Способ изготовления кристаллов микроэлектромеханических систем

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых кристаллов микроэлектромеханических систем, используемых в конструкциях микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости. В способе изготовления кристаллов микроэлектромеханических систем наносят защитные покрытия на лицевую и обратную стороны пластины, проводят фотолитографию по защитным слоям с лицевой и обратной сторон, травят кремний с лицевой и обратной сторон пластины на заданную глубину и с заданным профилем, наносят защитный слой с лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины, удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины. Согласно изобретению после травления кремния на заданную глубину и с заданным профилем удаляют защитный слой с лицевой стороны пластины и профиля вытравленных канавок, проводят обработку профиля в полирующем травителе и удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины. Кроме того, фотолитографию по защитным слоям на лицевой и обратной стороне проводят одновременно, в качестве защитного слоя с лицевой стороны пластины и профиля вытравленных канавок наносят медную пленку, в качестве маскирующих покрытий с лицевой и обратной стороны используют идентичные материалы, например нитрид кремния. Изобретение повышает чувствительность и прочность конструкций микроэлектромеханических систем за счет повышения технологичности изготовления и формирования кремниевых кристаллов с минимальной шероховатостью вертикального профиля канавок. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к области приборостроения и может применяться при изготовлении кремниевых кристаллов микроэлектромеханических систем, используемых в конструкциях микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости.

Известны методы формирования [Галперин В.А. Процессы плазменного травления в микро- и нанотехнологиях: учебное пособие / В.А. Галперин, Е.В. Данилкин, А.И. Мочалов; под ред. С.П. Тимошенкова. - М: БИНОМ. Лаборатория знаний, 2010. - 283 с., стр. 108-111, 114-116] канавок в кремнии. В методах плазмохимического травления кремния необходимо обеспечить хороший теплоотвод от обрабатываемых пластин и подложкодержателя; для улучшения вертикальности профиля подают напряжение смещения на обрабатываемые пластины и управляют параметрами подводимой мощности к обрабатываемым пластинам. Некоторые методы, такие как непрерывный процесс травления, позволяет формировать неглубокие структуры с гладкими стенками и наиболее применим в технологии СБИС, где не требуется формирование структур из кремния толщиной, равной толщине исходной пластины кремния. Поэтому метод неприменим к технологии формирования микроэлектромеханических систем. Bosch-процесс и криогенный процесс формирования канавок эффективны при формировании микроэлектромеханических изделий, однако обоим методам присущ следующий недостаток - выраженная шероховатость боковых стенок профиля формируемых канавок в виде микронеровностей с острыми гранями, образующаяся после каждого шага травления. Микронеровности являются концентраторами механических напряжений, что снижает механическую прочность конструкций микроэлектромеханических систем. Помимо этого, к криогенному процессу предъявляют жесткие требования по необходимости обеспечения тщательной очистки обратной стороны пластины, что делает процесс сложным и дорогостоящим.

Известен способ изготовления электростатического силового МЭМС-ключа [Патент Российской Федерации №2527942, Н01Н 59/00, 2013]. В способе изготовления используют подложку монокристаллического кремния. Структуру микроэлектромеханического МЭМС-ключа формируют следующей последовательностью операций: формируют технологическую мембрану при помощи глубокого анизотропного травления в 33% растворе КОН, формируют выступы методом локального глубокого термического окисления кремния в парах воды с образованием и последующим удалением SiO2 методом жидкостно-химического травления, формируют микрорельеф и мембраны подвижного электрода при помощи анизотропного травления кремниевой пластины в 33% растворе КОН, осуществляют создание приповерхностного высоколегированного n+ слоя с последующим удалением образующегося фосфоросиликатного стекла, формирование изоляционного слоя путем окисления пластины с последующим осаждением нитрида кремния и формирование рисунка изоляции, формирование металлического шунта при помощи напыления золота на подслой вольфрама с использованием обратной фотолитографии, формирование подвижного электрода в виде консоли с выполненными в ней симметричными щелевидными отверстиями при помощи процесса глубокого плазмохимического травления кремния (Bosch-процесса). Данный метод применим к созданию технологических мембран толщиной 35-40 мкм и рабочих мембран толщиной 20-25 мкм и не может быть использован при формировании структур МЭМС, имеющих толщину структурных элементов, сопоставимых по толщине с исходной кремниевой пластиной. Кроме этого, применение различных режимов травления - анизотропного травления в растворе КОН и плазмохимического травления - снижает технологичность процесса.

Наиболее близким к заявляемому техническому решению является способ изготовления чувствительных элементов микромеханических систем [Патент Российской Федерации №2439741, H01L 21/308, 2010]. В способе изготовления чувствительных элементов наносят защитные покрытия на лицевую и обратную сторону пластины, проводят фотолитографию по защитным слоям с лицевой и обратной стороны, глубокое высокопрецизионное травление кремния с лицевой и обратной стороны пластины на заданную глубину и с заданным профилем, удаляют остатки маскирующих покрытий с лицевой и обратной стороны пластины, на кремниевую пластину после травления канавок с лицевой стороны и удаления остатков защитного покрытия производится операция нанесения слоя диоксида кремния для защиты лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины и механической фиксации выпадающих фрагментов конструкции. Способ предполагает проведение двух фотолитографий по защитным слоям - по нанесенному фоторезисту с лицевой стороны, по нанесенному алюминию с обратной стороны кремниевой пластины, удаление остатков маскирующих покрытий - фоторезиста с лицевой стороны, алюминия с обратной стороны пластины. Это усложняет технологический процесс изготовления, так как требует проведения раздельных операций фотолитографии с лицевой и обратной стороны пластин, применения различных маскирующих покрытий - фоторезиста с лицевой стороны и алюминия с другой стороны, требует применения различных химических реактивов для обработки и снятия указанных слоев. Применение различных по площади маскирующих покрытий с лицевой и обратной стороны приводит к появлению «загрузочного эффекта», связанного с различной скоростью травления кремния в открытых окнах разной площади. Это требует точного контроля времени травления с лицевой и обратной сторон пластины. Например, при травлении с лицевой стороны на 100 мкм, а с обратной стороны на 200 мкм (в два раза больше с обратной стороны), время травления с лицевой стороны может не быть ровно в два раза меньше времени травления с обратной стороны, что может вызвать затруднение контроля глубины травления. Кроме этого, при плазмохимическом методе формирования канавок возможно получение стенок вертикального профиля с выраженной шероховатостью, что снижает чувствительность и прочность микроэлектромеханических систем за счет возникновения концентраторов механических напряжений на микронеровностях с острыми гранями, образующих шероховатую поверхность профиля канавок. Указанное снижает технологичность изготовления кремниевых чувствительных элементов микроэлектромеханических систем.

Целью изобретения является повышение чувствительности и прочности конструкций микроэлектромеханических систем за счет повышения технологичности изготовления и формирования кремниевых кристаллов с минимальной шероховатостью вертикального профиля канавок.

Поставленная цель достигается за счет того, что в способе изготовления кристаллов микроэлектромеханических систем, включающем нанесение защитных покрытий на лицевую и обратную стороны пластины, фотолитографию по защитным слоям с лицевой и обратной сторон, травление кремния с лицевой и обратной сторон пластины на заданную глубину и с заданным профилем, нанесение защитного слоя с лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины, удаление остатков маскирующих покрытий с лицевой и обратной сторон пластины, согласно изобретению после травления кремния на заданную глубину и с заданным профилем удаляют защитный слой с лицевой стороны пластины и профиля вытравленных канавок, проводят обработку профиля в полирующем травителе, после чего удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины. Кроме того, фотолитографию по защитным слоям на лицевой и обратной стороне проводят одновременно, в качестве защитного слоя с лицевой стороны пластины и профиля вытравленных канавок наносят медную пленку, в качестве маскирующих покрытий с лицевой и обратной стороны используют идентичные материалы, например нитрид кремния.

Удаление защитного слоя с лицевой стороны пластины и профиля вытравленных канавок после травления кремния на заданную глубину и с заданным профилем перед удалением остатков маскирующих покрытий с лицевой и обратной сторон пластин позволяет провести обработку полученного профиля в полирующем травителе. Обработка в полирующем травителе снижает шероховатость вертикальных стенок профиля за счет преимущественного растворения микронеровностей, возникающих на формируемом профиле канавок при каждом шаге плазмохимического травления и являющихся концентраторами механических напряжений. Использование одновременной двусторонней фотолитографии с лицевой и обратной стороны позволяет снизить число фотолитографий по защитным слоям, сформированным на лицевой и обратной стороне и предназначенным в качестве маскирующих покрытий для процессов травления. Кроме того, применение в качестве маскирующих покрытий идентичных материалов, например нитрида кремния, требует меньшей номенклатуры применяемых химических реактивов для обработки маскирующих слоев. Кроме того, медная пленка в качестве защитного слоя с лицевой стороны и профиля вытравленных канавок позволяет получить лучшую теплопередачу от обрабатываемой пластины кремния при проведении процесса плазмохимического травления канавок и, кроме того, получить хороший электрический контакт между пластиной и подложкодержателем, что улучшает подачу напряжения смещения на пластину для управления формой профиля вертикальной канавки.

Указанное повышает технологичность изготовления и позволяет формировать кремниевые кристаллы микроэлектромеханических систем с минимальной шероховатостью вертикального профиля канавок, что приводит к повышению чувствительности и прочности конструкции.

На фиг. 1-4 показана последовательность технологических операций при изготовлении кристаллов микроэлектромеханических систем.

На фиг. 1 изображена кремниевая пластина с нанесенными защитными покрытиями на лицевой и обратной стороне пластины, где 1 - кремниевая пластина, 2 - защитные слои, сформированные одновременной двусторонней фотолитографией с лицевой и обратной стороны пластины.

На фиг. 2 изображена кремниевая пластина с вытравленными канавками с лицевой стороны пластины, где 1 - кремниевая пластина, 2 - защитные слои, сформированные одновременной двусторонней фотолитографией с лицевой и обратной стороны пластины, 3 - канавки, вытравленные с лицевой стороны пластины.

На фиг. 3 изображена кремниевая пластина с вытравленными канавками с лицевой и обратной стороны пластины, где 4 - нанесенный защитный слой с лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины, 5 - вытравленные канавки с обратной стороны пластины.

На фиг. 4 изображена кремниевая пластина с вытравленными канавками на заданную глубину и с заданным профилем, где 1 - кремниевая пластина, 6 - профиль вытравленных канавок до обработки в полирующем травителе с концентраторами механических напряжений в виде микронеровностей, 7 - профиль вытравленных канавок после обработки в полирующем травителе без концентраторов механических напряжений.

Способ изготовления кристаллов микроэлектромеханических систем заключается в следующем. На лицевую и обратную сторону пластины наносят защитное покрытие, выполняют одновременную двустороннюю фотолитографию по защитным слоям, формируя топологию будущего травления, при этом рисунок с лицевой стороны пластины повторяет рисунок с обратной стороны пластины, что позволяет исключить такое явление, как «загрузочный эффект», заключающийся в разной скорости травления кремния в разных по площади открытых окнах в маскирующих слоях, проводят операцию плазмохимического травления кремния с лицевой стороны пластины на заданную глубину и с заданным профилем травления, наносят защитный слой с лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины, защитный слой позволяет получить хороший электрический контакт между пластиной и подложкодержателем, что улучшает подачу напряжения смещения на пластину для управления формой профиля вертикальной канавки и, кроме этого, улучшает теплопередачу между пластиной и подложкодержателем, производят операцию плазмохимического травления кремния с обратной стороны пластины, доводя профиль до заданного, удаляют защитный слой с лицевой стороны пластины и профиля вытравленных канавок, проводят обработку профиля в полирующем травителе, применение полирующего травителя позволяет сглаживать шероховатость вертикальных стенок профиля за счет преимущественного растворения микронеровностей в виде раковин с острыми краями, являющихся концентраторами механических напряжений, возникающими на формируемом профиле канавок при каждом шаге плазмохимического травления, после чего удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины.

В данном способе изготовления повышение технологичности происходит за счет применения идентичных маскирующих покрытий, что снижает номенклатуру применяемых химических реактивов, применения медной пленки в качестве защитного слоя лицевой стороны и профиля вытравленных канавок, что позволяет получить хороший электрический контакт и обеспечить теплопередачу от обрабатываемой пластины и подложкодержателя для управления параметрами технологического процесса, такими как подача необходимого напряжения смещения и подводимой мощности при формировании канавок, применения двусторонней фотолитографии по защитным слоям, что сокращает количество фотолитографических операций, исключения «загрузочного эффекта» за счет формирования одинаковых топологических рисунков будущего травления с лицевой и обратной стороны пластины, возможности изготовления структурных элементов микроэлектромеханических систем, сопоставимых по толщине с исходной кремниевой пластиной, кроме того, применение полирующего травителя позволяет формировать вертикальный профиль канавок с пониженной шероховатостью по сравнению с известными аналогами, что приводит к повышению чувствительности и прочности конструкций микроэлектромеханических систем.

Пример реализации предложенного способа.

На кремниевую пластину (1) толщиной 300±10 мкм на лицевую и обратную сторону известными методами наносят защитные покрытия, одновременной двусторонней фотолитографией формируют топологию защитных слоев (2) будущего травления, при этом защитные слои (2) являются маскирующими по отношению к пластине (1) при проведении процессов травления (фиг. 1). Такими маскирующими покрытиями могут являться, например, слои нитрида кремния толщиной 0,4-0,6 мкм. После формирования одновременной фотолитографией рисунка защитных слоев (2) проводят операцию плазмохимического травления с лицевой стороны пластины (1) на глубину 150±10 мкм, формируя канавки (3) (фиг. 2). После формирования канавок (3) с лицевой стороны пластины (1) известными методами наносят защитный слой (4), например представляющий собой медную пленку толщиной 5-8 мкм с лицевой стороны пластины (1) и профиля вытравленных канавок (3) от растрава при последующем травлении с обратной стороны пластины (1), проводят плазмохимическое травление с обратной стороны пластины (1) на глубину 150±10 мкм, вытравливая канавки (5), формируя заданный профиль (фиг. 3). После этого стравливают защитный слой (4), проводят обработку пластины (1) в полирующем травителе, после этого профиль вытравленных канавок до обработки (6) в полирующем травителе отличается от профиля вытравленных канавок после обработки (7) в полирующем травителе, что выражается в снижении шероховатости поверхности профиля канавок за счет растворения микронеровностей, образующихся на поверхности вертикального профиля при операциях плазмохимического травления и являющихся концентраторами механических напряжений (фиг. 4).

Таким образом, предложенный способ повышает чувствительность и прочность конструкций микроэлектромеханических систем за счет повышения технологичности изготовления и формирования кремниевых кристаллов с минимальной шероховатостью вертикального профиля канавок.

1. Способ изготовления чувствительных элементов микроэлектромеханических систем, включающий нанесение защитных покрытий на лицевую и обратную стороны пластины, фотолитографию по защитным слоям с лицевой и обратной сторон, травление кремния с лицевой и обратной сторон пластины на заданную глубину и с заданным профилем, нанесение защитного слоя с лицевой стороны пластины и профиля вытравленных канавок от растрава при последующем травлении с обратной стороны пластины, удаление остатков маскирующих покрытий с лицевой и обратной сторон пластины, отличающийся тем, что после травления кремния на заданную глубину и с заданным профилем удаляют защитный слой с лицевой стороны пластины и профиля вытравленных канавок, проводят обработку профиля в полирующем травителе, после чего удаляют остатки маскирующих покрытий с лицевой и обратной сторон пластины.

2. Способ изготовления чувствительных элементов микроэлектромеханических систем по п. 1, отличающийся тем, что фотолитографию по защитным слоям на лицевой и обратной стороне проводят одновременно.

3. Способ изготовления чувствительных элементов микроэлектромеханических систем по п. 1, отличающийся тем, что в качестве защитного слоя с лицевой стороны пластины и профиля вытравленных канавок наносят медную пленку.

4. Способ изготовления чувствительных элементов микроэлектромеханических систем по п. 1, отличающийся тем, что в качестве маскирующих покрытий с лицевой и обратной стороны используют идентичные материалы, например нитрид кремния.



 

Похожие патенты:

Изобретение относится к области дифракционной оптики и может быть использовано для разработки новых дифракционных оптических элементов для диапазона 0,35-5,5 мкм. В основу изобретения поставлена задача получения периодических профилей на поверхности кристаллов парателлурита методом анизотропного химического травления.
Изобретение относится к области микроэлектроники, в частности к технологии создания 3D микроструктур кремния, являющихся элементной базой функциональной микроэлектроники, металл-стимулированным травлением с использованием локально расположенных масок Ni.

Изобретение относится к приборостроению и может быть использовано при изготовлении кремниевых микромеханических датчиков. Сущность изобретения: в способе изготовления упругих элементов из монокристаллического кремния окисляют плоскую круглую пластину с ориентацией базовой поверхности в плоскости (100), наносят на нее защитный слой фоторезиста, проводят фотолитографию, вскрывают окна в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропно травят на глубину для получения требуемой толщины упругих элементов.

Изобретение может быть использовано для создания упругих подвесов, торсионов и других элементов (например, балок, мембран, струн) микромеханических устройств, например кремниевых гироскопов и акселерометров.

Изобретение относится к приборостроению и может применяться при изготовлении кремниевых микромеханических датчиков, таких как датчики давления и акселерометры. Сущность изобретения: в способе изготовления глубокопрофилированных кремниевых структур на кремниевой пластине создают защитный слой, создают контрастный слой из материала, отличающегося от материала защитного слоя, формируют последовательными операциями фотолитографии и травления структуру заданного профиля до появления кремния в области максимальной глубины структуры, последующем чередованием травления кремния и оставшегося защитного слоя получают в кремнии заданный профиль.

Использование: для изготовления микроэлектромеханических структур. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия КОН включает формирование масочного рисунка с элементами защиты углов, элементы защиты углов, имеющие диагональную форму на топологической маске, располагают под углом 45° к контурам жесткого центра, причем размеры изготовляемых трехмерных микромеханических структур определяются из определенных условий.

Изобретение относится к подложке с маской для травления, которая нанесена при помощи алмазоподобного углерода, и способу изготовления указанной подложки. Способ изготовления подложки с маской для травления включает подготовку подложки, нанесение фоточувствительного материала на поверхность подложки, экспонирование и проявление фоточувствительного материала для формирования рисунка в фоторезисте, формирование покрывающей пленки из алмазоподобного углерода на поверхности подложки и поверхности рисунка в фоторезисте и отделение покрывающей пленки вместе с рисунком в фоторезисте для формирования рисунка из алмазоподобного углерода на поверхности подложки.

Изобретение относится к приборостроению и может применяться для изготовления конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках, а именно упругих подвесов и всего чувствительного элемента в целом, например для микромеханических акселерометров и гироскопов.

Использование: для селекции электромагнитного излучения. Сущность изобретения заключается в том, что микроструктурный элемент выполнен в виде перфорированной сеточной структуры, объем которой в основном выполнен из полимерной пленки и вся ее поверхность, включая внутренние полости, металлизирована.

Изобретение относится к изготовлению конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках. Изобретение обеспечивает снижение трудоемкости изготовления и повышение качества структур.

Изобретение относится к области приборостроения и могжет быть использованы для изготовления монокристаллических элементов, таких как струны, упругие элементы, технологические перемычки, используемые в конструкциях микромеханических приборов, например, микромеханических акселерометров, гироскопов, резонаторов. В способе изготовления монокристаллического элемента микромеханического устройства окисляют плоскую пластину из монокристаллического кремния с ориентацией поверхности в плоскости (100), наносят на нее с двух сторон защитный слоя фоторезиста, предварительно вскрывают окна в слое фоторезиста при помощи двухсторонней фотолитографии, травят окисел по вскрытым окнам и анизотропно травят пластину до промежуточной глубины h, вскрывают окисел для формирования монокристаллического элемента, анизотропно травят кремний до получения требуемой толщины монокристаллического элемента. Согласно способа, после вскрытия окисла проводят утонение пластины наносят защитное покрытие в области формирования монокристаллического элемента, проводят анизотропное травление до получения требуемой толщины монокристаллического элемента и удаляют защитное покрытие. Изобретение обеспечивает повышение технологичности изготовления монокристаллических элементов за счет возможности формирования элементов с различным поперечным сечением. 8 ил.

Изобретение относится к электронной полупроводниковой технике, а именно к технологии изготовления высоковольтных кремниевых приборов и направлено на улучшение электрических характеристик высоковольтных приборов, снижение количества выхода из строя приборов в результате обрыва металла и пробоя по поверхности высоковольтных планарных р-п-переходов. Техническим результатом изобретения является формирование контактных окон с пологим профилем в защитном слое структуры с двойной металлизацией с возможностью проведения разварки над активной областью кристалла высоковольтного прибора. В способе формирования контактных окон в слое защитного основания высоковольтного прибора, включающем формирование диэлектрического слоя на слое металлизации, осаждение пассивирующего слоя, осаждение фоторезиста через маску, плазмохимическое травление до металла, удаление фоторезиста, нанесение второго слоя металлизации, в качестве диэлектрического слоя центрифугированием наносится полиимид, после чего проводится его полимеризация при температуре 350-450°С, после нанесения фоторезиста проводится подтравливание пассивирующего слоя до полиимида под маску фоторезиста жидко-химическим травлением, затем проводится плазмохомическое травление поверхности на половинное время вытравливания полиимида, остатки фоторезиста удаляются и снова наносится фоторезистивный слой через маску меньшего размера для травления до металла. 4 з.п. ф-лы, 8 ил.

Изобретение относится к области приборостроения и может применяться при изготовлении упругих элементов, используемых в конструкциях кремниевых чувствительных элементов микромеханических датчиков - акселерометров, гироскопов, датчиков угловой скорости. В способе изготовления упругих элементов из монокристаллического кремния окисляют плоскую круглую пластину с ориентацией базовой поверхности в плоскости (100), наносят на нее защитный слой фоторезиста, проводят фотолитографию, вскрывают окна в окисном слое в области формирования упругих элементов на определенную ширину с учетом анизотропии травления монокристаллического кремния, анизотропно травят на глубину для получения требуемой толщины упругих элементов, изотропно дотравливают с одновременным формированием галтельных переходов. При этом согласно способу после анизотропного травления удаляют окисный слой, наносят защитную пленку, методом фотолитографии формируют рисунок для изотропного травления, после чего изотропно дотравливают кремний и удаляют защитную пленку. Технический результат изобретения - получение упругих элементов требуемой толщины на кремниевых пластинах анизотропным травлением с устранением концентраторов механических напряжений на всех внутренних и внешних углах формируемых кремниевых структур путем изотропного дотравливания с дополнительной защитой поверхности пластины. 5 ил.
Наверх