающийся тем, что противорадиолокационная ракета имеет приемник радиоизлучения с измерителем уровня принимаемого сигнала, причем данные об этом уровне перед пуском выводятся на пусковое устройство оператора или на автоматическое пусковое устройство.

6. Способ по п. 1, отличающийся тем, что ракета с инфракрасным самонаведением имеет гироскоп для сохранения горизонтали, а головка самонаведения этой ракеты размещена с наклоном вниз.



 

Похожие патенты:

Изобретение относится к боеприпасам, в частности к артиллерийским снарядам. Снаряд содержит корпус, взрыватель и взрывчатое вещество, при этом корпус выполнен из керамики, на которую намотаны концентричные слои растянутых параллельно лежащих волокон, ориентированных послойно под углом 0º, +45º, -45º к продольной оси снаряда, скрепленных между собой посредством полимерного связующего, волокна выполнены с поперечным сечением в виде равностороннего треугольника, при этом площадь поперечного сечения волокон уменьшается послойно в направлении от оси снаряда, а соседние волокна контактируют между собой взаимообращенными гранями.

Группа изобретений относится к вариантам выполнения крылатой ракеты для поражения преимущественно наземных целей. Технический результат – повышение эффективности поражения целей крылатой ракетой.

Группа изобретений относится к газодинамическому управлению ракетой или снарядом. Система гидрогазодинамического управления ракетой или снарядом включает по меньшей мере один исполнительно-приводной элемент, соединенный прямо или косвенно по меньшей мере с одним общим исполнительно-приводным механизмом для обеспечения создания усилия для приведения в действие, передаваемого через общий исполнительно-приводной механизм.

Изобретение относится к области машиностроения, а именно к системам соединения разделяемых частей летательных аппаратов. Технический результат - повышение сдвигоустойчивости узла соединения при длительных знакопеременных нагрузках с одновременной возможностью его распадения - отделения.

Группа изобретений относится к управляемому стратегическому вооружению, в частности к сверхзвуковым летательным аппаратам и способам реализации их полета. Сверхзвуковой летательный аппарат содержит стартовый двигатель с механизмом разделения ступеней, маршевую ступень с планером и с функциональными блоками.

Предлагаемая группа изобретений относится к области ракетной техники и может быть использована в малогабаритных зенитных и противотанковых ракетах. Бикалиберная ракета (вариант 1) содержит разгонный двигатель и механически связанный с ним переходной обтекатель, телескопически установленные на кормовую часть маршевой ступени.

Ракета // 2613391
Изобретение относится к ракетной технике и может быть использовано в малогабаритных ракетах с отделяемой стартовой ступенью. Технический результат - упрощение конструкции ракеты при повышении надежности ее работы.

Предложен адаптивный цифровой спектральный селектор цели. Он содержит оптико-электронный следящий гирокоординатор с тремя каналами спектроделения оптического излучения, тремя фотоприемниками, тремя импульсными усилителями с однократным дифференцированием, выходы которых подключены к амплитудным детекторам, а выходы детекторов к схеме сравнения уровней, или вычислителям отношений уровней, а выходы схемы сравнения, или вычислителей отношений - к схеме определения и формирования "стробов" принадлежности сигналов цели или помехе.

Группа изобретений относится к области систем управления летательными аппаратами и может быть использована в контуре управления рулевого привода ракет с широтно-импульсным методом регулирования.

Изобретение относится к области вооружения, реализующего задачи повышения точности стрелкового оружия, более конкретно к способам управления вращающейся пулей и снарядом высокоточного оружия.

Изобретение относится к области автоматического управления при самонаведении движущегося объекта (в дальнейшем «объект») на другой движущийся объект (в дальнейшем «цель»). Многофункциональный способ самонаведения с дискретными коррекциями траектории движущегося объекта отличается тем, что траекторию объекта формируют в виде сменяющих друг друга дуговых отрезков-полуциклов, по которым объект перемещается с постоянной по модулю, но противоположной по знаку действующей (максимально возможной) угловой скоростью.

Изобретение относится к системам самонаведения, в частности к антеннам с механическим сканированием зеркала антенны, и может быть использовано на подвижных объектах, например, в активных радиолокационных головках самонаведения сверхзвуковых ракет на конечном участке выхода на цель.

Предложен способ самонаведения движущегося объекта по информации о факте визирования цели при условии совпадения направления оси локатора с направлением вектора скорости объекта.

Изобретение относится к вооружению, в частности к системам огневого поражения радиоэлектронных объектов. Для поражения РЭС, функционирующих в СЧ, ВЧ и ОВЧ, на одном управляемом боеприпасе (УБП) используется два метода самонаведения: на начальных участках полета для поиска и грубого наведения на РЭС - радиосистема самонаведения; на конечном участке, после отключения наведения по РЭС, для более точного наведения - оптико-электронная система.

Группа изобретений относится к способу и устройству для формирования траектории летательного аппарата. Для формирования траектории летательного аппарата в блок памяти передают сигналы, пропорциональные координатам, курсу и горизонтальной скорости цели, запоминают их на момент поступления, передают или вводят заданную величину промаха, сравнивают полученные сигналы, оценивают отклонения ЛА по курсу и дальности, получают поправку к текущему курсу и запоминают ее в выходном буфере, передают из буфера в систему автоматического управления курсом ЛА для отработки, обеспечивают движения ЛА по заданному радиусу вокруг цели, формируют новую траекторию при движении цели.

Изобретение относится к области авиационного приборостроения и может найти применение в системах автоматического управления реактивными снарядами. Технический результат - повышение эффективности систем самонаведения.

Изобретение относится к области радиоуправления и может быть использовано в радиоэлектронных системах радиоуправления при ближнем наведении истребителя в наивыгоднейшую, упрежденную точку встречи, на групповую воздушную цель (ГВЦ) с дополнительным созданием условия для обеспечения требуемого линейного разрешения целей в группе в бортовой радиолокационной станции истребителя за счет эффекта радиолокационного синтезирования апертуры антенны.

Изобретение относится к области авиационной техники и может использоваться при разработке авиационных и зенитных управляемых ракет. Предложенный способ поражения цели-постановщика когерентных помех заключается в пространственном разнесении излучателя зондирующего сигнала и приемника отраженного от цели сигнала, которое достигается путем одновременного пуска функционально связанной группы как минимум из двух ракет, передатчики которых излучают на разных частотах, а приемники воспринимают частоты передатчиков соседних ракет.

Предлагаемое техническое решение относится к беспилотным летательным аппаратам с лазерными головками самонаведения и может быть использовано в ракетах, размещенных на внешних подвесках авиационных носителей.

Изобретение может быть использовано в системах управления и самонаведения летательных аппаратов, например ракет. Головка самонаведения содержит оптическую систему, выполненную с возможностью угловых отклонений относительно двух ортогональных осей подвеса по команде от двухосевой системы стабилизации и слежения, последовательно соединенные блок обнаружения и распознавания, блок выделения координат заданной точки цели и блок управления слежением, а также блок памяти и хранения эталонного изображения цели, задаваемого в виде предстартового полетного задания.

Группа изобретений относится к устройству маркировки цели и системе обработки цели. Устройство маркировки цели содержит компактный летательный блок, содержащий датчики, измеряющие параметры окружения, блок передачи данных, излучатель. Система обработки цели содержит устройство маркировки цели, автономное летательное устройство, средство для обнаружения информации позиции, средство наведения летательного устройства, средство для обработки цели. Обеспечивается надежность определения местонахождения, идентификации и назначения цели, повышение надежности наведения на цель. 2 н. и 13 з.п. ф-лы, 7 ил.
Наверх