Каталитический генератор теплоты и способ регулирования его мощности

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения и при сжигании топлива для нагрева рабочих тел, где сжигание различных топлив происходит в псевдоожиженном слое. Каталитический генератор теплоты состоит из вертикального корпуса с патрубками подачи воздуха и топлива в нижней части, патрубками отвода дымовых газов и загрузки катализатора в верхней части, с газораспределительной решеткой внутри корпуса между патрубками подачи воздуха и топлива, на которой находится слой смеси гранулированного катализатора окисления и инертного материала, выше которой последовательно размещены организующая и неизотермическая насадки, теплообменник, на корпусе под неизотермической насадкой расположен патрубок для выгрузки катализатора, а неизотермическая насадка соединена с вибрационным механизмом. Способ регулирования мощности каталитического генератора теплоты заключается в том, что регулирование тепловой мощности проводят изменением температуры в псевдоожиженном слое над неизотермической насадкой за счет изменения амплитуды и частоты колебаний неизотермической насадки и изменения количества сжигаемого топлива. Изобретение позволяет увеличить пределы изменения мощности генератора теплоты с псевдоожиженным слоем смеси катализатора и инертного материала, не меняя его конструктивных параметров и не уменьшая высоты псевдоожиженного слоя, т.е. без отгрузки части смеси катализатора и инертного материала с сохранением экологически чистого сжигания топлив при максимальном КПД 0.93-0,96. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения и при сжигании топлива для нагрева рабочих тел, где сжигание различных топлив происходит в псевдоожиженном слое.

Известен способ регулирования тепловой мощности каталитического генератора теплоты, описанный в пат. РФ №2124674, F23C 11/02, 10.01.99. Генератор теплоты состоит из вертикального корпуса с патрубками подачи воздуха и топлива в нижней части, между которыми внутри корпуса размещена газораспределительная решетка со слоем гранулированного катализатора окисления, в средней части генератора размещен теплообменник из U-образных трубок, под которыми распложена неизотермическая насадка, на внешней поверхности корпуса имеется охлаждающая рубашка, причем рубашка выполнена водяной и состоит из независимых секций, работающих параллельно и подключенных последовательно к теплообменнику. Наличие водяной секционной рубашки на корпусе выше и ниже уровня неизотермической насадки позволяет регулировать количество теплоты, отводимой из зоны горения, за счет отключения или включения секций водяной рубашки.

Недостатками известного способа регулирования мощности каталитического генератора теплоты являются:

1) Наличие водяной рубашки на корпусе приводит к сильному охлаждению слоя катализатора в зоне горения топлива и, как следствие, увеличению выбросов СО и NOx.

2) При отключении отдельной секции рубашки ее температура быстро достигает температуры слоя катализатора 700-800°С. При необходимости вновь повысить мощность генератора теплоты, подача воды в эту секцию становится невозможной из-за испарения воды и повышения давления в секции вплоть до давлений, вызывающих ее разрушение.

3) Наличие на корпусе водяной рубашки в зоне горения топлива затрудняет или делает невозможным пуск генератора теплоты в работу, т.к. во время пуска слой катализатора в зоне горения необходимо нагреть до температуры каталитического зажигания топлива 200-400°С (температура зажигания зависит от активности катализатора). За счет рубашки будет происходить сильное охлаждение слоя катализатора.

Известен также способ регулирования тепловой мощности каталитического генератора теплоты, описанный в пат. РФ №2451876, F23C 10/00, 27.05.2012 изменением расхода воздуха, подаваемого на псевдоожижение, и количества сжигаемого топлива за счет изменения размера гранул катализатора и инертного материала и/или плотности гранул катализатора и инертного материала, находящихся в теплогенераторе.

Недостатками известного генератора теплоты и способа регулирования его мощности являются необходимость выгрузки части смеси катализатора и инертного материала из генератора теплоты или полная замена гранул катализатора и инертного материала, находящихся в генераторе теплоты, на гранулы меньшего размера или меньшей их плотности.

Известен каталитический генератор теплоты и способ регулирования тепловой мощности каталитического генератора теплоты за счет изменения поверхности теплообмена, контактирующей с псевдоожиженным слоем катализатора, (прототип), описанный в пат. РФ №2232942, F23D 14/18, F23C 10/00, 20.07.1004. Известный каталитический генератора теплоты состоит из вертикального корпуса с патрубками подачи воздуха и топлива, между которыми внутри корпуса размещена воздухораспределительная решетка со слоем гранулированного катализатора окисления, в средней части генератора теплоты размещен теплообменник с шахматно-ширмовым расположением теплообменных трубок, под которыми расположены неизотермическая и организующая насадки, в корпусе под неизотермической насадкой предусмотрен патрубок для выгрузки катализатора и/или несколько патрубков для выгрузки катализатора над неизотермической насадкой, в корпусе выше уровня псевдоожиженного слоя предусмотрен патрубок для загрузки катализатора.

Наличие патрубков для выгрузки и загрузки катализатора позволяет изменять уровень катализатора в генераторе теплоты во время его работы, что дает возможность изменять величину поверхности теплообменника, контактирующего с катализатором и, следовательно, менять тепловую мощность генератора теплоты без изменения расхода воздуха, воды на теплообменник и сохранении оптимальной температуры в зоне горения топлива 700-800°С.

Недостатком известного способа регулирования тепловой мощности генератора теплоты является невозможность уменьшения тепловой мощности ниже номинальной более чем на 70-80%. При длительной эксплуатации генератора теплоты в теплое время года в режиме получения теплоты только для горячего водоснабжения требуемая мощность теплогенератора обычно менее 20-30%. При отсутствии или малом потреблении горячей воды необходимо в течение суток либо останавливать генератор теплоты и проводить повторный пуск при появлении водоразбора, либо иметь резервный генератор теплоты меньшей мощности. Недостатком известного способа регулирования тепловой мощности является также необходимость выгрузки части смеси катализатора и инертного материала из генератора теплоты.

Задача, решаемая настоящим изобретением, состоит в разработке способа регулирования тепловой мощности каталитического генератора теплоты, эффективно использующего теплоту при сжигании топлива при экологической чистоте отходящих газов.

Технический результат - снижение тепловой мощности менее чем 20-30% от номинальной без выгрузки части смеси гранул катализатора и инертного материала или их полной замены на гранулы меньшего размера или плотности.

Задача решается конструкцией каталитического генератора теплоты с регулированием тепловой мощности за счет изменения интенсивности теплопередачи от псевдоожиженного слоя к поверхности теплообменника. Каталитический генератор теплоты состоит из вертикального корпуса с патрубками подачи воздуха и топлива в нижней части, патрубками отвода дымовых газов и загрузки катализатора в верхней части, с газораспределительной решеткой внутри корпуса между патрубками подачи воздуха и топлива, на которой находится слой смеси гранулированного катализатора окисления и инертного материала, выше которой последовательно размещены организующая и неизотермическая насадки, теплообменник, на корпусе под неизотермической насадкой расположен патрубок для выгрузки катализатора и инертного материала, а неизотермическая насадка соединена с вибрационным механизмом.

Задача решается также изменением температуры в псевдоожиженном слое над неизотермической насадкой за счет изменения амплитуды и частоты колебаний неизотермической насадки и изменения количества сжигаемого топлива.

Схема каталитического генератора теплоты изображена на чертеже.

Генератор теплоты состоит из вертикального корпуса (1), в котором размещены секции подвода воздуха (а), горения (б), теплосъема (в) и сепарационная зона (г). Секция подвода воздуха (а) состоит из камеры с патрубком (2) для ввода воздуха и предназначена для равномерного распределения воздуха по сечению газораспределительной решетки (3), а при боковом вводе воздуха дополнительно для изменения направления потока воздуха на 90°.

Секция горения (б) отделена от секции подвода воздуха газораспределительной решеткой (3) и имеет патрубки для подачи газообразного (4) или жидкого (5) или твердого топлива (6), патрубок с вентилем или заслонкой для выгрузки катализатора (7). Дополнительно, в секции горения над газораспределительной решеткой размещена объемная организующая насадка (8) перед неизотермической насадкой (9), например, из проволочных решеток с живым сечением 50-90% и величиной отверстий 10-20 диаметров частиц катализатора и долей свободного объема в пакете решеток 85-95%.

Секция теплосъема (в) состоит из теплообменника (10) и объемной неизотермической насадки (9), размещенной под теплообменником над организующей насадкой. Неизотермическая насадка (9) выполнена, например, из проволочных решеток с живым сечением 50-90% и величиной отверстий 2-10 диаметров частиц катализатора и долей свободного объема в пакете решеток 85-95%). Неизотермическая насадка соединена с вибрационным механизмом (11).

В секции теплосъема расположены патрубок входа холодной воды (12), патрубок для выхода нагретой воды (13), сифон (14) с вентилем для слива воды из теплообменника во время остановки генератора теплоты при температурах наружного воздуха ниже 0°С.

Сепарационная зона (г) расположена в верхней части генератора теплоты и имеет патрубок (15) для выхода дымовых газов с устройством против уноса частиц (16), патрубок с вентилем или заслонкой (17) для перегрузки катализатора, патрубок (18) для загрузки инертного материала и катализатора, предохранительную мембрану (19). Загрузка осуществляется с помощью эжектора (20) из бункера (21).

Каталитический генератор теплоты работает следующим образом. В генератор теплоты через патрубок (18) загружают катализатор и инертный материал, количество которых соответствует максимальной мощности генератора теплоты. Воздух по патрубку (2) подается в секцию подвода воздуха (а), проходит газораспределительную решетку (3) в секцию горения (б), куда по патрубкам (4) или (5), или (6) подается топливо (газовое или жидкое или твердое).

Частицы катализатора и инертного материала приводятся в псевдоожиженное состояние под действием восходящего потока воздуха и дымовых газов. В секции горения происходит выделение теплоты за счет сгорания топлива на катализаторе. Горячие дымовые газы, частицы катализатора и инертного материала проходят через неизотермическую насадку (9) в секцию теплосъема, где отдают теплоту теплообменнику, охлаждаются и далее возвращаются в зону горения. Основное количество теплоты, выделяющейся при сгорании топлива в секции горения, передается в секцию теплосъема частицами катализатора. Далее дымовые газы проходят через сепарационную зону и устройство против уноса катализатора и инертного материала (16). Отвод теплоты происходит через поверхность теплообменника (9), погруженного в псевдоожиженный слой. Отвод теплоты от дымовых газов происходит через поверхность, находящуюся в надслоевом пространстве сепарационной зоны, или на дополнительном теплообменнике (экономайзере), установленном вне генератора теплоты. Вода в теплообменник поступает по патрубку (12) с температурой 40-60°С и выходит из теплообменника (9) с температурой 80-100°С.

Автоматическое регулирование температуры в зоне горения топлива (б) и температуры горячей воды на выходе (13) из генератора теплоты осуществляется путем отключения и включения подачи топлива. При достижении предельной температуры горячей воды, например, 95°С и температуры в зоне горения топлива, например, 800°С происходит отключение подачи топлива. При снижении температуры в зоне горения ниже 800°С и температуры воды ниже 90°С происходит включение подачи топлива. Снижение температуры слоя происходит достаточно быстро. Снижение температуры горячей воды (13) происходит более медленно и поэтому регулирование режимов работы генератора теплоты осуществляется в зависимости от температуры горячей воды, т.е. подача топлива включается только после снижения температуры воды до 90°С. При этом температура слоя в секции горения может понижаться и ниже 700°С.

При максимальной мощности потребления тепла в системе отопления, соответствующей максимальной мощности генератора теплоты, температура в секции горения сохраняется в пределах 700-800°С при изменении температуры горячей воды в пределах 5-10°С. С уменьшением теплосъема в системе отопления происходит повышение температуры обратной (холодной) воды (12) выше регламентированной 40-60°С. Это приводит к увеличению интервала времени между отключением и включением подачи топлива в секцию горения, и, как следствие, снижению температуры в секции горения существенно ниже 700°С. В свою очередь, снижение температуры в секции горения ниже 700°С приводит к уменьшению полноты сгорания топлива и увеличению выбросов СО и NOx с дымовыми газами. Поэтому при повышении температуры обратной воды (12) выше предельной включается вибрационный механизм (11) и неизотермическая насадка приводится в колебательное состояние с амплитудой 1-2 мм и частотой 10-50 Гц. При этом уменьшается пропускная способность насадки в отношении частиц катализатора и инертного материала. Это приводит к уменьшению теплообмена между зонами сжигания топлива и зоной теплосъема и, как следствие, снижению температуры в зоне теплосъема и повышению температуры в зоне сжигания топлива. Уменьшением расхода топлива достигается снижение температуры в зоне сжигания топлива до оптимальной 750°С с сохранением температуры в зоне теплосъема 100-700°С.

Обратное повышение мощности генератора теплоты с увеличением теплосъема в системе отопления и снижении температуры обратной воды (12) на входе в теплообменник (9) проводится уменьшением частоты колебаний неизотермической насадки и увеличением расхода топлива.

Пример 1. (прототип).

В генератор теплоты (в соответствии с чертежом) тепловой мощностью 230 кВт загружается 50 л катализатора со средним диаметром гранул 1,5 мм и плотностью 1500 кг/м3 и 100 л инертного материала со средним диаметром гранул 1,3 мм и плотностью 2500 кг/м3. В качестве топлива используется порошкообразный бурый уголь Канско-Ачинского месторождения. Скорость начала псевдоожижения для смеси катализатора и инертного материала 0,6 м/с. Рабочая скорость псевдоожижения катализатора воздухом 1,0 м/с. Организующая насадка состоит из проволочных решеток с ячейкой 30 мм и расстоянием между решетками 30 мм. Толщина проволоки 4 мм. Высота насадки 500 мм. Неизотермическая насадка состоит из проволочных решеток с величиной ячейки 10 мм и расстоянием между решетками 15 мм. Толщина проволоки 4 мм. Количество решеток 5 шт. Вибратор отключен. Температура слоя в зоне сжигания топлива поддерживается 750°С. В зоне теплосъема температура псевдоожиженного слоя 700°С. Теплообменник погружен в слой над неизотермической насадкой. Степень выгорания угля составляет 99,0-99,5%. Количество монооксида углерода в дымовых газах 0,05-0,06 об. %. Количество оксидов азота 100-150 мг/м3. Тепловая мощность 230 кВт.

Пример 2. (Прототип). Аналогичен примеру 1.

Из генератора теплоты (в соответствии с чертежом) отгружается часть смеси катализатора и инертного материала. При этом уровень псевдоожиженного слоя находится на высоте неизотермической насадки и не касается теплообменника. Температура в слое в зоне сжигания топлива поддерживается на уровне 750°С. Степень выгорания угля составляет 99,0-99,5%. Количество монооксида углерода в дымовых газах 0,05-0,06 об. %. Количество оксидов азота 100-150 мг/м3. Тепловая мощность 69 кВт.

Пример 3. (По изобретению).

В генератор теплоты (в соответствии с чертежом) тепловой мощностью 230 кВт загружается 50 л катализатора со средним диаметром гранул 1,5 мм и плотностью 1500 кг/м3 и 100 л инертного материала со средним диаметром гранул 1,3 мм и плотностью 2500 кг/м3. В качестве топлива используется порошкообразный бурый уголь Канско-Ачинского месторождения. Скорость начала псевдоожижения для смеси катализатора и инертного материала 0,6 м/с. Рабочая скорость псевдоожижения катализатора воздухом 1,0 м/с.Организующая насадка состоит из проволочных решеток с ячейкой 30 мм и расстоянием между решетками 30 мм. Толщина проволоки 4 мм. Высота насадки 500 мм. Неизотермическая насадка состоит из проволочных решеток с величиной ячейки 10 мм и расстоянием между решетками 15 мм. Толщина проволоки 4 мм. Количество решеток 5 шт. Температура слоя в зоне сжигания топлива поддерживается 750°С. Теплообменник погружен в слой над неизотермической насадкой. При включении вибратора на неизотермическую насадку подаются колебания в радиальном направлении с амплитудой - 2 мм и частотой - 20 Гц. В зоне теплосъема устанавливается температура псевдоожиженного слоя 500°С. Степень выгорания угля составляет 99,0-99,5%. Количество монооксида углерода в дымовых газах 0,05-0,06 об.%. Количество оксидов азота 100-150 мг/м3. Тепловая мощность 149 кВт.

Пример 4. Аналогичен примерам 1,3.

Температура слоя в зоне сжигания топлива поддерживается 750°С. Теплообменник погружен в слой над неизотермической насадкой. При включении вибратора на неизотермическую насадку подаются колебания в радиальном направлении с амплитудой - 2 мм и частотой - 30 Гц. В зоне теплосъема устанавливается температура псевдоожиженного слоя 400°С. Степень выгорания угля составляет 99,0-99,5%. Количество монооксида углерода в дымовых газах 0,05-0,06 об. %. Количество оксидов азота 100-150 мг/м3. Тепловая мощность 124 кВт.

Пример 5. Аналогичен примерам. 1, 3, 4.

Температура слоя в зоне сжигания топлива поддерживается 750°С. Теплообменник погружен в слой над неизотермической насадкой. При включении вибратора на неизотермическую насадку подаются колебания в радиальном направлении с амплитудой - 2 мм и частотой - 40 Гц. В зоне теплосъема устанавливается температура псевдоожиженного слоя 200°С. Степень выгорания угля составляет 99,0-99,5%. Количество монооксида углерода в дымовых газах 0,05-0,06 об. %. Количество оксидов азота 100-150 мг/м3. Тепловая мощность 42 кВт.

Пример 6. Аналогичен примерам 1,3-5.

Температура слоя в зоне сжигания топлива поддерживается 750°С. Теплообменник погружен в слой над неизотермической насадкой.

При включении вибратора на неизотермическую насадку подаются колебания в радиальном направлении с амплитудой - 2 мм и частотой - 50 Гц. В зоне теплосъема устанавливается температура псевдоожиженного слоя 120°С. Степень выгорания угля составляет 99,0-99,5%. Количество монооксида углерода в дымовых газах 0,05-0,06 об. %. Количество оксидов азота 100-150 мг/м3. Тепловая мощность 10 кВт.

Таким образом, заявляемый генератор теплоты и способ регулирования его тепловой мощности позволяет увеличить пределы изменения мощности генератора теплоты с псевдоожиженным слоем катализатора, не меняя его конструктивных параметров и не уменьшая высоты псевдоожиженного слоя, т.е. без отгрузки части смеси катализатора и инертного материала с сохранением экологически чистого сжигания топлив при максимальном КПД 0.93-0,96.

1. Каталитический генератор теплоты, состоящий из вертикального корпуса с патрубками подачи воздуха и топлива в нижней части, патрубками отвода дымовых газов и загрузки катализатора и инертного материала в верхней части, с газораспределительной решеткой внутри корпуса между патрубками подачи воздуха и топлива, на которой находится слой смеси гранулированного катализатора окисления и инертного материала, выше которой последовательно размещены организующая и неизотермическая насадки, теплообменник, а на корпусе под неизотермической насадкой расположен патрубок для выгрузки катализатора, отличающийся тем, что неизотермическая насадка соединена с вибрационным механизмом.

2. Способ регулирования тепловой мощности каталитического генератора теплоты, состоящий из вертикального корпуса с патрубками подачи воздуха и топлива в нижней части, патрубками отвода дымовых газов и загрузки катализатора и инертного материала в верхней части, с газораспределительной решеткой внутри корпуса между патрубками подачи воздуха и топлива, на которой находится слой смеси гранулированного катализатора окисления и инертного материала, выше которой последовательно размещены организующая и неизотермическая насадки, теплообменник, а на корпусе под неизотермической насадкой расположен патрубок для выгрузки катализатора, неизотермическая насадка соединена с вибрационным механизмом, отличающийся тем, что регулирование тепловой мощности проводят изменением температуры в псевдоожиженном слое над неизотермической насадкой за счет изменения амплитуды и частоты колебаний неизотермической насадки и изменения количества сжигаемого топлива.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано в вертикальных четырехгранных призматических топках котлов электростанций, промышленных котельных и теплоэлектроцентралей при сжигании одновременно или отдельно угольной пыли, природного газа и жидкотопливной смеси.

Изобретение относится к области энергетики, а именно к способу сжигания топлива (жидкого, твердого, газообразного) в отопительных котлах индивидуального и коллективного пользования, и может быть использовано в энергетике, в жилищно-коммунальном хозяйстве для обеспечения отопления, горячего водоснабжения и др.

Изобретение относится к области энергетики, в частности к пылеугольным котлам. Пылеугольный котел содержит вертикальную экранированную топку прямоугольного сечения и установленные в ее верхней части тангенциально направленные горелки и воздушные сопла, нижнее газовое окно, нижний горизонтальный газоход с ширмовым пароперегревателем, холодные воронки в нижней части топки, вертикальные подъемный и опускной газоходы с пакетами пароперегревателя острого и вторичного пара, водяного экономайзера и воздушного подогревателя и снабжен дополнительными вертикальным подъемным и опускным газоходами, подсоединенными к топке котла через дополнительный нижний горизонтальный газоход с ширмовым пароперегревателем, топка снабжена однорядными горелками, а также вышерасположенными соплами вторичного воздуха и нижерасположенными соплами третичного воздуха, которые установлены рассредоточенно по ширине больших стен топки по встречно-смещенной схеме, газовые окна и нижние горизонтальные газоходы с ширмами пароперегревателей размещены напротив друг друга, выше газовых окон расположены аэродинамические выступы малых стен топки, в нижней части топки размещены четырехскатные холодные воронки, причем в нижних горизонтальных и подъемных вертикальных газоходах с одной стороны котла установлены ширмы и пакеты острого пара, а с противоположной - ширмы и пакеты вторичного пара.

Изобретение относится к энергетике и может быть использовано в топливосжигающих установках, в частности в котлах тепловых электростанций и промышленных котельных, а также в обжиговых печах при совмещении выработки пара, производства стройматериалов, металлоизделий и активирования угля.

Изобретение относится к области энергетического машиностроения, в частности к устройствам топок паровых котлов со встроенной компоновкой газомазутных горелок. Топка для сжигания газомазутного топлива включает под, свод, стены и экраны, повторяющие внутреннюю поверхность топки, и встроенные в стены встречно расположенные горелки.

Изобретение относится к области энергетики. Способ сжигания с организацией циклов химических реакций твердых частиц углеводородного сырья, в котором кислородсодержащий материал циркулирует в форме частиц и который включает контакт частиц углеводородного сырья с частицами кислородсодержащего материала в восстановительной зоне R0, контакт частиц кислородсодержащего материала (1) из восстановительной зоны R0 с потоком газообразного окислителя (2) в реакционной окислительной зоне R1, направление подвижной фазы (5) из реакционной зоны R1, которая включает газовую и твердую фазы, в разделяющую газовую и твердую фазы зону S2 таким образом, чтобы разделить преимущественно газообразную подвижную фазу (6), включающую летучую золу и мелкие частицы кислородсодержащего материала, и твердофазный поток (7), включающий основную массу мелких частиц, летучую золу и основную массу частиц кислородсодержащего материала, направление твердофазного потока (7) из разделяющей газовую и твердую фазы зоны S2 в отделяющую плотную фазу декантационную зону S3, псевдоожиженную невосстанавливающим газом (8), что позволяет отделять мелкие частицы и летучую золу от частиц кислородсодержащего материала таким образом, чтобы направлять поток частиц (10), включающий основную массу кислородсодержащих частиц, в восстановительную зону R0 и выпускать через выпускную линию преимущественно газообразный выходящий поток (9), включающий основную массу летучей золы и мелких частиц кислородсодержащего материала.

Изобретение относится к области энергетики. Способ сжигания углеводородной загрузки из твердых частиц в химическом контуре, в котором циркулирует материал-носитель кислорода в виде частиц, при этом упомянутый способ включает, по меньшей мере, приведение в контакт частиц твердой загрузки и частиц материала-носителя кислорода в первой реакционной зоне R1, работающей в плотном кипящем слое; сжигание газообразных отходов, выходящих из первой реакционной зоны R1, в присутствии частиц материала-носителя кислорода во второй реакционной зоне R2; разделение несгоревших частиц твердой загрузки, летучих зол и частиц материала-носителя кислорода внутри смеси, выходящей из зоны R2, в зоне быстрого разделения S3 для перемещения вместе с дымами горения (13) основной части несгоревших частиц твердой загрузки и летучих зол и направления основной части частиц материала-носителя кислорода в зону окисления R0; очистку от пыли дымов (13), выходящих из зоны быстрого разделения S3, в зоне очистки дымов от пыли S4 для удаления потока очищенных от пыли газов (14) и потока частиц (15), содержащего золы и плотные частицы, в основном образовавшиеся из частиц носителя кислорода и из частиц несгоревшей твердой загрузки; разделение потока частиц (15), отделенных на этапе пылеулавливания S4, на два потока в зоне разделения потока D7, при этом один из них рециркулируют в реакционную зону R1, работающую в плотном кипящем слое, а другой направляют в зону разделения S5 посредством декантации; разделение посредством декантации в упомянутой зоне S5 для рекуперации зол и рециркуляции плотных частиц в первую реакционную зону R1.

Заявляемая пылегазомазутная топка относится к области тепловой энергетики и может быть использована на паровых котлах, снабженных шаровыми барабанными мельницами.

Изобретение относится к области энергетики, а именно к технологии каталитического сжигания газообразного углеводородного топлива с целью генерации тепловой энергии.

Изобретение относится к области энергетики. Детонационное устройство для сжигания топлива содержит систему подачи топлива и окислителя, кольцевую камеру сгорания, систему смешения топлива с окислителем, размещенную в начале камеры сгорания, включающую равномерно расположенные отверстия форсунки для топлива и входное отверстие в виде кольцевой щели для окислителя, а также выходное отверстие для продуктов горения.

Способ относится к сжиганию низкореакционного топлива, преимущественно растительных отходов, и может быть применен в сельском хозяйстве, в деревообрабатывающей промышленности. Способ комбинированного сжигания топлива в зерносушилках заключается в том, что в топочную камеру, совмещенную с теплообменником, подают низкореакционное твердое топливо и высокореакционное жидкое топливо. В качестве низкореакционного топлива используют лузгу подсолнечника. Высокореакционное топливо подают периодически с временем подачи: где G - масса теплообменной части топочной камеры, кг; с - теплоемкость материала камеры, кДж/кг⋅°C; α - коэффициент теплоотдачи, составляющий 42 Вт/м2⋅°C; F - ее теплообменная поверхность, м2; Т1 - температура топочных газов от сжигания высокореакционного топлива на входе в теплообменнике, °C; t1, t2 - максимальная и минимальная температура нагрева теплообменника, °C; и со временем паузы: где t0 - температура топочных газов при сжигании низкореакционного топлива на входе в теплообменнике, °C. 1 ил., 2 пр.

Изобретение относится к котлу и способу его работы. Котел содержит вертикальную призматическую топку для комбинированного сжигания в факеле пыли твердого топлива и приготавливаемой на ее основе и распыливаемой форсунками водоугольной суспензии с вертикальной осью в центре, ограждающими фронтовой, задней и боковыми стенами, потолочным и подовым перекрытиями, экранирующими стены и перекрытия трубами с циркулирующей пароводяной средой, размещенными на стенах вдоль потолочного перекрытия горелками, по крайней мере, в один горизонтальный ряд, имеющими вертикально-щелевые конфузорные сопловые насадки для раздельного вывода воздушных потоков вдоль стен и топливных пылеугольных потоков вдоль вертикальной оси топки и форсунки для распыливания и вывода топливных распыленных водоуглесуспензионных потоков также вдоль вертикальной оси топки, установленными на стенах в несколько горизонтальных рядов дополнительными соплами с двумя каналами для вывода в топку вдоль ограждающих стен и вертикальной оси топки охлаждающих факел газообразных потоков продуктов сгорания и топливодожигающих и защищающих от шлакового загрязнения дополнительных воздушных потоков, окном в подовом перекрытии для вывода образующихся кусков шлака и сепарирующих крупных золотопливных частиц, примыкающим к подовому перекрытию окном в задней стене для вывода зологазовых продуктов, а также горизонтальный газоход с ограждающими боковыми и задней стенами, потолочным и подовым перекрытиями, последовательно установленными пучками труб пароперегревателя, экономайзера и размещенными в шахматном порядке в несколько рядов швеллерковыми вертикальными золоотделительными ловушками, окном для ввода зологазового потока, совмещенным с зологазовыводящим окном топки, окнами в подовом перекрытии для отвода золы из трубных пучков и ловушек, окном в задней стене, примыкающим к потолочному перекрытию для вывода очищенного от золы газового потока в газоход с воздухоподогревателем, дымовую трубу и сброса в атмосферу, подключенный к дополнительным соплам и горизонтальному газоходу перекачивающий охлажденные продукты сгорания газоход с вентилятором. Каналы дополнительных сопл оснащены вертикально-щелевыми конфузорными насадками, дополнительные сопла верхнего ряда установлены на стенах топки между ее потолочным перекрытием и горелками, остальные дополнительные сопла размещены на стенах между горелками и подовым перекрытием топки, на ограждающих боковых стенах с примыканием к потолочному перекрытию горизонтального газохода между его ловушками и выходным окном установлены дополнительные окна, подключенные к перекачивающему охлажденные газообразные продукты сгорания к дополнительным соплам газоходу с вентилятором. Изобретение направлено на снижение недожога крупных топливных частиц, концентрации оксидов азота и золы в выводимых из котла газообразных продуктах сгорания. 2 н.п. ф-лы, 11 ил.

Изобретение относится к области энергетики и металлургии. Способ отопления шахтных агрегатов включает подачу газообразного топлива и воздуха в разогретый продуваемый слой кусковых материалов, их перемешивание в межкусковом пространстве с образованием исходной холодной газовоздушной смеси и ее воспламенение в межкусковом пространстве, при этом в разогретый продуваемый слой кусковых материалов подают отдельными струями с параметрами крутки от 0,1 до 5,0 смесь газа и воздуха при отношении количества кислорода к количеству горючих газов от 0,1 до 7,0, а воспламенение газовоздушной смеси осуществляют ее подогревом до температуры 800-1050°C. Изобретение направлено на повышение равномерности температурного поля шихтовых материалов по сечению агрегата и получение продукта со стабильным химическим составом. 1 табл.

Изобретение относится к устройствам для нагрева воздуха путем смешения с продуктами полного окисления углеводородного газа и может найти применение в различных отраслях промышленности. Устройство для сжигания топлив и нагрева технологических сред включает теплообменник нагрева технологической среды, теплообменник "продукты окисления/воздух в первую каталитическую секцию", несколько каталитических секций и пусковой подогреватель. При работе устройства часть воздуха нагревают продуктами окисления в теплообменнике "продукты окисления/воздух в первую каталитическую секцию" до нижнего температурного предела работы катализатора и подают в первую каталитическую секцию, в которую подают топливо в количестве, обеспечивающем температуру продуктов окисления после нее ниже верхнего температурного предела работы катализатора. Затем продукты окисления смешивают с холодным воздухом для снижения температуры смеси до нижнего температурного предела работы катализатора и процесс повторяется в последующих секциях. После последней каталитической секции продукты полного окисления топлива охлаждают в теплообменнике "продукты окисления/воздух в первую каталитическую секцию", в теплообменнике нагрева технологической среды, подаваемой противотоком, и выводят. При пуске устройства воздух, подаваемый в первую каталитическую секцию, подогревают в пусковом подогревателе. Технический результат - снижение металлоемкости и повышение взрывобезопасности. 1 ил.

Изобретение относится к области химии и может быть использовано для получения носителей для катализаторов, обладающих высокой площадью поверхности и термостабильностью в условиях сверхвысоких температур, например, в процессах сжигания монотоплива, в том числе "зеленого топлива" на основе водометанолового раствора нитрата гидраксиламмония. Способ включает получение термостабильного носителя, основу которого составляют алюминаты лантана, а именно гексаалюминат лантана LaAl11O18 и алюминат лантана LaAlO3 с соотношением фаз LaAl11O18:LaAlO3, находящимся в интервале от 0 до 1,0, путем предварительного прокаливания формованых гранул носителя на основе активного оксида алюминия размером 0,2-3,5 мм при температуре 550°C-900°C, двукратного цикла пропитки, сушки и прокаливания алюмооксидного носителя и заключительного обжига при температуре 850°C-1400°C, при этом пропитку осуществляют раствором нитрата лантана с концентрацией 140-200 г/л с добавлением органической кислоты концентрацией 0,5-20 мас.%, прокаливание осуществляют при температуре 450°C-500°C. В качестве органической кислоты используют уксусную кислоту. Содержание лантана в готовом носителе в пересчете на оксид лантана составляет 9,0-14,0 мас.%. Технический результат заключается в создании способа получения носителя для катализатора сжигания монотоплива, стабильного при высокой температуре, с необходимой повышенной стойкостью к спеканию в условиях высоких температур и высокой механической прочностью. 3 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к печи для проведения эндотермического процесса. Печь содержит трубы (2) для подачи газообразного сырья сверху вниз, заполненные катализатором для преобразования газообразного сырья в конечный продукт в виде синтез-газа с отведением его и топочных газов. Трубы (2) расположены внутри печи (1). Горелки (3а) установлены на своде (1b) печи (1) между трубами (2). Боковые горелки (3b) установлены на своде (1b) печи (1) между трубами (2) и стенкой (1а) печи (1). Боковые горелки (3b) расположены на своде (1b) печи (1) на расстоянии от стенки (1а) печи (1), меньшем чем 25% от расстояния от центральной оси боковой горелки (3b) до самой внешней трубы (2), при этом боковые горелки (3b) имеют мощность 45-60% от мощности горелок (3а) и входную скорость от 90 до 110% от входной скорости горелок (3а). Технический результат заключается в предотвращении эффекта изгибания боковых факелов к центру и в предотвращении перегрева труб, расположенных у стенок печи. 2 н. и 17 з.п. ф-лы, 15 ил..

Изобретение относится к области энергетики, в частности к жидкотопливным горелочным устройствам, использующим для горения перегретый водяной пар. Горелочное устройство содержит цилиндрический корпус, пароперегреватель, установленный на корпусе, распылительную паровую форсунку, топливопровод, камеру газогенерации, дополнительные паровые форсунки, сопло для выхода продуктов горения. С обеих сторон цилиндрического корпуса установлены крышки, левая и правая, в центр которых вмонтированы патрубки для естественной подачи воздуха в камеру газогенерации, распылительная паровая форсунка установлена под углом к оси цилиндрического корпуса на патрубке левой крышки с возможностью подачи струи перегретого водяного пара в камеру газогенерации, дополнительные паровые форсунки, установленные тангенциально на цилиндрическом корпусе вблизи левой крышки, размещены так, что оси форсунок лежат в одной плоскости, сопло для выхода продуктов горения в виде факела установлено тангенциально на цилиндрическом корпусе вблизи правой крышки, на конец топливопровода в месте его соединения с патрубком левой крышки установлена игла, имеющая внутреннюю полость с отверстием на конце, причем острие иглы расположено в непосредственной близости от выходного отверстия паровой распылительной форсунки таким образом, что жидкое топливо подается на струю пара из паровой форсунки в область с максимальной температурой и скоростью потока. Технический результат - повышение качества распыла загрязненного, вязкого жидкого топливного сырья и увеличение времени химических реакций в камере газогенерации при высокой концентрации паров воды и низкой концентрации воздуха. 4 ил.

Изобретение относится к области энергетики. Способ сжигания металла M, который выбран из щелочных, щелочноземельных металлов, алюминия и цинка, а также их сплавов и/или смесей, с использованием горючего газа, при этом сжигание осуществляется посредством пористой горелки, которая включает в себя пористую трубу в качестве горелки. К пористой горелке внутри пористой горелки подводится металл M в виде жидкости. Горючий газ направляется на поверхности пористой горелки и сжигается с металлом M. Сжигание происходит также при температуре, которая лежит выше точки плавления солей, образующихся при реакции металла M и горючего газа. Металл M подводится в виде сплава по меньшей мере двух металлов M. Продукты реакции после сжигания разделяются с помощью циклона. Изобретение позволяет эффективно отделять твердые и/или жидкие продукты реакции при сжигании металла и управлять сжиганием металла с использованием горючего газа. 3 н. и 12 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к способам и устройствам для сжигания топлива переменного состава. Изобретение предназначено преимущественно для сжигания топлива (смесей углеводородов) неопределенного состава, таких как попутный газ, отходы нефтегазопереработки, и может найти применение для оптимизации процесса сжигания или дожигания топлив неопределенного состава на предприятиях для выработки тепловой или электрической энергии. Способ автоматической оптимизации процесса сжигания топлива, основанный на непрерывном измерении расхода топлива и температуры теплоносителя на выходе теплообменника топливосжигающего устройства, при котором производят однократное снижение расхода топлива, обеспечивающее возможность конкретизации тенденции изменения удельной теплоты сгорания топлива, неизвестной в результате произвольных изменений состава используемого топлива, синхронизируют темп изменения температуры на выходе теплообменника с темпом изменения расхода топлива, далее совершают одновременные и/или неодновременные взаимосвязанные дискретные изменения расхода топлива и подачи воздуха в топливосжигающее устройство согласно одному из алгоритмов оптимизирующих действий, реализуемых компьютером по заданной программе, с обеспечением возможности упрощения способа оптимизации процесса сжигания топлива и повышения точности достижения оптимальных параметров. При этом в качестве показателя оптимизации используется минимально возможный расход топлива, сжигание которого обеспечивает заданную температуру теплоносителя на выходе теплообменника. Изобретение позволяет оптимизировать процесс сжигания топлива переменного состава, а также позволяет снизить трудоемкость процесса оптимизации и повысить оперативность во времени, при одновременном упрощении конструкции системы управления, с сокращением количества выполняемых операций в целом. 1 ил.
Наверх