Устройство для регистрации оптических параметров жидкого аналита

Изобретение относится к области измерительной техники и касается устройства для регистрации оптических параметров жидкого аналита. Устройство включает в себя подложку, в толще которой сформированы камера, входной и выходной микрофлюидные каналы, сообщающиеся с камерой, источник оптического излучения видимого диапазона, оптически соединенный через камеру с первым фотоприемником, источник излучения ближнего инфракрасного диапазона, второй фотоприемник и датчик температуры. Датчик температуры выполнен в виде пленочного интерференционного покрытия торца оптического волновода, расположенного в камере и снабженного Y-разветвителем, одна ветвь которого соединена с источником излучения ближнего инфракрасного диапазона, а другая ветвь соединена со вторым фотоприемником. В стенках камеры у внутренних ее поверхностей сформирован светопоглощающий слой. Технический результат заключается в повышении точности измерения температуры аналита в зоне детектирования. 8 з.п. ф-лы, 5 ил.

 

Изобретение относится к измерительной технике и может быть использовано, в частности, для контроля параметров фазовых переходов в жидких средах методом упругого рассеяния света.

Известно устройство для измерения показателя преломления жидкого аналита (Haibo Wuetal. -An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity. // Opt. Express22, 31977-31983, 2014), содержащее подложку, микрофлюидный канал, сформированный на подложке и помещенный в интерферометр, и два оптических волновода для ввода и вывода оптического сигнала.

Недостатком устройства является необходимость использования спектрофотометра для регистрации сигнала и невозможность определения параметров фазовых превращений аналита.

Известно устройство для регистрации оптических параметров аналита (см. заявка РСТ WO 2011005776, МПК G01N 01/10, G01N 15/06, G01N 15/14, G01N 21/01, G01N 21/64, G01N 33/36, опубликована 13.01.2011), включающее подложку, микрофлюидный потоковый канал, сформированный на подложке, источник света и первое полупрозрачное (дихроичное) зеркало, устройство сбора света, испускаемого клетками, а также первое устройство обработки излучения, многожильный оптический кабель с Y-образным разветвителем; фотоумножитель или фотодиод; второй источник света и второе полупрозрачное зеркало, позволяющее отражать свет клеток и способное пропускать его через себя; второе устройство сбора света, способное собирать свет, испускаемый клетками в другом направлении, и второе устройство обработки оптических параметров излучения.

Недостатком известного устройства является невозможность изменения и измерения температуры аналита и определения параметров его фазовых превращений.

Известно устройство для регистрации оптических параметров жидкого аналита (см. заявка РСГ WO 2016025698, МПК G01N 33/543, G01N 33/571, G01N 33/58, опубликована 18.02.2016), совпадающее с настоящим решением по наибольшему числу существенных признаков и выбранное в качестве прототипа. Устройство - прототип включает подложку, в толще которой сформированы по меньшей мере одна камера, входной и выходной микрофлюидные каналы, сообщающиеся с камерой, источник оптического излучения видимого диапазона частот, оптически соединенный через камеру с первым фотоприемником, источник излучения ближнего инфракрасного диапазона частот и второй фотоприемник, модуль контроля, управляющий источниками света и фотоприемниками, предназначенными для выполнения в зоне детектирования колориметрических измерений параметров аналита посредством спектрофотометра.

Недостатком известного устройства является его усложненная конструкция из-за необходимости использования спектрофотометра для регистрации детектируемого сигнала, а также невозможность точного измерения температуры жидкого аналита в зоне детектирования.

Задачей настоящего изобретения являлась разработка устройства для регистрации оптических параметров жидкого аналита, обеспечивающего повышенную по сравнению с прототипом стабилизацию и точность измерения температуры жидкого аналита в зоне детектирования.

Поставленная задача решается тем, что устройство для регистрации оптических параметров жидкого аналита включает подложку, в толще которой сформированы камера, входной и выходной микрофлюидные каналы, сообщающиеся с камерой, источник оптического излучения видимого диапазона частот, оптически соединенный через камеру с первым фотоприемником, источник излучения ближнего инфракрасного диапазона частот и второй фотоприемник, Новым является снабжение устройства датчиком температуры. Датчик температуры выполнен в виде пленочного интерференционного покрытия торца оптического волокна, расположенного в камере и снабженного Y-разветвителем, одна ветвь которого соединена с источником излучения ближнего инфракрасного диапазона, а другая ветвь соединена со вторым фотоприемником, при этом в стенках камеры у ее внутренних поверхностей сформирован светопоглощающий слой.

Подложка может быть выполнена из химически инертного неорганического или полимерного материала.

Пленочное интерференционное покрытие выполнено из последовательно нанесенных на торец оптического волокна слоев полупроводника и диэлектрика (диэлектрического зеркала) толщиной 400-800 нм.

Источник оптического излучения видимого диапазона частот может быть выполнен в виде лазера или в виде лазерного диода.

Светопоглощающий слой в стенках камеры у ее внутренних поверхностей может быть выполнен в виде слоя стекла, содержащего наночастицы металла, например, серебра или никеля, или железа, или меди.

Устройство может содержать третий фотоприемник, оптически соединенный с источником оптического излучения видимого диапазона частот через первое полупрозрачное зеркало, установленное под углом 45 градусов к продольной оси входного канала излучения видимого диапазона частот.

Устройство может содержать четвертый фотоприемник, оптически соединенный с источником ближнего инфракрасного диапазона частот через второе полупрозрачное зеркало, установленное под углом 30 или 60 градусов к продольной оси входного канала излучения видимого диапазона частот.

Изобретение иллюстрируется чертежом, где:

на фиг. 1 схематически изображен общий вид настоящего устройства для регистрации оптических параметров жидкого аналита;

на фиг. 2 показана в продольном разрезе конструкция торца волновода 15 с интерференционным покрытием 14;

на фиг. 3 приведены расчетные спектры отражения интерференционного покрытия 14 при различных температурах: 1-20°C, 2-85°C, 3-95°C. Пунктирный указатель соответствует длине волны полупроводникового лазера;

на фиг. 4 показана расчетная зависимость коэффициента отражения интерференционного покрытия 14 от температуры для длины волны 980 нм;

на фиг. 5 приведена зависимость сигнала фотоприемника 11, регистрирующего излучение, рассеянное в камере 2 аналитом, от температуры аналита.

Устройство для регистрации оптических параметров жидкого аналита (см. фиг. 1-фиг. 2) включает подложку 1, выполненную, например, из химически инертного боросиликатного стекла, в толще которой сформированы: камера 2 для жидкого аналита, входной микрофлюидный канал 3 и выходной микрофлюидный канал 4, сообщающиеся с камерой 2, источник 5 оптического излучения видимого диапазона частот, в виде, например, лазера, оптически соединенный через камеру 2, например, с помощью линзы 6 и оптических волноводов 7, 8, проведенных через каналы соответственно 9, 10, с первым фотоприемником 11. Выбор длины волны излучения источника 5, например, 405 нм, обусловлен тем, что сечение светорассеяния пропорционально 1/λ4 (λ - длина волны излучения). Поэтому, уменьшение длины волны зондирующего излучения позволяет увеличить чувствительность устройства к изменению светорассеяния в камере 2. В устройство также входит источник 12 излучения ближнего инфракрасного диапазона частот, например, в виде лазера, и второй фотоприемник 13. Выбор длины волны излучения источника 12, например, 980 нм обусловлен тем, что вода, которая обычно присутствует в аналите, имеет полосы поглощения в спектральном интервале 920-1400 нм. Устройство снабжено датчиком температуры в виде пленочного интерференционного покрытия 14 торца оптического волновода 15, проведенного в камеру 2 через канал 16 и снабженного Y-образным разветвителем 17, одна ветвь 18 которого соединена с источником 12 ближнего инфракрасного диапазона через линзу 19, а другая ветвь 20 соединена со вторым фотоприемником 13, В стенках камеры 2 у ее внутренних поверхностей сформирован светопоглощающий слой 21, выполнен в виде слоя стекла, содержащего наночастицы металла, например, серебра или меди, введенных методом ионного обмена. Пленочное интерференционное покрытие 14 состоит, например, из слоя 22 кремния, слоя 23 диоксида кремния и слоя 24 кремния, которые нанесены на торец оптического волновода 15, состоящего из сердцевины 25 из кварцевого стекла и стеклянной оболочки 26. Для контроля мощности источника 5 оптического излучения видимого диапазона частот устройство может содержать третий фотоприемник 27, оптически соединенный с источником 5 через первое полупрозрачное зеркало 28, установленное под углом 45 градусов к продольной оси входного канала излучения видимого диапазона частот. Для контроля мощности источника 12 ближнего инфракрасного диапазона устройство может содержать четвертый фотоприемник 29, оптически соединенный с источником 12 через второе полупрозрачное зеркало 30, установленное под углом 30 или 60 градусов к продольной оси входного канала излучения видимого диапазона частот. Подложка 1 герметично закрыта крышкой (на чертеже не показана).

Настоящее устройство работает следующим образом.

В камеру 2 через входной микрофлюидный канал 3 подают жидкий аналит, а по выходному микрофлюидному каналу 4 аналит вытекает из нее. В камеру 2 через оптический волновод 15 вводят излучение источника 12 излучения ближнего инфракрасного диапазона, например, лазера или лазерного диода, длина волны которого попадает в полосу поглощения аналита, что приводит к его нагреву. Часть излучения, не поглощенная аналитом, поглощается в светопоглощающем слое 21, сформированном в стенках камеры 2 у ее внутренних поверхностей, что приводит к дополнительному, причем однородному, нагреву аналита. Интерференционное покрытие 14 на торце оптического волновода 15 пропускает часть излучения в камеру 2, а часть излучения отражается и попадает на фотоприемник 13, расположенный на другой ветви 20 оптического волновода 15. При нагреве излучением аналита тепло передается на интерференционное покрытие 14, содержащее, например, полупроводниковых слоев кремния, диоксида ванадия и окиси магния 22, 23, 24. При нагреве этих слоев 22, 23, 24 происходит изменение показателя их преломления, что сопровождается спектральным сдвигом резонансных полос интерференционного покрытия 14 и изменением его коэффициента отражения на длине волны источника 12 излучения ближнего инфракрасного диапазона. Регистрация отраженного оптического сигнала фотоприемником 13 позволяет производить измерение температуры аналита на основе соответствующей калибровки. По оптическому волноводу 7 излучение источника 5 видимого диапазона частот вводят в камеру 2, часть излучения, прошедшего через аналит или рассеянного им, через оптический волновод 8 поступает на фотоприемник 11. В качестве оптических волноводов 7, 8, 15 могут быть использованы оптические волокна. При определенной температуре (например, 67°C для диоксида ванадия, 75°C для раствора белка) вещество аналита претерпевает фазовый переход, что сопровождается резким увеличением светорассеяния. Рассеянное излучение при этом поглощается оптическим поглощающим слоем 21 на стенках камеры 2. Это приводит к уменьшению сигнала фотоприемника 11 (фиг. 5), что позволяет зарегистрировать температуру фазового перехода. Величина изменения сигнала фотоприемника 11, при проведении соответствующей калибровки, позволяет получить информацию о концентрации белка в аналите. После проведения анализа аналит удаляют из камеры 2 через микрофлюидный канал 7. Кроме того, дополнительная информация может быть получена из измерения индикатрисы рассеяния света аналитом, для чего в устройстве может быть предусмотрена возможность анализа светорассеяния под углами 30, 45, 60 и 90 градусов. Это позволяет зафиксировать присутствие новой фазы в аналите, а таже определить тип вещества и его концентрацию.

Была изготовлена подложка из натриево-силикатного стекла. В подложке была выполнена камера в виде углубления круглой формы диаметром 2 мм и глубиной 0,5 мм и входной и выходной микрофлюидные каналы шириной 50 мкм и глубиной 50 мкм. Изнутри камера содержит светопоглощающий слой, представляющий собой слой стекла толщиной 20 мкм, содержащий наночастицы серебра. В подложке также были выполнены сообщающиеся с камерой каналы для установки оптических волноводов. Глубина каналов равна 130 мкм, ширина равна 130 мкм. Каналы и камера в подложке были изготовлены путем сканирования по заданной программе по поверхности стекла сфокусированного луча CO2 лазера. Оптический поглощающий слой изготовлен методом ионного обмена Ag+↔Na+ (A. Tervonen, B.R. West, S. Honkanen, Ion-exchangedglasswaveguidetechnology: areview // Opt. Eng. 50 071107, 2011). Для этого в камеру помещали смесь нитратов серебра и натрия, нагревали до температуры 340°C и выдерживали в течение 30 минут. После этого расплав солей удаляли, а подложку выдерживали при температуре 560°C в течение 60 минут. В результате в приповерхностном слое стекла толщиной 30 мкм внутри камеры сформировались наночастицы серебра, имеющие высокое поглощение в видимой и ближней инфракрасной областях спектра. При этом стенки камеры остаются химически инертными по отношению к аналиту. В качестве оптических волноводов были использованы стандартные многомодовые оптические волокна из кварцевого стекла без полимерной оболочки. После установки волокон в соответствующие им каналы и их герметизации подложку сверху закрывали герметичной крышкой. Интерференционное покрытие, состоящее из пленок кремния толщиной 3 мкм и расположенной между пленками кремния пленки диоксида кремния 10 толщиной 5,5 мкм. Пленки изготовлены методом вакуумного напыления. Толщина пленок выбрана таким образом, что на длине волны 980 нм от интерференционного покрытия назад отражается не более 15%, а большая часть излучения проходит сквозь него. На фиг. 3 показаны спектральные зависимости коэффициента интерференционного покрытия при различных температурах. На фиг. 4 показана температурная зависимость коэффициента отражения интерференционного покрытия на длине волны 980 нм. Из фиг. 4 видно, что при изменении температуры от 20°C до 80°C коэффициент отражения увеличивается от 8% до 18%. Это позволяет контролировать температуру аналита путем контроля оптических характеристик отраженного сигнала излучения инфракрасного диапазона частот.

Настоящее устройство для регистрации оптических параметров жидкого аналита имеет упрощенную по сравнению с прототипом конструкцию и обеспечивает более точное измерение температуры жидкого аналита в зоне детектирования. Дополнительным достоинством настоящего устройства является отсутствие в его конструкции металлических деталей, что исключает возможность химических реакций аналита при его контакте с элементами устройства.

1. Устройство для регистрации оптических параметров жидкого аналита, включающее подложку, в толще которой сформированы камера, входной и выходной микрофлюидные каналы, сообщающиеся с камерой, источник оптического излучения видимого диапазона частот, оптически соединенный через камеру с первым фотоприемником, источник излучения ближнего инфракрасного диапазона частот и второй фотоприемник, при этом в устройство введен датчик температуры в виде пленочного интерференционного покрытия торца оптического волновода, расположенного в камере и снабженного Y-разветвителем, одна ветвь которого соединена с источником излучения ближнего инфракрасного диапазона, а другая ветвь соединена со вторым фотоприемником, а в стенках камеры у внутренних ее поверхностей сформирован светопоглощающий слой.

2. Устройство по п. 1, отличающееся тем, что подложка выполнена из химически инертного стекла.

3. Устройство по п. 1, отличающееся тем, что пленочное интерференционное покрытие выполнено из последовательно нанесенных на торец оптического волновода чередующихся слоев полупроводника и диэлектрика толщиной 400-800 нм.

4. Устройство по п. 1, отличающееся тем, что источник оптического излучения видимого диапазона частот выполнен в виде лазера.

5. Устройство по п. 1, отличающееся тем, что источник оптического излучения видимого диапазона частот выполнен в виде лазерного диода.

6. Устройство по п. 1, отличающееся тем, что светопоглощающий слой выполнен в виде слоя стекла, содержащего наночастицы металла.

7. Устройство по п. 6, отличающееся тем, что в качестве наночастиц металла использованы наночастицы серебра или никеля, или железа, или меди.

8. Устройство по п. 1, отличающееся тем, что содержит третий фотоприемник, оптически соединенный с источником оптического излучения видимого диапазона частот через первое полупрозрачное зеркало, установленное под углом 45° к продольной оси входного канала излучения видимого диапазона частот.

9. Устройство по п. 1, отличающееся тем, что содержит четвертый фотоприемник, оптически соединенный с источником ближнего инфракрасного диапазона частот через второе полупрозрачное зеркало, установленное под углом 30° или 60° к продольной оси входного канала излучения видимого диапазона частот.



 

Похожие патенты:

Изобретение относится к области медицинской и аналитической техники и может быть использовано при изготовлении пластиковых кювет для анализа жидких проб, например, образцов физиологических жидкостей человека, животных или растений, питьевых и пищевых продуктов, проб воды из различных источников, других жидкостей органической и неорганической природы.

Изобретение относится к устройству для фотометрического или спектрометрического исследования жидкой пробы. Устройство (1) включает в себя выполненную с возможностью расположения в траектории лучей между источником (4) излучения и детектором (5) излучения кювету (3, 3′), в которой размещена исследуемая жидкая проба (2), содержащую проницаемый для излучения входной участок (6) для ввода излучения (20), создаваемого при помощи источника (4) излучения и вступающего во взаимодействие с объемом (8) пробы, и содержащую проницаемый для излучения выходной участок (7) для вывода излучения (20″), предназначенного для регистрации в детекторе (5).

Изобретение относится к спектрометрическому анализу материалов. Оптический спектрометр (102) включает регулируемое пространство (104) пробоотбора, содержащее две, как правило, противонаправленные, относительно подвижные боковые стенки (106, 108), которые сформированы, по существу, из оптически прозрачного материала, между которыми загружен образец для анализа, и привод (116), механически связанный, с одной или обеими боковыми стенками (108) и действующий в ответ на применяемый к нему командный сигнал для осуществления их относительного перемещения.

Изобретение относится к области физики, а именно к спектрометрическим измерениям содержания йода-129 в пробах почвы с использованием схемы бета-икс совпадений, и предназначено для обеспечения повышения эффективности регистрации рентгеновского и бета излучений от радиоактивного препарата йода-129, размещенного в кювете дискообразной формы с жидким сцинтиллятором.

Группа изобретений относится к области медицины и может быть использована при проведении анализа тонких слоев, в частности монослоев клеток. Устройство для получения слоев, содержащих монослой из клеток, для анализа имеет двумерную матрицу из аналитических камер (45) и разветвленную конфигурацию входных каналов (25), соединенных с каждой из аналитических камер в матрице, для возможности заполнения аналитических камер в параллельном режиме.

Группа изобретений относится к кювете для хранения биологического образца, способу ее изготовления, а также к способу проверки подлинности кюветы и способу анализа биологического образца, такого как пробы крови, с использованием указанной кюветы.

Изобретение относится к биодатчику для обнаружения конкретной молекулы внутри анализируемого вещества. Контейнер (11) биодатчика содержит нижнюю часть (1) с углублением (2), приспособленным для размещения жидкого образца, и покрывающую часть (3) для закрывания упомянутого углубления (2).

Изобретение относится к оптическому картриджу и может быть использовано для определения количественного содержания анализируемого вещества в физиологической жидкости.

Изобретение относится к технической физике и может быть использовано для контроля физическо-химических параметров жидких сред. .

Изобретение относится к химическим методам анализа почв и может быть использовано для прямого измерения концентрации подвижных минеральных форм фосфора в почвенных пробах при извлечении его углеаммонийным экстрагентом.

Изобретение относится к области медицинской и аналитической техники и может быть использовано при изготовлении кювет для анализа жидких проб в тонких слоях. Способ изготовления кюветы для анализа жидких проб, включает установку на предметную плоскопараллельную пластинку прокладок заданной толщины, размещение сверху на прокладках покровной плоскопараллельной пластинки, закрепление полученной конструкции при помощи стягивающегося устройства, введение в зазор между пластинками по периметру клеевого состава и выдерживание в таком состоянии в течение времени, необходимом для его отверждения. При этом в предметной пластинке выполняют два отверстия для прокачки анализируемых проб, на внутренней поверхности предметной пластинки снаружи периметра аналитической зоны выполняют канавку замкнутого контура, прокладки устанавливают примыкающими снаружи к канавке, а затяжку стягивающего устройства при закреплении конструкции производят с учетом заданной толщины прокладок. Изобретение обеспечивает получение кюветы с заданным объемом измерительной камеры, а также уменьшение времени на проведение анализа. 1 з.п. ф-лы, 1 ил.
Наверх