Способ оценки водозапаса облаков над океаном по данным измерений спутникового микроволнового радиометра amsr2

Изобретение относится к области метеорологии и может быть использовано для оценки водозапаса облаков над океаном. Сущность: получают значения радиояркостных температур по четырем радиометрическим каналам, имеющим частоты 18,7 ГГц горизонтальной поляризации, 23,8 ГГц вертикальной поляризации, 36,5 ГГц горизонтальной поляризации и 36,5 ГГц вертикальной поляризации. Вычисляют значения водозапаса облаков с использованием зависимости, учитывающей значения радиояркостной температуры и коэффициентов настроенной Нейронной Сети. При этом численные значения упомянутых коэффициентов получают математическим моделированием уходящего излучения системы Океан - Атмосфера и проведением численного эксперимента с использованием Нейронных Сетей в качестве оператора решения обратной задачи. Причем при моделировании излучения используют модель зависимости излучения океана от скорости ветра. Технический результат: повышение точности оценки, расширение диапазона условий применения.

 

Настоящее изобретение относится к области метеорологии и может быть использовано для получения полей общего содержания жидкокапельной влаги (водозапаса) облаков в оперативном режиме над открытыми районами океанов. Полученные поля водозапаса облаков могут быть использованы при мониторинге состояния атмосферы, прогнозе атмосферных фронтов и осадков. Особенностью предложенного способа оценки водозапаса облаков по данным измерений спутникового микроволнового радиометра AMSR2 является возможность получения оценок с высокой точностью в более широком диапазоне погодных условий (для водозапаса до 2 кг/м2, штормовые и ураганные ветра со скоростями, превышающими 15 м/с), чем в альтернативных методах.

Известен метод, описанный в Wentz, F.J., and Т. Meissner (2000), Algorithm Theoretical Basis Document (ATBD), Version 2, AMSR Ocean Algorithm, report number 121599A-1, Remote Sensing Systems, Santa Rosa, CA, 66 стр.

Метод заключается в вычислении модельных значений радиояркостных температур для характеристик измерений радиометра AMSR2 (частота, поляризация, угол падения) для базы данных параметров системы океан-атмосфера и поиска матрицы параметров, включающей водозапас облаков, приводящей к минимальной разнице между измеренными и рассчетными значениями радиояркостных температур. Данный метод используется для получения водозапаса облаков в оперативном центре обработки данных США Remote Sensing Systems (RSS). В данном методе используется другая геофизическая модель при вычислениях радиояркостных температур радиометра AMSR2 и другой способ решения обратной задачи, отличный от Нейронных Сетей.

Недостатком данного метода являются а) более низкая точность, по сравнению с предлагаемым способом и б) ограниченный диапазон погодных условий, в которых применим способ.

Наиболее близким по своей технической сущности к заявленному техническому решению (прототипом) является способ, описанный в статье Jung Т., Ruprecht Е., Wagner F. Determination of Cloud Liquid Water Path over Oceans from Special Sensor Microwave/Imager (SSM/I) Data Using Neural Networks // J. Appl. Meteor. - 1998. - Vol. 37. - pp. 832-844.

Способ заключается в вычислении значения водозапаса облаков (W) по данным измерений американского радиометра Special Sensor Microwave/Imager (SSM/I) на спутниках DMSP с использованием Нейронно-Сетевой функции, настроенной на основании моделирования переноса излучения и последующего использования Нейронных Сетей в качестве оператора решения обратной задачи. При моделировании предполагается отсутствие осадков, а отсутствующие данные по скоростям ветра добавляются в диапазоне от 0 до 15 м/с. Данный способ позволяет получать точность восстановления водозапаса облаков W 0.023 кг/м2 для водозапаса, не превышающего 0.5 кг/м2, в диапазоне условий, характеризующихся отсутствием осадков и скоростей ветра, превышающих 15 м/с.

Недостатком прототипа являются: а) использование устаревшей модели излучения океана при моделировании радиояркостных температур, не применимой в условиях штормовых и ураганных ветров; б) настройка алгоритма с использованием данных, не содержащих ветров, превышающих 15 м/с. В результате область применения прототипа существенно заужена по сравнению с предлагаемым методом, эффективно работающим в условиях экстремальных ветров. Кроме того, прототип работает с данными измерений микроволнового радиометра SSM/I, пространственное разрешение которого почти в два раза ниже, чем у радиометра, используемого в заявляемом способе.

Целью настоящего изобретения является создание нового способа оценки водозапаса облаков (W) по данным японского спутникового микроволнового радиометра Advanced Microwave Scanning Radiometer 2 (AMSR2) на борту спутника GCOM-W1 (на орбите с 18 мая 2012 года), работающего в широком диапазоне погодных условий. Данные измерений AMSR2 свободно распространяются в оперативном режиме, поэтому наличие эффективных способов преобразования этих данных в геофизические параметры открывает новые возможности для центров прогноза погоды, научно-исследовательских институтов, гидрометеорологических служб.

Способ оценки водозапаса облаков над океаном по данным измерений спутникового микроволнового радиометра AMSR2 заключается в получении значений радиояркостных температур (Тя) по четырем радиометрическим каналам K и Kа-диапазона электромагнитного спектра и вычислении значений водозапаса облаков с использованием зависимости, учитывающей значение радиояркостной температуры (Тя) и коэффициентов предварительно настроенной Нейронной Сети. Используемые радиометрические каналы имеют следующие частоты и поляризационные режимы: υ1=18.7 ГГц горизонтальной поляризации, υ2=23.8 ГГц вертикальной поляризации, υ3=36.5 ГГц горизонтальной поляризации и υ4=36.5 ГГц вертикальной поляризации. Способ основан на использовании численного эксперимента, заключающегося в последовательном решении прямой и обратной задач переноса микроволнового излучения. При решении прямой задачи - математическом моделировании радиояркостной температуры уходящего излучения системы океан-атмосфера Тя - использовались современные, уточненные (по сравнению с прототипом) модели поглощения микроволнового излучения молекулярными газами и жидкокапельной влагой в облаках и осадках [Tretyakov и др., 2005; Turner и др., 2009] и новая модель зависимости излучения океана от скорости приводного ветра [Chapron и др., 2010], эффективная в условиях слабых, умеренных, штормовых и ураганных ветров. При решении обратной задачи в качестве оператора решения использовались Нейронные Сети.

Главными отличительными признаками нового способа оценки водозапаса облаков являются использование при решении прямой задачи новой усовершенствованной модели зависимости излучения океана от скорости приводного ветра, полученной на основе численного моделирования и анализа данных измерений ветра в тропических циклонах. Данный способ позволяет получать высокие точности восстановления водозапаса облаков над открытыми районами океанов в широком диапазоне атмосферных и океанических условий (облачность с водозапасом, превышающим 0.5 кг/м2 (до 2 кг/м2), ветра со скоростями, превышающими 15 м/с (до 70 м/с)), исключая осадки и мощную облачность с водозапасом, превышающим 2 кг/м2. По сравнению с прототипом, который восстанавливает значения W в условиях, характеризующихся умеренными скоростями приводного ветра (до 15 м/с), диапазон условий применения заявленного способа существенно шире.

Таким образом, в отличие от аналога и прототипа, данный способ позволяет оценивать водозапас облаков с высокой точностью в более широком диапазоне природных условий, включая сильные (выше 15 м/с) ветра и облачность с водозапасом, превышающим 0.5 кг/м2 (до 2 кг/м2).

Поставленная цель оценки водозапаса облаков может быть достигнута следующим образом:

1) Данные AMSR2 распаковываются из научного формата hdf, извлекаются радиояркостные температуры на каналах 18.7 ГГц горизонтальной, 23.8 вертикальной поляризации и 36.5 ГГц горизонтальной (Г) и вертикальной (В) поляризации (T1я18.7Г, T2я23.8В, T3я36.5Г, T4я36.5В.

2) К извлеченным радиояркостным температурам добавляются калибровочные поправки:

T1=T1-2.1;

Т22-2.5;

Т33+2.0;

Т44+2.2.

3) Водозапас облаков W вычисляется по следующей формуле:

,

где

W - водозапас облаков в кг/м2;

W0 - нормировочный показатель настроенной Нейронной Сети в кг/м2;

ω0,1,2(W,B) - весовые коэффициенты (W) смещения (В) на входящем (0), скрытом (1) и выходящем (2) уровнях;

n - номер обрабатывающего нейрона n=1, …5;

Т1,2,3,4 - радиояркостные температуры в радиометрических каналах 1,2,3,4;

i - номера каналов радиометра, измерения в которых используются в расчетах.

Нижеприведенные комбинации частот и режимов поляризации радиометрических каналов (υ1, υ2, υ3, υ4) и коэффициенты настроенной Нейронной Сети (W0, ω0,1,2(W,B)) определены с помощью математического моделирования уходящего излучения системы океан - атмосфера и проведения численного эксперимента с использованием Нейронных Сетей в качестве оператора решения обратной задачи:

υ1=18.7 ГГц горизонтальной поляризации;

υ2=23.8 ГГц вертикальной поляризации;

υ3=36.5 ГГц горизонтальной поляризации;

υ4=36.5 ГГц вертикальной поляризации;

υ0=2.04 кг/м2;

ω0B(1-5)=-1; -1; -0.8886936; -0.7766321; -0.3745337

ω1W(1-15)=1; 1; 1; 0.9282835; 0.9998289

ω1B=-0.2000782

ω2W=1.912925

ω2B=1.578068

Разработанное техническое решение позволяет восстанавливать водозапас облаков над открытыми районами океана по всему Земному шару в широком диапазоне изменений параметров атмосферы и океана, в том числе в условиях, характеризующихся облачностью с водозапасом до 2 кг/м2 и ветрами до 70 м/с. Использование предложенного способа позволяет расширить диапазон атмосферных и океанических условий по сравнению с имеющимися способами, оставаясь в рамках точности, предъявляемой к измерениям данного параметра океана Всемирной Метеорологической Организацией.

Литература

1. Jung Т., Ruprecht Е., Wagner F. Determination of Cloud Liquid Water Path over Oceans from Special Sensor Microwave/Imager (SSM/I) Data Using Neural Networks // J. Appl. Meteor. - 1998. - Vol. 37. - pp. 832-844.

2. Tretyakov M.Y. и др. 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients // J. Mol. Spectrosc. 2005. T. 231. №1. C. 1-14.

3. Turner D.D. и др. Modifications to the water vapor continuum in the microwave suggested by ground-based 150-GHz observations // IEEE Trans. Geosci. Remote Sens. Lett. 2009. T. 47. №10. C. 3326-3337.

4. Chapron, В., Bingham, A., Collard, F., Donlon, C, Johannessen, J.A., Piolle, J.F., & Reul, N. Ocean remote sensing data integration-examples and outlook // Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society.: ESA Publication WPP-306, 2010.

5. Wentz, F.J., and T. Meissner (2000), Algorithm Theoretical Basis Document (ATBD), Version 2, AMSR Ocean Algorithm, report number 121599A-1, Remote Sensing Systems, Santa Rosa, CA, 66 стр.

Способ оценки водозапаса облаков над океаном по данным измерений спутникового микроволнового радиометра AMSR2 путем получения значений радиояркостных температур (Тя) по радиометрическим каналам и вычисления значения водозапаса облаков (W) с использованием зависимости, учитывающей значения радиояркостной температуры (Тя) и коэффициентов настроенной Нейронной Сети, численные значения которых получены путем математического моделирования уходящего излучения системы Океан - Атмосфера и проведения численного эксперимента с использованием Нейронных Сетей в качестве оператора решения обратной задачи, отличающийся тем, что используются четыре радиометрических канала, которые имеют следующие частоты и поляризационные режимы: υ1=18.7 ГГц горизонтальной поляризации, υ2=23.8 ГГц вертикальной поляризации, υ3=36.5 ГГц горизонтальной поляризации и υ4=36.5 ГГц вертикальной поляризации, при моделировании излучения применяется новая модель зависимости излучения океана от скорости ветра, эффективная при ураганных ветрах до 70 м/с, позволяющая адекватно воспроизводить измеряемые радиояркостные температуры в штормовых и ураганных погодных условиях, что позволяет получать более высокие, по сравнению с существующими, точности восстановления водозапаса облаков W над открытыми районами океана в широком диапазоне состояний океана и атмосферы, включая экстремальные явления погоды (полярные и внетропические циклоны, тропические ураганы).



 

Похожие патенты:

Способ дистанционного оптического зондирования неоднородной атмосферы содержит этап посылки в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении.

Изобретение относится к области метеорологии и касается способа определения прозрачности атмосферы по фотометрии звезд. Способ включает в себя определение величины относительной мощности излучения двух звезд.

Изобретение относится к дистанционным методам атмосферных исследований. Сущность: проводят синхронную съемку подстилающей поверхности, применяя следующие устройства, установленные на космическом носителе: видеокамеру ультрафиолетового диапазона, спектрозональную камеру видимого и ближнего инфракрасного диапазонов, гиперспектрометр с рабочим диапазоном 190-790 нм.

Изобретение относится к контрольно-измерительным средствам мониторинга акустошумового загрязнения селитебных территорий. Устройство контроля распространения акустического шума на селитебной территории включает в себя ультразвуковой термоанемометр, состоящий из нескольких пар ориентированных навстречу друг другу ультразвуковых излучателей/приемников, и соединенное с ним каналом связи устройство обработки информации, при этом в него дополнительно введены акустический датчик, вычислительное устройство и устройство отображения, причем выход акустического датчика соединен каналом связи с устройством обработки информации, которое, в свою очередь, соединено каналом связи с вычислительным устройством, а вычислительное устройство соединено с устройством отображения.

Изобретение относится к области гидрометеорологического моделирования и может быть использовано для создания картосхем распределения твердых атмосферных осадков.

Изобретение относится к области экологии и может быть использовано для измерения концентрации парниковых газов в атмосфере. Сущность: система содержит тракт дистанционных измерений и тракт экспресс-анализа газовых компонент в предельном слое атмосферы.

Акселерометром регистрируют сигнал временного ряда колебаний шины, разбивают его на интервалы при помощи средства разбиения, затем сигналы временного ряда колебаний шины выделяют для соответствующих интервалов, после чего вычисляют характеристические векторы соответствующих временных интервалов.

Изобретение относится к области приборостроения и может быть использовано для получения информации о таянии ледника и температуре в его толще. Устройство содержит термокосу из датчиков температуры, расположенных на известном равном друг от друга расстоянии, и которые последовательно соединены между собой гибким кабелем.

Изобретение относится к области частично инфинитной гидрологии и может быть использовано для определения изменения суммарных влагозапасов в почвогрунтах речных бассейнов.

Изобретение относится к радиоэлектронной технике и может быть использовано для дистанционных методов зондирования атмосферы, в частности измерения скорости, направления и турбулентности ветра в вертикально- горизонтальном срезе атмосферы.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Техническим результатом является возможность пеленга нескольких типов источников сигналов, уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства. Устройство для определения пеленга и дальности до источника сигналов содержит персональную электронно-вычислительную машину (ПЭВМ), а также первый и второй идентичные каналы, каждый из которых включает блок магнитных антенн и последовательно соединенные первый усилитель и первый фильтр. Устройство дополнительно содержит подключенные к ПЭВМ блок системы единого времени и блок связи с абонентами, последовательно соединенные блок приемников температуры, первый и второй блоки усилителей, первый и второй блоки фильтров, первый пороговый блок и первый блок схем И, первый таймер, первую схему И, блок счетчиков, последовательно соединенные приемник радиации, второй усилитель, первый пороговый элемент и блок схем ИЛИ, а также первый тактовый генератор, первый блок аналого-цифровых преобразователей (АЦП), и первый и второй имитаторы сигналов. В каждом канале содержатся последовательно соединенные блок датчиков света, третий блок усилителей, третий блок фильтров, четвертый блок усилителей, второй пороговый блок и второй блок схем ИЛИ, последовательно соединенные пятый блок усилителей, четвертый блок фильтров, шестой блок усилителей, третий пороговый блок и третий блок схем ИЛИ, последовательно соединенные первый блок цифро-аналоговых преобразователей (ЦАП) и первый блок калибраторов, последовательно соединенные второй блок ЦАП и второй блок калибраторов, последовательно соединенные первый ЦАП, первый калибратор и сейсмометр, последовательно соединенные третий усилитель, второй фильтр, второй пороговый элемент и вторая схема И, последовательно соединенные второй таймер, третья схема И и первый счетчик, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные микробарометр, четвертый усилитель, третий фильтр, пятый усилитель, четвертый фильтр, третий пороговый элемент и четвертая схема И, последовательно соединенные третий таймер, пятая схема И и второй счетчик, а также первый и второй АЦП, второй и третий блоки АЦП, четвертый и пятый таймеры, второй тактовый генератор. Блок магнитных антенн выполнен в виде трех взаимно перпендикулярных магнитных антенн, блок датчиков света выполнен в виде трех взаимно перпендикулярных оппозитных пар датчиков света, блок приемников температуры выполнен в виде 2n (n≥2) размещенных равномерно по окружности в горизонтальной плоскости теплоизолированных друг от друга приемников температуры. Пороговые блоки и второй и третий пороговые элементы выполнены с управлением по порогу, усилители и блоки усилителей выполнены с управлением по фазе, полосе пропускания и чувствительности, таймеры выполнены с управлением по длительности выходного сигнала, и фильтры и блоки фильтров выполнены с управлением по полосе пропускания. 1 ил.

Изобретение относится к способам дистанционного зондирования атмосферы и может быть использовано для определения траектории распространения облаков токсичных газообразных веществ в атмосфере, например, в целях прогнозирования последствий аварий на химически опасных объектах. Сущность: проводят непрерывное круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта по наклонным трассам не менее чем двумя Фурье-спектрорадиометрами. Используя результаты срабатывания спектрорадиометров, экспериментально устанавливают законы углового перемещения индицируемого облака относительно каждого из приборов и для каждого направления и момента времени, когда сработал один из приборов. Прогнозируют направление оси поля зрения для остальных приборов, в котором они предположительно могли бы индицировать облако в тот же момент времени. Определяют координаты точек пересечения проекций осей полей зрения приборов, спроецированных на топографическую карту. Находят уравнения, описывающие изменение с течением времени координат облака, которые дают возможность прогнозировать направление и динамику его распространения. Последовательность найденных координат во времени аппроксимируют линией, являющейся искомой траекторией распространения индицируемого облака токсичного газообразного вещества. Технический результат: обеспечение возможности определения траектории и прогнозирования направления распространения облаков токсичных газообразных веществ.

Изобретение относится к области палеоклиматологии и может быть использовано для восстановления рядов метеорологических характеристик. Сущность: выполняют предварительное датирование путем подсчета годовых сигналов в изотопном составе. Выделяют теплый и холодный сезоны в годовом цикле. Корректируют результаты предварительной датировки. Рассчитывают средние сезонные значения изотопного состава и скорость снегонакопления для каждого выделенного слоя с учетом плотности. Вводят поправки на адвекцию льда и на утончение годовых слоев. Дополнительно рассчитывают среднесезонные значения количества осадков в регионе и среднесезонные значения температуры воздуха в точке бурения. Сопоставляют среднесезонную скорость снегонакопления в точке бурения и среднесезонное количество осадков в регионе. Выявляют тип изменения количества осадков, к которому относится точка бурения. Рассчитывают уравнение регрессии между среднесезонным количеством осадков в регионе и среднесезонной скоростью снегонакопления. Рассчитывают по уравнению регрессии количество осадков в точке бурения. Сопоставляют среднесезонные значения изотопного состава ледяного керна и среднесезонные значения температуры воздуха в точке бурения. Рассчитывают уравнение регрессии между среднесезонным изотопным составом и среднесезонной температурой воздуха. Рассчитывают по уравнению регрессии среднесезонные значения температуры воздуха в точке бурения. Технический результат: восстановление рядов метеорологических характеристик.

Изобретение относится к области охраны окружающей среды и может быть использовано для мониторинга атмосферного воздуха санитарно-защитных зон промышленных объектов. Сущность: система включает в себя стационарный экологический павильон (1), систему (3) пробоподготовки воздуха, автоматический измерительный комплекс (4), беспроводную систему (6) передачи накопленных результатов измерений, вспомогательное климатическое оборудование (7). Система дополнительно оснащена радиально проложенными по всем направлениям и на всю глубину утвержденной санитарно-защитной зоны всасывающими линиями (8), на которых через заданные промежутки установлены точки (9) отбора проб, оснащенные герметичными дистанционно управляемыми крышками. При этом подачу отобранной пробы воздуха из определенной всасывающей линии (8) через систему (3) пробоподготовки в автоматический измерительный комплекс (4) обеспечивает многоканальный компрессорный блок (2) в соответствии с заданной программой либо в ручном режиме. Технический результат: возможность выявления нормативно-несанкционированных уровней загрязнения атмосферного воздуха по всей территории санитарно-защитной зоны предприятия. 1 ил.

Изобретение относится к области экологического картографирования и может быть использовано для решения различных природоохранных задач. Сущность: определяют перечень учитываемых объектов: важных компонентов биоты (ВКБ) - экологических групп/подгрупп/видов биоты, особо значимых объектов (ОЗО) и природоохранных территорий (ПОТ). Определяют границы сезонов для исходных данных. Собирают данные о распределении биоты из известных опубликованных и/или неопубликованных баз данных, материалов экологического мониторинга, публикаций по результатам различных исследований, а также путем отбора проб групп/подгрупп/видов биоты в процессе морских и прибрежных экспедиционных работ в разные сезоны или месяцы. Собирают экспертные оценки специалистов о распределении биоты для участков слабо обеспеченных или не обеспеченных данными. Определяют численность на единицу площади и/или плотности биомассы групп/подгрупп/видов биоты, границы мест обитания важных биотических компонентов экосистемы моря от макрофитов до птиц и морских млекопитающих без учета фито- и зоопланктона. Собирают картографическую информацию о картографируемом районе из существующих топографических и навигационных карт, лоций, аэрофотоснимков, спутниковых снимков, имеющейся ГИС-информации. Вводят собранную информацию в электронную картографическую базу данных (БД). Строят сезонные карты биоты с учетом сезонных особенностей распределения отобранных экологических групп/подгрупп/видов биоты и их уязвимости от нефти. Нормируют полученные сезонные карты распределения биоты путем деления значений сезонного распределения компонентов (групп/подгрупп/видов) биоты на обилие соответствующей экологической группы в среднем за год в картографируемом районе. Рассчитывают коэффициенты уязвимости для учитываемых групп/подгрупп/видов биоты на основе чувствительности компонентов к действию нефти, их восстанавливаемости после воздействия и потенциального воздействия на них нефти. Строят карты уязвимости биоты путем “сложения” нормированных карт распределения ВКБ с учетом их коэффициентов уязвимости. Нормируют полученные карты уязвимости биоты. Строят карты расположения ОЗО и ПОТ для заданного картографируемого района. Присваивают на основе экспертных оценок значения приоритетной защиты для ОЗО и ПОТ. Строят по отдельности карты уязвимости ОЗО и ПОТ путем “сложения” исходных карт расположения ОЗО и ПОТ с учетом их значений уязвимости. Нормируют полученные карты уязвимости ОЗО и ПОТ. Определяют границы сезонов, для которых будут рассчитываться интегральные карты уязвимости, с учетом особенностей сезонного распределения ВКБ, ОЗО и ПОТ. Строят карты интегральной уязвимости. На последнем этапе построения карт интегральной уязвимости диапазон полученных значений интегральной уязвимости делят на 3-5 поддиапазонов, которые на картах окрашивают в разные цвета. Вводят полученную в ходе построения карт интегральной уязвимости информацию в картографическую БД. При этом коэффициенты уязвимости учитываемых групп/подгрупп/видов биоты рассчитывают по значениям чувствительности биоты, ее восстанавливаемости и потенциального воздействия на нее нефти, которые оценивают по метрической шкале. Значения чувствительности для пелагической биоты рассчитывают с учетом следующих параметров: летальная концентрация нефти или летальная нагрузка нефти, вызывающие гибель 50% биомассы или численности биоты в воде для учитываемых групп/подгрупп/видов биоты, обитающей в толще воды; предельно допустимая концентрация нефти в воде, не оказывающая воздействия на биоту. Значения чувствительности для биоты, контактирующей в основном только или большую часть времени с поверхностью воды, а не с ее толщей, рассчитывают с учетом следующих параметров: летальная толщина пленки нефти, вызывающая 50%-ную гибель биоты для учитываемых групп/подгрупп/видов биоты, обитающей большей частью на поверхности воды, а не в ее толще; предельное значение толщины пленки нефти, не оказывающее воздействия на биоту. Технический результат: повышение точности оценки уязвимости прибрежно-морских зон от нефти и нефтепродуктов.
Наверх