Способ маркировки пороха углеродными нанотрубками

Изобретение относится к маркировке взрывчатых веществ, в частности к маркированию порохов, применяемых в боеприпасах к огнестрельному оружию, и может быть использовано в следственной, судебно-экспертной, криминалистической и судебной практике. Способ маркировки пороха включает введение в порох в качестве вещества-маркера углеродных нанотрубок в количестве 1-18% от общей массы порохового заряда. При этом маркирующую добавку вводят непосредственно смешением как в готовый порох, так и при его изготовлении. Внедрение углеродных нанотрубок в порох обеспечивает повышение надежности обнаружения его применения, точности определения маркера, уменьшение трудоемкости операции приготовления порохов. 1 ил., 1 табл., 2 пр.

 

Настоящее изобретение относится к области судебной баллистики, криминалистического исследования веществ материалов и изделий физико-химических свойств экспертизы продуктов выстрела и может быть использовано в следственной, судебно-экспертной, криминалистической и судебной практике, в частности к маркированию порохов углеродными нанотрубками, применяемому в боеприпасах к огнестрельному оружию с целью повышения надежности обнаружения его применения.

Известен способ маркировки взрывчатых веществ [1], в состав которого на стадии изготовления вводится мелкодисперсный порошок индивидуального редко встречающегося в природе металла, либо его металлического сплава - так называемого «маркера». Элементный состав сплава и массовое соотношение металлов его составляющих может соответствовать как конкретному потребителю боеприпасов, так и определенному изготовителю боеприпасов, причем массовое соотношение ряда компонентов-металлов этого сплава указывает на дату изготовления или другие технологические параметры. В качестве маркирующих добавок применяют добавки редкоземельных элементов. При этом идентификация примененного боеприпаса может проводится путем анализа продуктов выстрела методом сканирующей электронной микроскопии и микроанализа. Идентификация по изготовителю и дате производства сводится к качественному и количественному анализу составляющих компонентов металлического сплава.

Данный способ для изготовления имеет существенные недостатки: Как известно, удельный вес водимых в порох добавок - редкоземельных элементов (которые являются, как правило, тяжелыми металлами, плотность которых более 2,7 г/см3) - является высоким. Плотность пороха при его производстве 0,4-0,7 г/см3. Таким образом, частицы металлического порошка не будут равномерно распределены по объему при производстве пороха, что в дальнейшем приведет к усложнению решения задач по определению типа и вида применяемого боеприпаса после производства выстрела.

- редкоземельные металлы и сплавы на их основе чрезвычайно дороги. Сырьевая база редкоземельных металлов ограничена, а составление сложных и многокомпонентных сплавов для надежной маркировки экономически не целесообразно;

- нельзя не остановиться на экологическом аспекте. Как известно, редкоземельные металлы, как правило, являются тяжелыми металлами и, как правило, тяжелые металлы являются токсичными.

- ограничен перечень самих редкоземельных металлов (к этой группе можно отнести не более 25 металлов).

Таким образом, известный способ маркировки металлическими редкоземельными порошками экономически не целесообразен, технологически сложен, связан с ядовитыми выбросами и не обладает надежностью.

Известен способ маркировки взрывчатых веществ, включающий введение в их состав в процессе производства маркирующих добавок в виде радиоактивных материалов, например радиоактивных изотопов [2]. Способ достаточно прост в реализации и позволяет обнаруживать практически в любом виде как сами взрывчатые вещества, так и их части.

Основными недостатками известного способа являются требования к технике безопасности, так как меченные радиоактивными материалами взрывчатые вещества требуют специальных условий хранения и особых мер по работе с ними.

Во-вторых, в случае использования указанных меченных взрывчатых веществ по своему основному назначению произойдет загрязнение радиоактивными материалами окружающей среды.

Наиболее близким по технической сущности к предлагаемому изобретению является способ маркировки взрывчатого вещества [2], включающий введение во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке. При этом введены идентификаторы, обладающие масложирорастворимостью, химической стойкостью в средах с любым диапазоном рН; стойкостью к свободным радикалам; химической инертностью к компонентам взрывчатого вещества; отсутствием свойств поверхностно-активных веществ 1-го рода; химической инертностью к продуктам взрыва и отсутствием токсических свойств. Причем в качестве идентификаторов используют полиметилсилоксаны или полиэтилсилоксаны, или их смесь.

К недостаткам указанного способа маркировки следует отнести:

- сложность идентификации органических соединений – маркеров, входящих в состав такой композиции - первоначально необходимо проведение качественного анализа органических веществ, входящих в состав, а впоследствии их количественный анализ;

- большие погрешности в определении концентрации определения идентификаторов из-за того, что ряд компонентов будет подвергаться горению и окислению в разной степени, что, в свою очередь, дает неоднозначные результаты численного значения определяемых нормируемых технических показателей;

- температура разложения органических соединений, в частности полиорганосилоксанов, не превышает 1000°C, таким образом данные вещества будут работоспособны в относительно низком интервале температур. В условиях выстрела или взрыва температура достигает 3000-3500°C, что приведет к разложению всех органических соединений, и как следствие, изменению их концентрационных показателей, что и вовсе сделает определение качественно-количественных параметров системы невозможным.

Таким образом, техническая задача, решаемая предлагаемым способом маркировки пороха углеродными нанотрубками, состоит в повышении надежности, точности определения маркера, уменьшении трудоемкости операции приготовления порохов.

Поставленная задача достигается тем, что способ маркировки пороха, включает использование в порохе вещества-маркера в качестве добавки. Причем порох модифицирован углеродными нанотрубками в количестве 1-18% от общей массы порохового заряда маркирующей добавки, а модифицирование пороха углеродными нанотрубками осуществляют при маркировке пороха, при этом маркирующую добавку вводят непосредственно смешением как в готовый порох, так и при изготовлении пороха.

Способ маркировки пороха углеродными нанотрубками осуществляется следующим образом.

За основу берут влияние каждого из перечисленных свойств на всю совокупность указанных признаков.

Химическая стойкость в агрессивных средах подразумевает отсутствие химических реакций и соответственно отсутствие потери маркирующих свойств. Химические вещества, входящие в состав порохов, могут вступать в разнообразные химические реакции. В рассматриваемом способе маркировки такие вещества неприменимы. Стойкость маркирующих средств к свободным радикалам - способность химически не разрушаться и не терять своих свойств при наличии в окружающей их среде свободных радикалов. В составе порохов всегда присутствуют нитропроизводные различных классов органических соединений, которые, как правило, химически нестабильны во времени, разрушаясь с образованием, в том числе, свободных радикалов, которые оказываются сильными окислителями. Пороха, как правило, представляют собой смеси, часть компонентов которых может обладать свойствами окислителей. Химическая инертность к компонентам взрывчатого вещества означает невступление идентификаторов в химические реакции с этими компонентами порохов - углеродные нанотрубки химически инертны.

В результате выстрела из веществ, входящих в состав порохов, получаются новые химические соединения, с которыми маркирующая добавка не должна вступать в реакцию, т.е. они должны обладать химической инертностью к продуктам выстрела. Углеродные нанотрубки химически инертны к продуктам выстрела.

Существует проблема в обнаружении продуктов выстрела: продукты выстрела не различимы визуально, (за исключением частного случая - если выстрел был контактным или с близкого расстояния) для их определения зачастую предлагают применять физические, химические и физико-химические способы. Наиболее эффективным в нашем случае будет способ сканирующей электронной микроскопии и микроанализа, поскольку он позволяет более эффективно «увидеть» частицы, имеющие развитую поверхность, которые создают четкий контраст восприятия и облегчают обнаружение следов продуктов выстрела на различных объектах (например, одежде, коже человека и т.д.).

Высокая поверхностная энергия углеродных нанотрубок позволяет широко использовать возможности, связанные со способностью диспергирования и адсорбции к химическим соединениям, полимерам, входящим в состав порохов.

Эксперименты проводили по следующей методике

Пример 1а. В порох механическим путем вводили 1% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. После каждого выстрела производилась чистка оружия. С ветоши, содержащей продукты выстрела, с внутренней поверхности гильзы, с поверхности мишени осуществляли отбор частиц продуктов выстрела. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа, как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы, с высокоразвитой поверхностью, найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 1б. В порох механическим путем вводили 2% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 1в. В порох механическим путем вводили 5% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 1г. В порох механическим путем вводили 10% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа, как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 1д. В порох механическим путем вводили 15% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 1е. В порох механическим путем вводили 18% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 1ж. В порох механическим путем вводили 0.1% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Анализ всех проб проводили с помощью сканирующей электронной микроскопии. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2а. В технологическом процессе производства пороха вводили 1% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2б. В технологическом процессе производства пороха вводили 3% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2в. В технологическом процессе производства пороха вводили 5% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2г. В технологическом процессе производства пороха вводили 10% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2д. В технологическом процессе производства пороха вводили 15% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2е. В технологическом процессе производства пороха вводили 18% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Пример 2ж. В технологическом процессе производства пороха вводили 0,1% (масс.) углеродных нанотрубок (от общей массы порохового заряда). Снаряжали боеприпасы и проводили отстрел из пистолета Макарова (ПМ), патрон 9×18. Расстояние от дульного среза ствола до мишени из белой бязи (размером 30*30 см) 10 см. Отбор частиц продуктов выстрела осуществляли на столик для электронного микроскопа, как с внутренней поверхности гильзы, ствола, так и с самой мишени. Характерные частицы найдены в продуктах выстрела собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени.

Применение инертного наполнителя - УНТ более 18% (масс.) в пороховом заряде приводит к изменению характеристик порохов.

Применение УНТ в составе порохов менее 1% (масс.) (пример 1ж и пример 2ж) также приводит к появлению в продуктах выстрела характерных частиц как на внутренней поверхности гильзы, ствола, так и на самой мишени. Однако необходимо отметить, что существенно возрастает время их поиска на растровом электронном микроскопе, ввиду незначительного количества.

В результате анализа образцов методом электронной микроскопии были найдены частицы, резко отличающиеся по контрасту от стандартных частиц продуктов выстрела. Аналогичные частицы найдены в продуктах выстрела, собранных как с внутренней поверхности гильзы, ствола, так и с самой мишени (таблица 1). Более детальный анализ показал, что они обладают высокоразвитой поверхностью. Пример изображения такой частицы приведен на рисунке 1.

Рис.1. Увеличенное изображение поверхности частицы, обнаруженной в продуктах выстрела на мишени, полученное с помощью сканирующего электронного микроскопа: а – детектор вторичных электронов (SE); б – детектор отраженных электронов (BSE).

Таким образом, комплексное рассмотрение всех вопросов, связанных с маркированием пороха углеродными нанотрубками, показывает, что внедрение предлагаемых в данном изобретении новых маркирующих веществ - углеродных нанотрубок, применяемых в качестве добавки, состоит в повышении надежности, точности определения маркера, уменьшении трудоемкости операции приготовления порохов.

Источники информации

1. Маркирующая добавка во взрывчатое вещество, способ ее приготовления, способ определения происхождения взрывчатого вещества и устройство для его осуществления, патент RU 2283823, С06В 023/00, G01J 003/30, G01N 033/22.

2. Патент США № 4019053.

3. Патент RU 2368591, С06В 23/00, 2008 г. Способ маркировки взрывчатого вещества (прототип).

Способ маркировки пороха, включающий введение в порох вещества-маркера, отличающийся тем, что в качестве вещества-маркера используют углеродные нанотрубки, при этом маркирующую добавку вводят в количестве 1-18% от общей массы порохового заряда непосредственно смешением как в готовый порох, так и при изготовлении пороха.



 

Похожие патенты:

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к химическому способу маркировки и идентификации взрывчатых веществ (ВВ), а также криминалистических идентификационных препаратов, который может быть использован в оперативно-розыскной, следственной, экспертно-криминалистической и судебной практике.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества заключается во введении во взрывчатое вещество, полученное смешиванием отдельных компонентов, маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.

Изобретение относится к химическим способам экспертизы взрывчатых веществ и криминалистических идентификационных препаратов. Способ маркировки взрывчатого вещества (ВВ) заключается во введении во взрывчатое вещество маркирующей композиции, содержащей идентификаторы, количество которых равно количеству технических показателей, подлежащих маркировке.
Изобретение относится к ракетной технике, а именно разработке имитаторов смесевого твердого топлива (СТРТ), используемых при обкатке технологического оборудования опасных производств по изготовлению малогабаритных вкладных зарядов СТРТ массового производства, отработке процессов механической обработки этих изделий и обучении технического персонала.

Изобретение относится к оборонной технике и может быть использовано для изготовления габаритно-массовых имитаторов (ГМИ) боеприпасов. .

Изобретение относится к гидрометеорологии. Заряд взрывчатого вещества для метательного снаряда используется для принудительного спуска снежных лавин. Снаряд включает в себя смесевую композицию из двух компонентов, в которой в качестве первого компонента, выполняющего функцию окислителя, использован водный раствор пероксида водорода, а в качестве второго компонента, выполняющего функцию жидкого топлива, использован этанол, или метанол, или пропан-1,2,3-триол, или диметилкетон в соотношении образования стехиометрической смеси. Метательный снаряд выполняется в виде полимерной канистры или полимерной емкости с ручкой или в виде цилиндрообразной полимерной емкости. Изобретение обеспечивает повышение безопасности хранения, транспортирования и применения композиций ВВ, используемых для подрыва лавиноопасных участков. 4 н. и 2 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к ракетостроению, а именно к разработке имитаторов наполнителей камер сгорания топлива. Состав инертного наполнителя содержит компоненты-наполнители и связующее, состоящее из эпоксидной смолы и аминного отвердителя. В качестве компонентов-наполнителей используется смесь резиновой крошки с дробью колотой из черных металлов. Изобретение обеспечивает состав инертного наполнителя, который является универсальным с широким диапазоном регулирования плотности и соответствующими массоцентровочными и адгезионными свойствами. 1 табл., 2 пр.

Изобретение может быть использовано для установления подлинности или верификации взрывчатых веществ, ценных бумаг, дорогостоящего оборудования, ювелирных изделий. Маркирующая добавка в виде частиц сферической формы содержит магнитный компонент и маркирующий компонент при следующем соотношении, масс. %: магнитный компонент 2-98; маркирующий компонент 2-98. Магнитный компонент содержит, по крайней мере, один компонент, выбранный из группы, включающей ферримагнитные оксиды железа, и/или ферриты со структурой шпинели или граната, или частицы металлического Ni. Маркирующий компонент содержит смесь солей в виде нитратов, ацетатов, хлоридов, формиатов или оксидов, в том числе твердых растворов на их основе. Маркирующий компонент содержит, по крайней мере, два элемента, выбранные из группы, включающей щелочноземельные элементы, лантаноиды, переходные металлы и постпереходные металлы. Изобретение позволяет повысить точность и снизить продолжительность анализа объектов, содержащих маркирующую добавку. 11 з.п. ф-лы, 3 табл., 4 пр.
Изобретение может быть использовано для маркировки взрывчатых веществ (ВВ) с целью определения происхождения взрывчатого вещества, в том числе производителя ВВ, по заложенному коду в случае несанкционированного распространения взрывчатых веществ или террористического акта, когда взрыв уже произошел и в распоряжении имеются только продукты взрыва. Маркирующая добавка содержит материал, обладающий электретными свойствами, имеющий остаточную поляризацию, полученную путем объемно-зарядовой поляризации электронного или ионного типов. В качестве материала, обладающего электретными свойствами, используют природную слюду. Для приготовления маркирующей добавки пластину из материала, обладающего электретными свойствами, помещают в электрическое поле для электростатической записи информационного кода с помощью объемно-зарядовой поляризации электронного или ионного типов. После чего пластину с информационным кодом измельчают до получения частиц требуемой формы и размера и смешивают со взрывчатым веществом. Для идентификации отбирают пробу в поляризованном свете, определяют присутствие в ней маркирующей добавки по наличию свечения, размещают отобранные пробы в виде шлихов в считывающем устройстве для считывания информационного кода, составляют код маркирующего вещества и сверяют его с имеющейся базой. 3 н. и 13 з.п. ф-лы.
Наверх